Properties

Label 891.2.a.q.1.4
Level 891891
Weight 22
Character 891.1
Self dual yes
Analytic conductor 7.1157.115
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(1,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 891=3411 891 = 3^{4} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 891.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.114670820107.11467082010
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.22545.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x36x2+5x+4 x^{4} - x^{3} - 6x^{2} + 5x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 99)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 2.338662.33866 of defining polynomial
Character χ\chi == 891.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.46934q2+4.09762q42.43628q5+2.33866q7+5.17972q86.01598q10+1.00000q11+4.71038q13+5.77494q14+4.59522q163.20799q17+7.77494q199.98292q20+2.46934q22+2.75895q23+0.935443q25+11.6315q26+9.58293q282.37172q291.37172q31+0.987711q327.92159q345.69762q358.47256q37+19.1989q3812.6192q40+3.54665q417.46934q43+4.09762q44+6.81278q46+0.207987q471.53066q49+2.30992q50+19.3013q529.11360q532.43628q55+12.1136q565.85657q580.241045q59+1.66134q613.38724q626.75145q6411.4758q657.68055q6713.1451q6814.0693q70+1.07731q712.37495q7320.9216q74+31.8587q76+2.33866q77+12.7136q7911.1952q80+8.75786q82+10.5008q83+7.81554q8518.4443q86+5.17972q8814.2933q89+11.0160q91+11.3051q92+0.513589q9418.9419q95+8.93388q973.77972q98+O(q100)q+2.46934 q^{2} +4.09762 q^{4} -2.43628 q^{5} +2.33866 q^{7} +5.17972 q^{8} -6.01598 q^{10} +1.00000 q^{11} +4.71038 q^{13} +5.77494 q^{14} +4.59522 q^{16} -3.20799 q^{17} +7.77494 q^{19} -9.98292 q^{20} +2.46934 q^{22} +2.75895 q^{23} +0.935443 q^{25} +11.6315 q^{26} +9.58293 q^{28} -2.37172 q^{29} -1.37172 q^{31} +0.987711 q^{32} -7.92159 q^{34} -5.69762 q^{35} -8.47256 q^{37} +19.1989 q^{38} -12.6192 q^{40} +3.54665 q^{41} -7.46934 q^{43} +4.09762 q^{44} +6.81278 q^{46} +0.207987 q^{47} -1.53066 q^{49} +2.30992 q^{50} +19.3013 q^{52} -9.11360 q^{53} -2.43628 q^{55} +12.1136 q^{56} -5.85657 q^{58} -0.241045 q^{59} +1.66134 q^{61} -3.38724 q^{62} -6.75145 q^{64} -11.4758 q^{65} -7.68055 q^{67} -13.1451 q^{68} -14.0693 q^{70} +1.07731 q^{71} -2.37495 q^{73} -20.9216 q^{74} +31.8587 q^{76} +2.33866 q^{77} +12.7136 q^{79} -11.1952 q^{80} +8.75786 q^{82} +10.5008 q^{83} +7.81554 q^{85} -18.4443 q^{86} +5.17972 q^{88} -14.2933 q^{89} +11.0160 q^{91} +11.3051 q^{92} +0.513589 q^{94} -18.9419 q^{95} +8.93388 q^{97} -3.77972 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2+11q4+4q5+q7+q10+4q11+7q13+q14+17q165q17+9q1910q20+q22+14q23+14q25+22q26q286q292q31++15q98+O(q100) 4 q + q^{2} + 11 q^{4} + 4 q^{5} + q^{7} + q^{10} + 4 q^{11} + 7 q^{13} + q^{14} + 17 q^{16} - 5 q^{17} + 9 q^{19} - 10 q^{20} + q^{22} + 14 q^{23} + 14 q^{25} + 22 q^{26} - q^{28} - 6 q^{29} - 2 q^{31}+ \cdots + 15 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.46934 1.74608 0.873042 0.487645i 0.162144π-0.162144\pi
0.873042 + 0.487645i 0.162144π0.162144\pi
33 0 0
44 4.09762 2.04881
55 −2.43628 −1.08954 −0.544768 0.838587i 0.683382π-0.683382\pi
−0.544768 + 0.838587i 0.683382π0.683382\pi
66 0 0
77 2.33866 0.883931 0.441965 0.897032i 0.354281π-0.354281\pi
0.441965 + 0.897032i 0.354281π0.354281\pi
88 5.17972 1.83131
99 0 0
1010 −6.01598 −1.90242
1111 1.00000 0.301511
1212 0 0
1313 4.71038 1.30642 0.653212 0.757175i 0.273421π-0.273421\pi
0.653212 + 0.757175i 0.273421π0.273421\pi
1414 5.77494 1.54342
1515 0 0
1616 4.59522 1.14881
1717 −3.20799 −0.778051 −0.389026 0.921227i 0.627188π-0.627188\pi
−0.389026 + 0.921227i 0.627188π0.627188\pi
1818 0 0
1919 7.77494 1.78369 0.891846 0.452338i 0.149410π-0.149410\pi
0.891846 + 0.452338i 0.149410π0.149410\pi
2020 −9.98292 −2.23225
2121 0 0
2222 2.46934 0.526464
2323 2.75895 0.575282 0.287641 0.957738i 0.407129π-0.407129\pi
0.287641 + 0.957738i 0.407129π0.407129\pi
2424 0 0
2525 0.935443 0.187089
2626 11.6315 2.28113
2727 0 0
2828 9.58293 1.81100
2929 −2.37172 −0.440417 −0.220209 0.975453i 0.570674π-0.570674\pi
−0.220209 + 0.975453i 0.570674π0.570674\pi
3030 0 0
3131 −1.37172 −0.246368 −0.123184 0.992384i 0.539311π-0.539311\pi
−0.123184 + 0.992384i 0.539311π0.539311\pi
3232 0.987711 0.174604
3333 0 0
3434 −7.92159 −1.35854
3535 −5.69762 −0.963074
3636 0 0
3737 −8.47256 −1.39288 −0.696440 0.717615i 0.745234π-0.745234\pi
−0.696440 + 0.717615i 0.745234π0.745234\pi
3838 19.1989 3.11448
3939 0 0
4040 −12.6192 −1.99527
4141 3.54665 0.553893 0.276947 0.960885i 0.410677π-0.410677\pi
0.276947 + 0.960885i 0.410677π0.410677\pi
4242 0 0
4343 −7.46934 −1.13906 −0.569531 0.821970i 0.692875π-0.692875\pi
−0.569531 + 0.821970i 0.692875π0.692875\pi
4444 4.09762 0.617739
4545 0 0
4646 6.81278 1.00449
4747 0.207987 0.0303380 0.0151690 0.999885i 0.495171π-0.495171\pi
0.0151690 + 0.999885i 0.495171π0.495171\pi
4848 0 0
4949 −1.53066 −0.218666
5050 2.30992 0.326672
5151 0 0
5252 19.3013 2.67661
5353 −9.11360 −1.25185 −0.625925 0.779884i 0.715278π-0.715278\pi
−0.625925 + 0.779884i 0.715278π0.715278\pi
5454 0 0
5555 −2.43628 −0.328507
5656 12.1136 1.61875
5757 0 0
5858 −5.85657 −0.769005
5959 −0.241045 −0.0313814 −0.0156907 0.999877i 0.504995π-0.504995\pi
−0.0156907 + 0.999877i 0.504995π0.504995\pi
6060 0 0
6161 1.66134 0.212713 0.106356 0.994328i 0.466082π-0.466082\pi
0.106356 + 0.994328i 0.466082π0.466082\pi
6262 −3.38724 −0.430179
6363 0 0
6464 −6.75145 −0.843932
6565 −11.4758 −1.42340
6666 0 0
6767 −7.68055 −0.938328 −0.469164 0.883111i 0.655445π-0.655445\pi
−0.469164 + 0.883111i 0.655445π0.655445\pi
6868 −13.1451 −1.59408
6969 0 0
7070 −14.0693 −1.68161
7171 1.07731 0.127854 0.0639268 0.997955i 0.479638π-0.479638\pi
0.0639268 + 0.997955i 0.479638π0.479638\pi
7272 0 0
7373 −2.37495 −0.277966 −0.138983 0.990295i 0.544383π-0.544383\pi
−0.138983 + 0.990295i 0.544383π0.544383\pi
7474 −20.9216 −2.43209
7575 0 0
7676 31.8587 3.65444
7777 2.33866 0.266515
7878 0 0
7979 12.7136 1.43039 0.715196 0.698924i 0.246337π-0.246337\pi
0.715196 + 0.698924i 0.246337π0.246337\pi
8080 −11.1952 −1.25166
8181 0 0
8282 8.75786 0.967144
8383 10.5008 1.15262 0.576308 0.817233i 0.304493π-0.304493\pi
0.576308 + 0.817233i 0.304493π0.304493\pi
8484 0 0
8585 7.81554 0.847715
8686 −18.4443 −1.98890
8787 0 0
8888 5.17972 0.552160
8989 −14.2933 −1.51509 −0.757544 0.652784i 0.773601π-0.773601\pi
−0.757544 + 0.652784i 0.773601π0.773601\pi
9090 0 0
9191 11.0160 1.15479
9292 11.3051 1.17864
9393 0 0
9494 0.513589 0.0529727
9595 −18.9419 −1.94340
9696 0 0
9797 8.93388 0.907098 0.453549 0.891231i 0.350158π-0.350158\pi
0.453549 + 0.891231i 0.350158π0.350158\pi
9898 −3.77972 −0.381810
9999 0 0
100100 3.83309 0.383309
101101 −4.87687 −0.485267 −0.242633 0.970118i 0.578011π-0.578011\pi
−0.242633 + 0.970118i 0.578011π0.578011\pi
102102 0 0
103103 −10.1702 −1.00210 −0.501049 0.865419i 0.667052π-0.667052\pi
−0.501049 + 0.865419i 0.667052π0.667052\pi
104104 24.3984 2.39246
105105 0 0
106106 −22.5045 −2.18583
107107 9.59845 0.927917 0.463959 0.885857i 0.346429π-0.346429\pi
0.463959 + 0.885857i 0.346429π0.346429\pi
108108 0 0
109109 −1.95143 −0.186913 −0.0934564 0.995623i 0.529792π-0.529792\pi
−0.0934564 + 0.995623i 0.529792π0.529792\pi
110110 −6.01598 −0.573601
111111 0 0
112112 10.7467 1.01546
113113 −7.90561 −0.743697 −0.371849 0.928293i 0.621276π-0.621276\pi
−0.371849 + 0.928293i 0.621276π0.621276\pi
114114 0 0
115115 −6.72158 −0.626790
116116 −9.71839 −0.902330
117117 0 0
118118 −0.595222 −0.0547946
119119 −7.50239 −0.687743
120120 0 0
121121 1.00000 0.0909091
122122 4.10240 0.371414
123123 0 0
124124 −5.62078 −0.504761
125125 9.90238 0.885696
126126 0 0
127127 −0.943412 −0.0837142 −0.0418571 0.999124i 0.513327π-0.513327\pi
−0.0418571 + 0.999124i 0.513327π0.513327\pi
128128 −18.6470 −1.64818
129129 0 0
130130 −28.3376 −2.48537
131131 −3.06133 −0.267470 −0.133735 0.991017i 0.542697π-0.542697\pi
−0.133735 + 0.991017i 0.542697π0.542697\pi
132132 0 0
133133 18.1829 1.57666
134134 −18.9658 −1.63840
135135 0 0
136136 −16.6165 −1.42485
137137 −20.4560 −1.74767 −0.873835 0.486223i 0.838374π-0.838374\pi
−0.873835 + 0.486223i 0.838374π0.838374\pi
138138 0 0
139139 12.9088 1.09491 0.547457 0.836834i 0.315596π-0.315596\pi
0.547457 + 0.836834i 0.315596π0.315596\pi
140140 −23.3467 −1.97315
141141 0 0
142142 2.66025 0.223243
143143 4.71038 0.393902
144144 0 0
145145 5.77816 0.479850
146146 −5.86454 −0.485353
147147 0 0
148148 −34.7173 −2.85374
149149 10.0805 0.825830 0.412915 0.910770i 0.364511π-0.364511\pi
0.412915 + 0.910770i 0.364511π0.364511\pi
150150 0 0
151151 4.72590 0.384588 0.192294 0.981337i 0.438407π-0.438407\pi
0.192294 + 0.981337i 0.438407π0.438407\pi
152152 40.2720 3.26649
153153 0 0
154154 5.77494 0.465358
155155 3.34189 0.268427
156156 0 0
157157 −4.95465 −0.395424 −0.197712 0.980260i 0.563351π-0.563351\pi
−0.197712 + 0.980260i 0.563351π0.563351\pi
158158 31.3942 2.49758
159159 0 0
160160 −2.40634 −0.190238
161161 6.45226 0.508509
162162 0 0
163163 −8.60277 −0.673821 −0.336910 0.941537i 0.609382π-0.609382\pi
−0.336910 + 0.941537i 0.609382π0.609382\pi
164164 14.5328 1.13482
165165 0 0
166166 25.9301 2.01256
167167 7.17816 0.555462 0.277731 0.960659i 0.410418π-0.410418\pi
0.277731 + 0.960659i 0.410418π0.410418\pi
168168 0 0
169169 9.18768 0.706745
170170 19.2992 1.48018
171171 0 0
172172 −30.6065 −2.33372
173173 7.25182 0.551346 0.275673 0.961252i 0.411099π-0.411099\pi
0.275673 + 0.961252i 0.411099π0.411099\pi
174174 0 0
175175 2.18768 0.165373
176176 4.59522 0.346378
177177 0 0
178178 −35.2950 −2.64547
179179 −7.29009 −0.544887 −0.272443 0.962172i 0.587832π-0.587832\pi
−0.272443 + 0.962172i 0.587832π0.587832\pi
180180 0 0
181181 13.4235 0.997762 0.498881 0.866670i 0.333744π-0.333744\pi
0.498881 + 0.866670i 0.333744π0.333744\pi
182182 27.2022 2.01636
183183 0 0
184184 14.2906 1.05352
185185 20.6415 1.51759
186186 0 0
187187 −3.20799 −0.234591
188188 0.852250 0.0621567
189189 0 0
190190 −46.7739 −3.39333
191191 −2.30082 −0.166481 −0.0832406 0.996529i 0.526527π-0.526527\pi
−0.0832406 + 0.996529i 0.526527π0.526527\pi
192192 0 0
193193 14.0981 1.01480 0.507401 0.861710i 0.330606π-0.330606\pi
0.507401 + 0.861710i 0.330606π0.330606\pi
194194 22.0607 1.58387
195195 0 0
196196 −6.27208 −0.448005
197197 1.31362 0.0935913 0.0467957 0.998904i 0.485099π-0.485099\pi
0.0467957 + 0.998904i 0.485099π0.485099\pi
198198 0 0
199199 15.8491 1.12351 0.561755 0.827303i 0.310126π-0.310126\pi
0.561755 + 0.827303i 0.310126π0.310126\pi
200200 4.84533 0.342616
201201 0 0
202202 −12.0426 −0.847317
203203 −5.54665 −0.389298
204204 0 0
205205 −8.64061 −0.603487
206206 −25.1136 −1.74975
207207 0 0
208208 21.6452 1.50083
209209 7.77494 0.537804
210210 0 0
211211 −8.58449 −0.590981 −0.295490 0.955346i 0.595483π-0.595483\pi
−0.295490 + 0.955346i 0.595483π0.595483\pi
212212 −37.3440 −2.56480
213213 0 0
214214 23.7018 1.62022
215215 18.1974 1.24105
216216 0 0
217217 −3.20799 −0.217772
218218 −4.81872 −0.326365
219219 0 0
220220 −9.98292 −0.673049
221221 −15.1108 −1.01647
222222 0 0
223223 −26.5184 −1.77580 −0.887901 0.460035i 0.847837π-0.847837\pi
−0.887901 + 0.460035i 0.847837π0.847837\pi
224224 2.30992 0.154338
225225 0 0
226226 −19.5216 −1.29856
227227 23.6853 1.57205 0.786025 0.618194i 0.212135π-0.212135\pi
0.786025 + 0.618194i 0.212135π0.212135\pi
228228 0 0
229229 −11.9909 −0.792384 −0.396192 0.918168i 0.629668π-0.629668\pi
−0.396192 + 0.918168i 0.629668π0.629668\pi
230230 −16.5978 −1.09443
231231 0 0
232232 −12.2848 −0.806539
233233 18.9188 1.23941 0.619707 0.784833i 0.287251π-0.287251\pi
0.619707 + 0.784833i 0.287251π0.287251\pi
234234 0 0
235235 −0.506713 −0.0330543
236236 −0.987711 −0.0642945
237237 0 0
238238 −18.5259 −1.20086
239239 −16.5659 −1.07156 −0.535778 0.844359i 0.679982π-0.679982\pi
−0.535778 + 0.844359i 0.679982π0.679982\pi
240240 0 0
241241 −16.2890 −1.04927 −0.524633 0.851328i 0.675798π-0.675798\pi
−0.524633 + 0.851328i 0.675798π0.675798\pi
242242 2.46934 0.158735
243243 0 0
244244 6.80753 0.435807
245245 3.72912 0.238245
246246 0 0
247247 36.6229 2.33026
248248 −7.10512 −0.451175
249249 0 0
250250 24.4523 1.54650
251251 −15.1248 −0.954671 −0.477336 0.878721i 0.658397π-0.658397\pi
−0.477336 + 0.878721i 0.658397π0.658397\pi
252252 0 0
253253 2.75895 0.173454
254254 −2.32960 −0.146172
255255 0 0
256256 −32.5428 −2.03393
257257 19.5056 1.21673 0.608364 0.793658i 0.291826π-0.291826\pi
0.608364 + 0.793658i 0.291826π0.291826\pi
258258 0 0
259259 −19.8145 −1.23121
260260 −47.0234 −2.91627
261261 0 0
262262 −7.55945 −0.467024
263263 9.43950 0.582065 0.291032 0.956713i 0.406001π-0.406001\pi
0.291032 + 0.956713i 0.406001π0.406001\pi
264264 0 0
265265 22.2032 1.36393
266266 44.8998 2.75298
267267 0 0
268268 −31.4719 −1.92245
269269 7.33069 0.446960 0.223480 0.974708i 0.428258π-0.428258\pi
0.223480 + 0.974708i 0.428258π0.428258\pi
270270 0 0
271271 −2.50286 −0.152038 −0.0760190 0.997106i 0.524221π-0.524221\pi
−0.0760190 + 0.997106i 0.524221π0.524221\pi
272272 −14.7414 −0.893829
273273 0 0
274274 −50.5126 −3.05158
275275 0.935443 0.0564093
276276 0 0
277277 21.9889 1.32119 0.660593 0.750744i 0.270305π-0.270305\pi
0.660593 + 0.750744i 0.270305π0.270305\pi
278278 31.8762 1.91181
279279 0 0
280280 −29.5121 −1.76368
281281 −16.9937 −1.01376 −0.506880 0.862017i 0.669201π-0.669201\pi
−0.506880 + 0.862017i 0.669201π0.669201\pi
282282 0 0
283283 3.77816 0.224589 0.112294 0.993675i 0.464180π-0.464180\pi
0.112294 + 0.993675i 0.464180π0.464180\pi
284284 4.41441 0.261947
285285 0 0
286286 11.6315 0.687785
287287 8.29441 0.489603
288288 0 0
289289 −6.70882 −0.394636
290290 14.2682 0.837859
291291 0 0
292292 −9.73162 −0.569500
293293 −23.3754 −1.36561 −0.682803 0.730602i 0.739239π-0.739239\pi
−0.682803 + 0.730602i 0.739239π0.739239\pi
294294 0 0
295295 0.587253 0.0341912
296296 −43.8855 −2.55079
297297 0 0
298298 24.8922 1.44197
299299 12.9957 0.751562
300300 0 0
301301 −17.4682 −1.00685
302302 11.6698 0.671523
303303 0 0
304304 35.7276 2.04912
305305 −4.04748 −0.231758
306306 0 0
307307 15.5574 0.887909 0.443954 0.896049i 0.353575π-0.353575\pi
0.443954 + 0.896049i 0.353575π0.353575\pi
308308 9.58293 0.546038
309309 0 0
310310 8.25224 0.468696
311311 24.2838 1.37701 0.688504 0.725233i 0.258268π-0.258268\pi
0.688504 + 0.725233i 0.258268π0.258268\pi
312312 0 0
313313 7.80368 0.441090 0.220545 0.975377i 0.429216π-0.429216\pi
0.220545 + 0.975377i 0.429216π0.429216\pi
314314 −12.2347 −0.690444
315315 0 0
316316 52.0955 2.93060
317317 13.5750 0.762446 0.381223 0.924483i 0.375503π-0.375503\pi
0.381223 + 0.924483i 0.375503π0.375503\pi
318318 0 0
319319 −2.37172 −0.132791
320320 16.4484 0.919494
321321 0 0
322322 15.9328 0.887900
323323 −24.9419 −1.38780
324324 0 0
325325 4.40629 0.244417
326326 −21.2431 −1.17655
327327 0 0
328328 18.3706 1.01435
329329 0.486411 0.0268167
330330 0 0
331331 20.7910 1.14277 0.571387 0.820680i 0.306405π-0.306405\pi
0.571387 + 0.820680i 0.306405π0.306405\pi
332332 43.0284 2.36149
333333 0 0
334334 17.7253 0.969884
335335 18.7119 1.02234
336336 0 0
337337 6.66503 0.363068 0.181534 0.983385i 0.441894π-0.441894\pi
0.181534 + 0.983385i 0.441894π0.441894\pi
338338 22.6875 1.23404
339339 0 0
340340 32.0251 1.73680
341341 −1.37172 −0.0742828
342342 0 0
343343 −19.9503 −1.07722
344344 −38.6890 −2.08597
345345 0 0
346346 17.9072 0.962696
347347 −6.91467 −0.371199 −0.185600 0.982625i 0.559423π-0.559423\pi
−0.185600 + 0.982625i 0.559423π0.559423\pi
348348 0 0
349349 5.67566 0.303811 0.151905 0.988395i 0.451459π-0.451459\pi
0.151905 + 0.988395i 0.451459π0.451459\pi
350350 5.40213 0.288756
351351 0 0
352352 0.987711 0.0526452
353353 −7.56648 −0.402723 −0.201362 0.979517i 0.564537π-0.564537\pi
−0.201362 + 0.979517i 0.564537π0.564537\pi
354354 0 0
355355 −2.62463 −0.139301
356356 −58.5685 −3.10412
357357 0 0
358358 −18.0017 −0.951418
359359 29.1504 1.53850 0.769248 0.638950i 0.220631π-0.220631\pi
0.769248 + 0.638950i 0.220631π0.220631\pi
360360 0 0
361361 41.4497 2.18156
362362 33.1472 1.74218
363363 0 0
364364 45.1393 2.36594
365365 5.78603 0.302854
366366 0 0
367367 −34.4544 −1.79851 −0.899254 0.437428i 0.855890π-0.855890\pi
−0.899254 + 0.437428i 0.855890π0.855890\pi
368368 12.6780 0.660887
369369 0 0
370370 50.9708 2.64985
371371 −21.3136 −1.10655
372372 0 0
373373 3.90557 0.202223 0.101111 0.994875i 0.467760π-0.467760\pi
0.101111 + 0.994875i 0.467760π0.467760\pi
374374 −7.92159 −0.409616
375375 0 0
376376 1.07731 0.0555582
377377 −11.1717 −0.575372
378378 0 0
379379 −10.2129 −0.524600 −0.262300 0.964986i 0.584481π-0.584481\pi
−0.262300 + 0.964986i 0.584481π0.584481\pi
380380 −77.6166 −3.98165
381381 0 0
382382 −5.68148 −0.290690
383383 14.1239 0.721698 0.360849 0.932624i 0.382487π-0.382487\pi
0.360849 + 0.932624i 0.382487π0.382487\pi
384384 0 0
385385 −5.69762 −0.290378
386386 34.8129 1.77193
387387 0 0
388388 36.6076 1.85847
389389 14.2277 0.721371 0.360686 0.932687i 0.382543π-0.382543\pi
0.360686 + 0.932687i 0.382543π0.382543\pi
390390 0 0
391391 −8.85069 −0.447599
392392 −7.92841 −0.400445
393393 0 0
394394 3.24376 0.163418
395395 −30.9739 −1.55846
396396 0 0
397397 −23.5328 −1.18108 −0.590539 0.807009i 0.701085π-0.701085\pi
−0.590539 + 0.807009i 0.701085π0.701085\pi
398398 39.1367 1.96174
399399 0 0
400400 4.29857 0.214928
401401 −36.5308 −1.82426 −0.912131 0.409899i 0.865564π-0.865564\pi
−0.912131 + 0.409899i 0.865564π0.865564\pi
402402 0 0
403403 −6.46132 −0.321861
404404 −19.9835 −0.994219
405405 0 0
406406 −13.6965 −0.679747
407407 −8.47256 −0.419969
408408 0 0
409409 16.7873 0.830077 0.415039 0.909804i 0.363768π-0.363768\pi
0.415039 + 0.909804i 0.363768π0.363768\pi
410410 −21.3366 −1.05374
411411 0 0
412412 −41.6735 −2.05311
413413 −0.563724 −0.0277390
414414 0 0
415415 −25.5829 −1.25582
416416 4.65250 0.228107
417417 0 0
418418 19.1989 0.939050
419419 8.67456 0.423780 0.211890 0.977294i 0.432038π-0.432038\pi
0.211890 + 0.977294i 0.432038π0.432038\pi
420420 0 0
421421 20.3654 0.992550 0.496275 0.868165i 0.334701π-0.334701\pi
0.496275 + 0.868165i 0.334701π0.334701\pi
422422 −21.1980 −1.03190
423423 0 0
424424 −47.2058 −2.29252
425425 −3.00089 −0.145564
426426 0 0
427427 3.88531 0.188023
428428 39.3308 1.90112
429429 0 0
430430 44.9354 2.16698
431431 −30.7365 −1.48053 −0.740263 0.672318i 0.765299π-0.765299\pi
−0.740263 + 0.672318i 0.765299π0.765299\pi
432432 0 0
433433 −35.7978 −1.72033 −0.860167 0.510012i 0.829641π-0.829641\pi
−0.860167 + 0.510012i 0.829641π0.829641\pi
434434 −7.92159 −0.380249
435435 0 0
436436 −7.99619 −0.382948
437437 21.4507 1.02613
438438 0 0
439439 −18.3084 −0.873813 −0.436906 0.899507i 0.643926π-0.643926\pi
−0.436906 + 0.899507i 0.643926π0.643926\pi
440440 −12.6192 −0.601598
441441 0 0
442442 −37.3137 −1.77483
443443 1.05332 0.0500445 0.0250223 0.999687i 0.492034π-0.492034\pi
0.0250223 + 0.999687i 0.492034π0.492034\pi
444444 0 0
445445 34.8225 1.65074
446446 −65.4828 −3.10070
447447 0 0
448448 −15.7894 −0.745977
449449 29.3702 1.38607 0.693033 0.720906i 0.256274π-0.256274\pi
0.693033 + 0.720906i 0.256274π0.256274\pi
450450 0 0
451451 3.54665 0.167005
452452 −32.3942 −1.52369
453453 0 0
454454 58.4870 2.74493
455455 −26.8380 −1.25818
456456 0 0
457457 5.31674 0.248706 0.124353 0.992238i 0.460314π-0.460314\pi
0.124353 + 0.992238i 0.460314π0.460314\pi
458458 −29.6096 −1.38357
459459 0 0
460460 −27.5424 −1.28417
461461 −6.86016 −0.319509 −0.159755 0.987157i 0.551070π-0.551070\pi
−0.159755 + 0.987157i 0.551070π0.551070\pi
462462 0 0
463463 −25.3061 −1.17607 −0.588036 0.808834i 0.700099π-0.700099\pi
−0.588036 + 0.808834i 0.700099π0.700099\pi
464464 −10.8986 −0.505954
465465 0 0
466466 46.7169 2.16412
467467 40.1018 1.85569 0.927844 0.372967i 0.121660π-0.121660\pi
0.927844 + 0.372967i 0.121660π0.121660\pi
468468 0 0
469469 −17.9622 −0.829417
470470 −1.25125 −0.0577156
471471 0 0
472472 −1.24855 −0.0574690
473473 −7.46934 −0.343440
474474 0 0
475475 7.27301 0.333709
476476 −30.7419 −1.40905
477477 0 0
478478 −40.9067 −1.87103
479479 −16.3754 −0.748210 −0.374105 0.927386i 0.622050π-0.622050\pi
−0.374105 + 0.927386i 0.622050π0.622050\pi
480480 0 0
481481 −39.9090 −1.81969
482482 −40.2230 −1.83211
483483 0 0
484484 4.09762 0.186255
485485 −21.7654 −0.988316
486486 0 0
487487 14.9456 0.677249 0.338625 0.940922i 0.390038π-0.390038\pi
0.338625 + 0.940922i 0.390038π0.390038\pi
488488 8.60526 0.389542
489489 0 0
490490 9.20845 0.415996
491491 27.8683 1.25768 0.628839 0.777536i 0.283530π-0.283530\pi
0.628839 + 0.777536i 0.283530π0.283530\pi
492492 0 0
493493 7.60845 0.342667
494494 90.4342 4.06883
495495 0 0
496496 −6.30336 −0.283029
497497 2.51947 0.113014
498498 0 0
499499 −33.1552 −1.48423 −0.742116 0.670271i 0.766178π-0.766178\pi
−0.742116 + 0.670271i 0.766178π0.766178\pi
500500 40.5762 1.81462
501501 0 0
502502 −37.3483 −1.66694
503503 8.90129 0.396889 0.198444 0.980112i 0.436411π-0.436411\pi
0.198444 + 0.980112i 0.436411π0.436411\pi
504504 0 0
505505 11.8814 0.528716
506506 6.81278 0.302865
507507 0 0
508508 −3.86574 −0.171514
509509 40.7883 1.80791 0.903955 0.427627i 0.140650π-0.140650\pi
0.903955 + 0.427627i 0.140650π0.140650\pi
510510 0 0
511511 −5.55419 −0.245703
512512 −43.0651 −1.90323
513513 0 0
514514 48.1659 2.12451
515515 24.7774 1.09182
516516 0 0
517517 0.207987 0.00914725
518518 −48.9285 −2.14980
519519 0 0
520520 −59.4413 −2.60667
521521 −8.54191 −0.374228 −0.187114 0.982338i 0.559913π-0.559913\pi
−0.187114 + 0.982338i 0.559913π0.559913\pi
522522 0 0
523523 26.9328 1.17769 0.588845 0.808246i 0.299583π-0.299583\pi
0.588845 + 0.808246i 0.299583π0.299583\pi
524524 −12.5442 −0.547994
525525 0 0
526526 23.3093 1.01633
527527 4.40046 0.191687
528528 0 0
529529 −15.3882 −0.669051
530530 54.8273 2.38154
531531 0 0
532532 74.5067 3.23028
533533 16.7061 0.723620
534534 0 0
535535 −23.3845 −1.01100
536536 −39.7831 −1.71837
537537 0 0
538538 18.1019 0.780430
539539 −1.53066 −0.0659304
540540 0 0
541541 44.5039 1.91337 0.956686 0.291121i 0.0940284π-0.0940284\pi
0.956686 + 0.291121i 0.0940284π0.0940284\pi
542542 −6.18040 −0.265471
543543 0 0
544544 −3.16857 −0.135851
545545 4.75421 0.203648
546546 0 0
547547 9.69450 0.414507 0.207254 0.978287i 0.433547π-0.433547\pi
0.207254 + 0.978287i 0.433547π0.433547\pi
548548 −83.8206 −3.58064
549549 0 0
550550 2.30992 0.0984954
551551 −18.4400 −0.785569
552552 0 0
553553 29.7328 1.26437
554554 54.2980 2.30690
555555 0 0
556556 52.8955 2.24327
557557 44.5990 1.88972 0.944861 0.327473i 0.106197π-0.106197\pi
0.944861 + 0.327473i 0.106197π0.106197\pi
558558 0 0
559559 −35.1834 −1.48810
560560 −26.1818 −1.10639
561561 0 0
562562 −41.9631 −1.77011
563563 −27.8101 −1.17206 −0.586029 0.810290i 0.699309π-0.699309\pi
−0.586029 + 0.810290i 0.699309π0.699309\pi
564564 0 0
565565 19.2603 0.810285
566566 9.32955 0.392150
567567 0 0
568568 5.58017 0.234139
569569 37.0112 1.55159 0.775796 0.630984i 0.217349π-0.217349\pi
0.775796 + 0.630984i 0.217349π0.217349\pi
570570 0 0
571571 −27.9279 −1.16875 −0.584374 0.811484i 0.698660π-0.698660\pi
−0.584374 + 0.811484i 0.698660π0.698660\pi
572572 19.3013 0.807029
573573 0 0
574574 20.4817 0.854888
575575 2.58084 0.107629
576576 0 0
577577 24.6587 1.02656 0.513278 0.858222i 0.328431π-0.328431\pi
0.513278 + 0.858222i 0.328431π0.328431\pi
578578 −16.5663 −0.689068
579579 0 0
580580 23.6767 0.983121
581581 24.5579 1.01883
582582 0 0
583583 −9.11360 −0.377447
584584 −12.3015 −0.509042
585585 0 0
586586 −57.7217 −2.38446
587587 −26.2463 −1.08330 −0.541650 0.840604i 0.682200π-0.682200\pi
−0.541650 + 0.840604i 0.682200π0.682200\pi
588588 0 0
589589 −10.6650 −0.439445
590590 1.45013 0.0597007
591591 0 0
592592 −38.9333 −1.60015
593593 11.8551 0.486829 0.243414 0.969922i 0.421733π-0.421733\pi
0.243414 + 0.969922i 0.421733π0.421733\pi
594594 0 0
595595 18.2779 0.749321
596596 41.3062 1.69197
597597 0 0
598598 32.0908 1.31229
599599 30.5759 1.24930 0.624648 0.780907i 0.285243π-0.285243\pi
0.624648 + 0.780907i 0.285243π0.285243\pi
600600 0 0
601601 27.8235 1.13494 0.567472 0.823392i 0.307921π-0.307921\pi
0.567472 + 0.823392i 0.307921π0.307921\pi
602602 −43.1349 −1.75805
603603 0 0
604604 19.3649 0.787947
605605 −2.43628 −0.0990487
606606 0 0
607607 −9.19087 −0.373046 −0.186523 0.982451i 0.559722π-0.559722\pi
−0.186523 + 0.982451i 0.559722π0.559722\pi
608608 7.67939 0.311441
609609 0 0
610610 −9.99459 −0.404669
611611 0.979697 0.0396343
612612 0 0
613613 −12.7376 −0.514467 −0.257234 0.966349i 0.582811π-0.582811\pi
−0.257234 + 0.966349i 0.582811π0.582811\pi
614614 38.4165 1.55036
615615 0 0
616616 12.1136 0.488071
617617 13.8225 0.556471 0.278236 0.960513i 0.410250π-0.410250\pi
0.278236 + 0.960513i 0.410250π0.410250\pi
618618 0 0
619619 45.3456 1.82259 0.911297 0.411749i 0.135082π-0.135082\pi
0.911297 + 0.411749i 0.135082π0.135082\pi
620620 13.6938 0.549955
621621 0 0
622622 59.9648 2.40437
623623 −33.4272 −1.33923
624624 0 0
625625 −28.8022 −1.15209
626626 19.2699 0.770180
627627 0 0
628628 −20.3023 −0.810148
629629 27.1799 1.08373
630630 0 0
631631 −48.0257 −1.91187 −0.955936 0.293576i 0.905155π-0.905155\pi
−0.955936 + 0.293576i 0.905155π0.905155\pi
632632 65.8529 2.61949
633633 0 0
634634 33.5211 1.33129
635635 2.29841 0.0912097
636636 0 0
637637 −7.21001 −0.285671
638638 −5.85657 −0.231864
639639 0 0
640640 45.4293 1.79575
641641 −14.7462 −0.582442 −0.291221 0.956656i 0.594061π-0.594061\pi
−0.291221 + 0.956656i 0.594061π0.594061\pi
642642 0 0
643643 −45.6656 −1.80088 −0.900438 0.434985i 0.856754π-0.856754\pi
−0.900438 + 0.434985i 0.856754π0.856754\pi
644644 26.4389 1.04184
645645 0 0
646646 −61.5899 −2.42322
647647 18.8503 0.741081 0.370540 0.928816i 0.379173π-0.379173\pi
0.370540 + 0.928816i 0.379173π0.379173\pi
648648 0 0
649649 −0.241045 −0.00946186
650650 10.8806 0.426773
651651 0 0
652652 −35.2508 −1.38053
653653 −20.1558 −0.788756 −0.394378 0.918948i 0.629040π-0.629040\pi
−0.394378 + 0.918948i 0.629040π0.629040\pi
654654 0 0
655655 7.45825 0.291418
656656 16.2976 0.636316
657657 0 0
658658 1.20111 0.0468242
659659 9.67566 0.376910 0.188455 0.982082i 0.439652π-0.439652\pi
0.188455 + 0.982082i 0.439652π0.439652\pi
660660 0 0
661661 25.3471 0.985890 0.492945 0.870061i 0.335920π-0.335920\pi
0.492945 + 0.870061i 0.335920π0.335920\pi
662662 51.3399 1.99538
663663 0 0
664664 54.3913 2.11079
665665 −44.2987 −1.71783
666666 0 0
667667 −6.54347 −0.253364
668668 29.4133 1.13804
669669 0 0
670670 46.2061 1.78510
671671 1.66134 0.0641353
672672 0 0
673673 −1.53342 −0.0591092 −0.0295546 0.999563i 0.509409π-0.509409\pi
−0.0295546 + 0.999563i 0.509409π0.509409\pi
674674 16.4582 0.633946
675675 0 0
676676 37.6476 1.44798
677677 −4.65967 −0.179086 −0.0895429 0.995983i 0.528541π-0.528541\pi
−0.0895429 + 0.995983i 0.528541π0.528541\pi
678678 0 0
679679 20.8933 0.801812
680680 40.4823 1.55242
681681 0 0
682682 −3.38724 −0.129704
683683 −25.9322 −0.992269 −0.496134 0.868246i 0.665248π-0.665248\pi
−0.496134 + 0.868246i 0.665248π0.665248\pi
684684 0 0
685685 49.8364 1.90415
686686 −49.2641 −1.88091
687687 0 0
688688 −34.3233 −1.30856
689689 −42.9285 −1.63545
690690 0 0
691691 −27.2639 −1.03717 −0.518584 0.855027i 0.673541π-0.673541\pi
−0.518584 + 0.855027i 0.673541π0.673541\pi
692692 29.7152 1.12960
693693 0 0
694694 −17.0746 −0.648145
695695 −31.4495 −1.19295
696696 0 0
697697 −11.3776 −0.430957
698698 14.0151 0.530479
699699 0 0
700700 8.96429 0.338818
701701 −1.77806 −0.0671563 −0.0335782 0.999436i 0.510690π-0.510690\pi
−0.0335782 + 0.999436i 0.510690π0.510690\pi
702702 0 0
703703 −65.8736 −2.48447
704704 −6.75145 −0.254455
705705 0 0
706706 −18.6842 −0.703188
707707 −11.4054 −0.428942
708708 0 0
709709 14.6001 0.548317 0.274158 0.961685i 0.411601π-0.411601\pi
0.274158 + 0.961685i 0.411601π0.411601\pi
710710 −6.48110 −0.243231
711711 0 0
712712 −74.0353 −2.77459
713713 −3.78451 −0.141731
714714 0 0
715715 −11.4758 −0.429170
716716 −29.8720 −1.11637
717717 0 0
718718 71.9820 2.68634
719719 19.7642 0.737081 0.368540 0.929612i 0.379858π-0.379858\pi
0.368540 + 0.929612i 0.379858π0.379858\pi
720720 0 0
721721 −23.7846 −0.885785
722722 102.353 3.80919
723723 0 0
724724 55.0044 2.04422
725725 −2.21861 −0.0823971
726726 0 0
727727 −18.8112 −0.697670 −0.348835 0.937184i 0.613423π-0.613423\pi
−0.348835 + 0.937184i 0.613423π0.613423\pi
728728 57.0597 2.11477
729729 0 0
730730 14.2876 0.528809
731731 23.9615 0.886249
732732 0 0
733733 46.6603 1.72344 0.861719 0.507386i 0.169388π-0.169388\pi
0.861719 + 0.507386i 0.169388π0.169388\pi
734734 −85.0796 −3.14034
735735 0 0
736736 2.72505 0.100447
737737 −7.68055 −0.282917
738738 0 0
739739 −6.50838 −0.239415 −0.119707 0.992809i 0.538196π-0.538196\pi
−0.119707 + 0.992809i 0.538196π0.538196\pi
740740 84.5809 3.10926
741741 0 0
742742 −52.6305 −1.93212
743743 −43.7996 −1.60685 −0.803425 0.595406i 0.796991π-0.796991\pi
−0.803425 + 0.595406i 0.796991π0.796991\pi
744744 0 0
745745 −24.5590 −0.899771
746746 9.64415 0.353097
747747 0 0
748748 −13.1451 −0.480632
749749 22.4475 0.820214
750750 0 0
751751 19.6993 0.718837 0.359419 0.933176i 0.382975π-0.382975\pi
0.359419 + 0.933176i 0.382975π0.382975\pi
752752 0.955746 0.0348525
753753 0 0
754754 −27.5867 −1.00465
755755 −11.5136 −0.419022
756756 0 0
757757 23.1719 0.842195 0.421098 0.907015i 0.361645π-0.361645\pi
0.421098 + 0.907015i 0.361645π0.361645\pi
758758 −25.2190 −0.915996
759759 0 0
760760 −98.1136 −3.55896
761761 13.9371 0.505220 0.252610 0.967568i 0.418711π-0.418711\pi
0.252610 + 0.967568i 0.418711π0.418711\pi
762762 0 0
763763 −4.56372 −0.165218
764764 −9.42786 −0.341088
765765 0 0
766766 34.8767 1.26014
767767 −1.13542 −0.0409975
768768 0 0
769769 −5.09642 −0.183781 −0.0918907 0.995769i 0.529291π-0.529291\pi
−0.0918907 + 0.995769i 0.529291π0.529291\pi
770770 −14.0693 −0.507024
771771 0 0
772772 57.7685 2.07913
773773 −20.5798 −0.740202 −0.370101 0.928991i 0.620677π-0.620677\pi
−0.370101 + 0.928991i 0.620677π0.620677\pi
774774 0 0
775775 −1.28317 −0.0460927
776776 46.2750 1.66117
777777 0 0
778778 35.1329 1.25957
779779 27.5750 0.987976
780780 0 0
781781 1.07731 0.0385493
782782 −21.8553 −0.781545
783783 0 0
784784 −7.03375 −0.251205
785785 12.0709 0.430829
786786 0 0
787787 24.2544 0.864577 0.432288 0.901735i 0.357706π-0.357706\pi
0.432288 + 0.901735i 0.357706π0.357706\pi
788788 5.38270 0.191751
789789 0 0
790790 −76.4848 −2.72121
791791 −18.4885 −0.657377
792792 0 0
793793 7.82554 0.277893
794794 −58.1104 −2.06226
795795 0 0
796796 64.9434 2.30186
797797 39.1356 1.38625 0.693126 0.720816i 0.256233π-0.256233\pi
0.693126 + 0.720816i 0.256233π0.256233\pi
798798 0 0
799799 −0.667219 −0.0236045
800800 0.923948 0.0326665
801801 0 0
802802 −90.2068 −3.18531
803803 −2.37495 −0.0838100
804804 0 0
805805 −15.7195 −0.554039
806806 −15.9552 −0.561997
807807 0 0
808808 −25.2608 −0.888672
809809 −32.9926 −1.15996 −0.579979 0.814631i 0.696939π-0.696939\pi
−0.579979 + 0.814631i 0.696939π0.696939\pi
810810 0 0
811811 −32.0811 −1.12652 −0.563259 0.826280i 0.690453π-0.690453\pi
−0.563259 + 0.826280i 0.690453π0.690453\pi
812812 −22.7280 −0.797597
813813 0 0
814814 −20.9216 −0.733302
815815 20.9587 0.734152
816816 0 0
817817 −58.0736 −2.03174
818818 41.4534 1.44938
819819 0 0
820820 −35.4059 −1.23643
821821 42.7568 1.49222 0.746111 0.665822i 0.231919π-0.231919\pi
0.746111 + 0.665822i 0.231919π0.231919\pi
822822 0 0
823823 15.8022 0.550829 0.275414 0.961326i 0.411185π-0.411185\pi
0.275414 + 0.961326i 0.411185π0.411185\pi
824824 −52.6787 −1.83515
825825 0 0
826826 −1.39202 −0.0484346
827827 −23.8246 −0.828461 −0.414230 0.910172i 0.635949π-0.635949\pi
−0.414230 + 0.910172i 0.635949π0.635949\pi
828828 0 0
829829 −8.75791 −0.304175 −0.152087 0.988367i 0.548600π-0.548600\pi
−0.152087 + 0.988367i 0.548600π0.548600\pi
830830 −63.1728 −2.19276
831831 0 0
832832 −31.8019 −1.10253
833833 4.91035 0.170134
834834 0 0
835835 −17.4880 −0.605196
836836 31.8587 1.10186
837837 0 0
838838 21.4204 0.739955
839839 19.4801 0.672528 0.336264 0.941768i 0.390837π-0.390837\pi
0.336264 + 0.941768i 0.390837π0.390837\pi
840840 0 0
841841 −23.3749 −0.806033
842842 50.2890 1.73307
843843 0 0
844844 −35.1760 −1.21081
845845 −22.3837 −0.770024
846846 0 0
847847 2.33866 0.0803573
848848 −41.8790 −1.43813
849849 0 0
850850 −7.41020 −0.254168
851851 −23.3754 −0.801299
852852 0 0
853853 52.2795 1.79002 0.895008 0.446050i 0.147170π-0.147170\pi
0.895008 + 0.446050i 0.147170π0.147170\pi
854854 9.59413 0.328304
855855 0 0
856856 49.7172 1.69930
857857 −54.8348 −1.87312 −0.936560 0.350508i 0.886009π-0.886009\pi
−0.936560 + 0.350508i 0.886009π0.886009\pi
858858 0 0
859859 −19.4123 −0.662340 −0.331170 0.943571i 0.607443π-0.607443\pi
−0.331170 + 0.943571i 0.607443π0.607443\pi
860860 74.5658 2.54267
861861 0 0
862862 −75.8987 −2.58512
863863 2.89484 0.0985414 0.0492707 0.998785i 0.484310π-0.484310\pi
0.0492707 + 0.998785i 0.484310π0.484310\pi
864864 0 0
865865 −17.6674 −0.600711
866866 −88.3969 −3.00385
867867 0 0
868868 −13.1451 −0.446174
869869 12.7136 0.431280
870870 0 0
871871 −36.1783 −1.22586
872872 −10.1078 −0.342294
873873 0 0
874874 52.9690 1.79170
875875 23.1583 0.782894
876876 0 0
877877 −10.4730 −0.353649 −0.176825 0.984242i 0.556583π-0.556583\pi
−0.176825 + 0.984242i 0.556583π0.556583\pi
878878 −45.2096 −1.52575
879879 0 0
880880 −11.1952 −0.377391
881881 31.5232 1.06204 0.531022 0.847358i 0.321808π-0.321808\pi
0.531022 + 0.847358i 0.321808π0.321808\pi
882882 0 0
883883 5.25391 0.176808 0.0884040 0.996085i 0.471823π-0.471823\pi
0.0884040 + 0.996085i 0.471823π0.471823\pi
884884 −61.9184 −2.08254
885885 0 0
886886 2.60099 0.0873819
887887 20.8619 0.700474 0.350237 0.936661i 0.386101π-0.386101\pi
0.350237 + 0.936661i 0.386101π0.386101\pi
888888 0 0
889889 −2.20632 −0.0739976
890890 85.9883 2.88234
891891 0 0
892892 −108.662 −3.63828
893893 1.61708 0.0541137
894894 0 0
895895 17.7607 0.593674
896896 −43.6091 −1.45688
897897 0 0
898898 72.5249 2.42019
899899 3.25333 0.108505
900900 0 0
901901 29.2363 0.974002
902902 8.75786 0.291605
903903 0 0
904904 −40.9488 −1.36194
905905 −32.7034 −1.08710
906906 0 0
907907 22.0009 0.730529 0.365265 0.930904i 0.380979π-0.380979\pi
0.365265 + 0.930904i 0.380979π0.380979\pi
908908 97.0534 3.22083
909909 0 0
910910 −66.2720 −2.19689
911911 4.66134 0.154437 0.0772185 0.997014i 0.475396π-0.475396\pi
0.0772185 + 0.997014i 0.475396π0.475396\pi
912912 0 0
913913 10.5008 0.347527
914914 13.1288 0.434262
915915 0 0
916916 −49.1343 −1.62344
917917 −7.15941 −0.236425
918918 0 0
919919 −6.91941 −0.228250 −0.114125 0.993466i 0.536407π-0.536407\pi
−0.114125 + 0.993466i 0.536407π0.536407\pi
920920 −34.8159 −1.14784
921921 0 0
922922 −16.9400 −0.557890
923923 5.07455 0.167031
924924 0 0
925925 −7.92560 −0.260592
926926 −62.4892 −2.05352
927927 0 0
928928 −2.34257 −0.0768988
929929 −1.27838 −0.0419422 −0.0209711 0.999780i 0.506676π-0.506676\pi
−0.0209711 + 0.999780i 0.506676π0.506676\pi
930930 0 0
931931 −11.9008 −0.390034
932932 77.5221 2.53932
933933 0 0
934934 99.0247 3.24019
935935 7.81554 0.255596
936936 0 0
937937 −47.7193 −1.55892 −0.779461 0.626450i 0.784507π-0.784507\pi
−0.779461 + 0.626450i 0.784507π0.784507\pi
938938 −44.3547 −1.44823
939939 0 0
940940 −2.07632 −0.0677220
941941 −8.13978 −0.265349 −0.132675 0.991160i 0.542357π-0.542357\pi
−0.132675 + 0.991160i 0.542357π0.542357\pi
942942 0 0
943943 9.78504 0.318645
944944 −1.10766 −0.0360512
945945 0 0
946946 −18.4443 −0.599676
947947 −27.9690 −0.908871 −0.454435 0.890780i 0.650159π-0.650159\pi
−0.454435 + 0.890780i 0.650159π0.650159\pi
948948 0 0
949949 −11.1869 −0.363142
950950 17.9595 0.582683
951951 0 0
952952 −38.8603 −1.25947
953953 −42.5121 −1.37710 −0.688551 0.725188i 0.741753π-0.741753\pi
−0.688551 + 0.725188i 0.741753π0.741753\pi
954954 0 0
955955 5.60542 0.181387
956956 −67.8805 −2.19541
957957 0 0
958958 −40.4363 −1.30644
959959 −47.8395 −1.54482
960960 0 0
961961 −29.1184 −0.939303
962962 −98.5487 −3.17734
963963 0 0
964964 −66.7460 −2.14975
965965 −34.3468 −1.10566
966966 0 0
967967 −22.0229 −0.708209 −0.354104 0.935206i 0.615214π-0.615214\pi
−0.354104 + 0.935206i 0.615214π0.615214\pi
968968 5.17972 0.166482
969969 0 0
970970 −53.7461 −1.72568
971971 −29.0719 −0.932963 −0.466482 0.884531i 0.654479π-0.654479\pi
−0.466482 + 0.884531i 0.654479π0.654479\pi
972972 0 0
973973 30.1894 0.967828
974974 36.9057 1.18253
975975 0 0
976976 7.63422 0.244365
977977 −43.2481 −1.38363 −0.691815 0.722075i 0.743189π-0.743189\pi
−0.691815 + 0.722075i 0.743189π0.743189\pi
978978 0 0
979979 −14.2933 −0.456816
980980 15.2805 0.488118
981981 0 0
982982 68.8161 2.19601
983983 −32.2186 −1.02761 −0.513807 0.857906i 0.671765π-0.671765\pi
−0.513807 + 0.857906i 0.671765π0.671765\pi
984984 0 0
985985 −3.20033 −0.101971
986986 18.7878 0.598325
987987 0 0
988988 150.067 4.77426
989989 −20.6076 −0.655282
990990 0 0
991991 38.9476 1.23721 0.618605 0.785702i 0.287698π-0.287698\pi
0.618605 + 0.785702i 0.287698π0.287698\pi
992992 −1.35486 −0.0430169
993993 0 0
994994 6.22141 0.197331
995995 −38.6127 −1.22411
996996 0 0
997997 −36.7131 −1.16272 −0.581358 0.813648i 0.697479π-0.697479\pi
−0.581358 + 0.813648i 0.697479π0.697479\pi
998998 −81.8714 −2.59159
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.a.q.1.4 4
3.2 odd 2 891.2.a.p.1.1 4
9.2 odd 6 297.2.e.e.199.4 8
9.4 even 3 99.2.e.e.34.1 8
9.5 odd 6 297.2.e.e.100.4 8
9.7 even 3 99.2.e.e.67.1 yes 8
11.10 odd 2 9801.2.a.bi.1.1 4
33.32 even 2 9801.2.a.bl.1.4 4
99.43 odd 6 1089.2.e.i.364.4 8
99.76 odd 6 1089.2.e.i.727.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.e.34.1 8 9.4 even 3
99.2.e.e.67.1 yes 8 9.7 even 3
297.2.e.e.100.4 8 9.5 odd 6
297.2.e.e.199.4 8 9.2 odd 6
891.2.a.p.1.1 4 3.2 odd 2
891.2.a.q.1.4 4 1.1 even 1 trivial
1089.2.e.i.364.4 8 99.43 odd 6
1089.2.e.i.727.4 8 99.76 odd 6
9801.2.a.bi.1.1 4 11.10 odd 2
9801.2.a.bl.1.4 4 33.32 even 2