Properties

Label 891.2.e.e.298.1
Level $891$
Weight $2$
Character 891.298
Analytic conductor $7.115$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(298,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 298.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 891.298
Dual form 891.2.e.e.595.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} +(1.00000 + 1.73205i) q^{5} +(-2.00000 + 3.46410i) q^{7} -3.00000 q^{8} -2.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} +(1.00000 + 1.73205i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(0.500000 - 0.866025i) q^{16} -2.00000 q^{17} +(-1.00000 + 1.73205i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(-4.00000 - 6.92820i) q^{23} +(0.500000 - 0.866025i) q^{25} -2.00000 q^{26} -4.00000 q^{28} +(3.00000 - 5.19615i) q^{29} +(4.00000 + 6.92820i) q^{31} +(-2.50000 - 4.33013i) q^{32} +(1.00000 - 1.73205i) q^{34} -8.00000 q^{35} +6.00000 q^{37} +(-3.00000 - 5.19615i) q^{40} +(1.00000 + 1.73205i) q^{41} -1.00000 q^{44} +8.00000 q^{46} +(-4.00000 + 6.92820i) q^{47} +(-4.50000 - 7.79423i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-1.00000 + 1.73205i) q^{52} +6.00000 q^{53} -2.00000 q^{55} +(6.00000 - 10.3923i) q^{56} +(3.00000 + 5.19615i) q^{58} +(2.00000 + 3.46410i) q^{59} +(-3.00000 + 5.19615i) q^{61} -8.00000 q^{62} +7.00000 q^{64} +(-2.00000 + 3.46410i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(4.00000 - 6.92820i) q^{70} -14.0000 q^{73} +(-3.00000 + 5.19615i) q^{74} +(-2.00000 - 3.46410i) q^{77} +(2.00000 - 3.46410i) q^{79} +2.00000 q^{80} -2.00000 q^{82} +(-6.00000 + 10.3923i) q^{83} +(-2.00000 - 3.46410i) q^{85} +(1.50000 - 2.59808i) q^{88} -6.00000 q^{89} -8.00000 q^{91} +(4.00000 - 6.92820i) q^{92} +(-4.00000 - 6.92820i) q^{94} +(-1.00000 + 1.73205i) q^{97} +9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8} - 4 q^{10} - q^{11} + 2 q^{13} - 4 q^{14} + q^{16} - 4 q^{17} - 2 q^{20} - q^{22} - 8 q^{23} + q^{25} - 4 q^{26} - 8 q^{28} + 6 q^{29} + 8 q^{31}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −1.00000 + 1.73205i −0.223607 + 0.387298i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −4.00000 6.92820i −0.834058 1.44463i −0.894795 0.446476i \(-0.852679\pi\)
0.0607377 0.998154i \(-0.480655\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) 0 0
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.00000 5.19615i −0.474342 0.821584i
\(41\) 1.00000 + 1.73205i 0.156174 + 0.270501i 0.933486 0.358614i \(-0.116751\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(42\) 0 0
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 0 0
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 6.00000 10.3923i 0.801784 1.38873i
\(57\) 0 0
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) −3.00000 + 5.19615i −0.384111 + 0.665299i −0.991645 0.128994i \(-0.958825\pi\)
0.607535 + 0.794293i \(0.292159\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −2.00000 + 3.46410i −0.248069 + 0.429669i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 4.00000 6.92820i 0.478091 0.828079i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 3.46410i −0.227921 0.394771i
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i \(0.395512\pi\)
−0.980982 + 0.194099i \(0.937822\pi\)
\(84\) 0 0
\(85\) −2.00000 3.46410i −0.216930 0.375735i
\(86\) 0 0
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 4.00000 6.92820i 0.417029 0.722315i
\(93\) 0 0
\(94\) −4.00000 6.92820i −0.412568 0.714590i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) −3.00000 5.19615i −0.294174 0.509525i
\(105\) 0 0
\(106\) −3.00000 + 5.19615i −0.291386 + 0.504695i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 1.00000 1.73205i 0.0953463 0.165145i
\(111\) 0 0
\(112\) 2.00000 + 3.46410i 0.188982 + 0.327327i
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 8.00000 13.8564i 0.746004 1.29212i
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 4.00000 6.92820i 0.366679 0.635107i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −3.00000 5.19615i −0.271607 0.470438i
\(123\) 0 0
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) 0 0
\(130\) −2.00000 3.46410i −0.175412 0.303822i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 0 0
\(139\) 4.00000 + 6.92820i 0.339276 + 0.587643i 0.984297 0.176522i \(-0.0564848\pi\)
−0.645021 + 0.764165i \(0.723151\pi\)
\(140\) −4.00000 6.92820i −0.338062 0.585540i
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 0 0
\(148\) 3.00000 + 5.19615i 0.246598 + 0.427121i
\(149\) 11.0000 + 19.0526i 0.901155 + 1.56085i 0.825997 + 0.563675i \(0.190613\pi\)
0.0751583 + 0.997172i \(0.476054\pi\)
\(150\) 0 0
\(151\) −10.0000 + 17.3205i −0.813788 + 1.40952i 0.0964061 + 0.995342i \(0.469265\pi\)
−0.910195 + 0.414181i \(0.864068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) −8.00000 + 13.8564i −0.642575 + 1.11297i
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 2.00000 + 3.46410i 0.159111 + 0.275589i
\(159\) 0 0
\(160\) 5.00000 8.66025i 0.395285 0.684653i
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −1.00000 + 1.73205i −0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 4.00000 0.306786
\(171\) 0 0
\(172\) 0 0
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 4.00000 6.92820i 0.296500 0.513553i
\(183\) 0 0
\(184\) 12.0000 + 20.7846i 0.884652 + 1.53226i
\(185\) 6.00000 + 10.3923i 0.441129 + 0.764057i
\(186\) 0 0
\(187\) 1.00000 1.73205i 0.0731272 0.126660i
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) 0 0
\(193\) 7.00000 + 12.1244i 0.503871 + 0.872730i 0.999990 + 0.00447566i \(0.00142465\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) −1.00000 1.73205i −0.0717958 0.124354i
\(195\) 0 0
\(196\) 4.50000 7.79423i 0.321429 0.556731i
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −1.50000 + 2.59808i −0.106066 + 0.183712i
\(201\) 0 0
\(202\) −1.00000 1.73205i −0.0703598 0.121867i
\(203\) 12.0000 + 20.7846i 0.842235 + 1.45879i
\(204\) 0 0
\(205\) −2.00000 + 3.46410i −0.139686 + 0.241943i
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 0 0
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) 1.00000 1.73205i 0.0677285 0.117309i
\(219\) 0 0
\(220\) −1.00000 1.73205i −0.0674200 0.116775i
\(221\) −2.00000 3.46410i −0.134535 0.233021i
\(222\) 0 0
\(223\) −8.00000 + 13.8564i −0.535720 + 0.927894i 0.463409 + 0.886145i \(0.346626\pi\)
−0.999128 + 0.0417488i \(0.986707\pi\)
\(224\) 20.0000 1.33631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) −3.00000 5.19615i −0.198246 0.343371i 0.749714 0.661762i \(-0.230191\pi\)
−0.947960 + 0.318390i \(0.896858\pi\)
\(230\) 8.00000 + 13.8564i 0.527504 + 0.913664i
\(231\) 0 0
\(232\) −9.00000 + 15.5885i −0.590879 + 1.02343i
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 0 0
\(238\) 4.00000 + 6.92820i 0.259281 + 0.449089i
\(239\) −12.0000 20.7846i −0.776215 1.34444i −0.934109 0.356988i \(-0.883804\pi\)
0.157893 0.987456i \(-0.449530\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 9.00000 15.5885i 0.574989 0.995910i
\(246\) 0 0
\(247\) 0 0
\(248\) −12.0000 20.7846i −0.762001 1.31982i
\(249\) 0 0
\(250\) −6.00000 + 10.3923i −0.379473 + 0.657267i
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 2.00000 3.46410i 0.125491 0.217357i
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 7.00000 + 12.1244i 0.436648 + 0.756297i 0.997429 0.0716680i \(-0.0228322\pi\)
−0.560781 + 0.827964i \(0.689499\pi\)
\(258\) 0 0
\(259\) −12.0000 + 20.7846i −0.745644 + 1.29149i
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) 8.00000 13.8564i 0.493301 0.854423i −0.506669 0.862141i \(-0.669123\pi\)
0.999970 + 0.00771799i \(0.00245674\pi\)
\(264\) 0 0
\(265\) 6.00000 + 10.3923i 0.368577 + 0.638394i
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 + 3.46410i −0.122169 + 0.211604i
\(269\) −2.00000 −0.121942 −0.0609711 0.998140i \(-0.519420\pi\)
−0.0609711 + 0.998140i \(0.519420\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −1.00000 + 1.73205i −0.0606339 + 0.105021i
\(273\) 0 0
\(274\) −1.00000 1.73205i −0.0604122 0.104637i
\(275\) 0.500000 + 0.866025i 0.0301511 + 0.0522233i
\(276\) 0 0
\(277\) 13.0000 22.5167i 0.781094 1.35290i −0.150210 0.988654i \(-0.547995\pi\)
0.931305 0.364241i \(-0.118672\pi\)
\(278\) −8.00000 −0.479808
\(279\) 0 0
\(280\) 24.0000 1.43427
\(281\) 9.00000 15.5885i 0.536895 0.929929i −0.462174 0.886789i \(-0.652930\pi\)
0.999069 0.0431402i \(-0.0137362\pi\)
\(282\) 0 0
\(283\) −8.00000 13.8564i −0.475551 0.823678i 0.524057 0.851683i \(-0.324418\pi\)
−0.999608 + 0.0280052i \(0.991084\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.00000 1.73205i 0.0591312 0.102418i
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −6.00000 + 10.3923i −0.352332 + 0.610257i
\(291\) 0 0
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) 0 0
\(295\) −4.00000 + 6.92820i −0.232889 + 0.403376i
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) −22.0000 −1.27443
\(299\) 8.00000 13.8564i 0.462652 0.801337i
\(300\) 0 0
\(301\) 0 0
\(302\) −10.0000 17.3205i −0.575435 0.996683i
\(303\) 0 0
\(304\) 0 0
\(305\) −12.0000 −0.687118
\(306\) 0 0
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 2.00000 3.46410i 0.113961 0.197386i
\(309\) 0 0
\(310\) −8.00000 13.8564i −0.454369 0.786991i
\(311\) 12.0000 + 20.7846i 0.680458 + 1.17859i 0.974841 + 0.222900i \(0.0715523\pi\)
−0.294384 + 0.955687i \(0.595114\pi\)
\(312\) 0 0
\(313\) 11.0000 19.0526i 0.621757 1.07691i −0.367402 0.930062i \(-0.619753\pi\)
0.989158 0.146852i \(-0.0469141\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) −11.0000 + 19.0526i −0.617822 + 1.07010i 0.372061 + 0.928208i \(0.378651\pi\)
−0.989882 + 0.141890i \(0.954682\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) 7.00000 + 12.1244i 0.391312 + 0.677772i
\(321\) 0 0
\(322\) −16.0000 + 27.7128i −0.891645 + 1.54437i
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) −16.0000 27.7128i −0.882109 1.52786i
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 + 6.92820i −0.218543 + 0.378528i
\(336\) 0 0
\(337\) 11.0000 + 19.0526i 0.599208 + 1.03786i 0.992938 + 0.118633i \(0.0378512\pi\)
−0.393730 + 0.919226i \(0.628816\pi\)
\(338\) 4.50000 + 7.79423i 0.244768 + 0.423950i
\(339\) 0 0
\(340\) 2.00000 3.46410i 0.108465 0.187867i
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) −2.00000 3.46410i −0.107366 0.185963i 0.807337 0.590091i \(-0.200908\pi\)
−0.914702 + 0.404128i \(0.867575\pi\)
\(348\) 0 0
\(349\) −3.00000 + 5.19615i −0.160586 + 0.278144i −0.935079 0.354439i \(-0.884672\pi\)
0.774493 + 0.632583i \(0.218005\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 5.00000 0.266501
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.00000 5.19615i −0.159000 0.275396i
\(357\) 0 0
\(358\) −6.00000 + 10.3923i −0.317110 + 0.549250i
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −11.0000 + 19.0526i −0.578147 + 1.00138i
\(363\) 0 0
\(364\) −4.00000 6.92820i −0.209657 0.363137i
\(365\) −14.0000 24.2487i −0.732793 1.26924i
\(366\) 0 0
\(367\) 16.0000 27.7128i 0.835193 1.44660i −0.0586798 0.998277i \(-0.518689\pi\)
0.893873 0.448320i \(-0.147978\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) −12.0000 + 20.7846i −0.623009 + 1.07908i
\(372\) 0 0
\(373\) 1.00000 + 1.73205i 0.0517780 + 0.0896822i 0.890753 0.454488i \(-0.150178\pi\)
−0.838975 + 0.544170i \(0.816844\pi\)
\(374\) 1.00000 + 1.73205i 0.0517088 + 0.0895622i
\(375\) 0 0
\(376\) 12.0000 20.7846i 0.618853 1.07188i
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 6.92820i −0.204658 0.354478i
\(383\) 8.00000 + 13.8564i 0.408781 + 0.708029i 0.994753 0.102302i \(-0.0326207\pi\)
−0.585973 + 0.810331i \(0.699287\pi\)
\(384\) 0 0
\(385\) 4.00000 6.92820i 0.203859 0.353094i
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) 8.00000 + 13.8564i 0.404577 + 0.700749i
\(392\) 13.5000 + 23.3827i 0.681853 + 1.18100i
\(393\) 0 0
\(394\) 7.00000 12.1244i 0.352655 0.610816i
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −13.0000 22.5167i −0.649189 1.12443i −0.983317 0.181901i \(-0.941775\pi\)
0.334128 0.942528i \(-0.391558\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.398508 + 0.690237i
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) −9.00000 15.5885i −0.445021 0.770800i 0.553032 0.833160i \(-0.313471\pi\)
−0.998054 + 0.0623602i \(0.980137\pi\)
\(410\) −2.00000 3.46410i −0.0987730 0.171080i
\(411\) 0 0
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 5.00000 8.66025i 0.245145 0.424604i
\(417\) 0 0
\(418\) 0 0
\(419\) 2.00000 + 3.46410i 0.0977064 + 0.169232i 0.910735 0.412991i \(-0.135516\pi\)
−0.813029 + 0.582224i \(0.802183\pi\)
\(420\) 0 0
\(421\) 13.0000 22.5167i 0.633581 1.09739i −0.353233 0.935536i \(-0.614918\pi\)
0.986814 0.161859i \(-0.0517491\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) −12.0000 20.7846i −0.580721 1.00584i
\(428\) −6.00000 10.3923i −0.290021 0.502331i
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 16.0000 27.7128i 0.768025 1.33026i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 0 0
\(438\) 0 0
\(439\) 10.0000 17.3205i 0.477274 0.826663i −0.522387 0.852709i \(-0.674958\pi\)
0.999661 + 0.0260459i \(0.00829161\pi\)
\(440\) 6.00000 0.286039
\(441\) 0 0
\(442\) 4.00000 0.190261
\(443\) −14.0000 + 24.2487i −0.665160 + 1.15209i 0.314082 + 0.949396i \(0.398303\pi\)
−0.979242 + 0.202695i \(0.935030\pi\)
\(444\) 0 0
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 0 0
\(448\) −14.0000 + 24.2487i −0.661438 + 1.14564i
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) −3.00000 + 5.19615i −0.141108 + 0.244406i
\(453\) 0 0
\(454\) −6.00000 10.3923i −0.281594 0.487735i
\(455\) −8.00000 13.8564i −0.375046 0.649598i
\(456\) 0 0
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) 16.0000 0.746004
\(461\) 15.0000 25.9808i 0.698620 1.21004i −0.270326 0.962769i \(-0.587131\pi\)
0.968945 0.247276i \(-0.0795353\pi\)
\(462\) 0 0
\(463\) −8.00000 13.8564i −0.371792 0.643962i 0.618050 0.786139i \(-0.287923\pi\)
−0.989841 + 0.142177i \(0.954590\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) −15.0000 + 25.9808i −0.694862 + 1.20354i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 8.00000 13.8564i 0.369012 0.639148i
\(471\) 0 0
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) 24.0000 1.09773
\(479\) −4.00000 + 6.92820i −0.182765 + 0.316558i −0.942821 0.333300i \(-0.891838\pi\)
0.760056 + 0.649857i \(0.225171\pi\)
\(480\) 0 0
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) −5.00000 8.66025i −0.227744 0.394464i
\(483\) 0 0
\(484\) 0.500000 0.866025i 0.0227273 0.0393648i
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 9.00000 15.5885i 0.407411 0.705656i
\(489\) 0 0
\(490\) 9.00000 + 15.5885i 0.406579 + 0.704215i
\(491\) −2.00000 3.46410i −0.0902587 0.156333i 0.817361 0.576126i \(-0.195436\pi\)
−0.907620 + 0.419793i \(0.862103\pi\)
\(492\) 0 0
\(493\) −6.00000 + 10.3923i −0.270226 + 0.468046i
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 6.00000 + 10.3923i 0.268328 + 0.464758i
\(501\) 0 0
\(502\) −2.00000 + 3.46410i −0.0892644 + 0.154610i
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) −4.00000 + 6.92820i −0.177822 + 0.307996i
\(507\) 0 0
\(508\) −2.00000 3.46410i −0.0887357 0.153695i
\(509\) −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i \(-0.935156\pi\)
0.314459 0.949271i \(-0.398177\pi\)
\(510\) 0 0
\(511\) 28.0000 48.4974i 1.23865 2.14540i
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −14.0000 −0.617514
\(515\) 8.00000 13.8564i 0.352522 0.610586i
\(516\) 0 0
\(517\) −4.00000 6.92820i −0.175920 0.304702i
\(518\) −12.0000 20.7846i −0.527250 0.913223i
\(519\) 0 0
\(520\) 6.00000 10.3923i 0.263117 0.455733i
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 8.00000 + 13.8564i 0.348817 + 0.604168i
\(527\) −8.00000 13.8564i −0.348485 0.603595i
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 + 3.46410i −0.0866296 + 0.150047i
\(534\) 0 0
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) 0 0
\(538\) 1.00000 1.73205i 0.0431131 0.0746740i
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 46.0000 1.97769 0.988847 0.148933i \(-0.0475840\pi\)
0.988847 + 0.148933i \(0.0475840\pi\)
\(542\) −10.0000 + 17.3205i −0.429537 + 0.743980i
\(543\) 0 0
\(544\) 5.00000 + 8.66025i 0.214373 + 0.371305i
\(545\) −2.00000 3.46410i −0.0856706 0.148386i
\(546\) 0 0
\(547\) −4.00000 + 6.92820i −0.171028 + 0.296229i −0.938779 0.344519i \(-0.888042\pi\)
0.767752 + 0.640747i \(0.221375\pi\)
\(548\) −2.00000 −0.0854358
\(549\) 0 0
\(550\) −1.00000 −0.0426401
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000 + 13.8564i 0.340195 + 0.589234i
\(554\) 13.0000 + 22.5167i 0.552317 + 0.956641i
\(555\) 0 0
\(556\) −4.00000 + 6.92820i −0.169638 + 0.293821i
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −4.00000 + 6.92820i −0.169031 + 0.292770i
\(561\) 0 0
\(562\) 9.00000 + 15.5885i 0.379642 + 0.657559i
\(563\) 22.0000 + 38.1051i 0.927189 + 1.60594i 0.788002 + 0.615673i \(0.211116\pi\)
0.139188 + 0.990266i \(0.455551\pi\)
\(564\) 0 0
\(565\) −6.00000 + 10.3923i −0.252422 + 0.437208i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 0 0
\(569\) 21.0000 36.3731i 0.880366 1.52484i 0.0294311 0.999567i \(-0.490630\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −1.00000 1.73205i −0.0418121 0.0724207i
\(573\) 0 0
\(574\) 4.00000 6.92820i 0.166957 0.289178i
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) 0 0
\(580\) 6.00000 + 10.3923i 0.249136 + 0.431517i
\(581\) −24.0000 41.5692i −0.995688 1.72458i
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) 42.0000 1.73797
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −14.0000 + 24.2487i −0.577842 + 1.00085i 0.417885 + 0.908500i \(0.362772\pi\)
−0.995726 + 0.0923513i \(0.970562\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −4.00000 6.92820i −0.164677 0.285230i
\(591\) 0 0
\(592\) 3.00000 5.19615i 0.123299 0.213561i
\(593\) 38.0000 1.56047 0.780236 0.625485i \(-0.215099\pi\)
0.780236 + 0.625485i \(0.215099\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) −11.0000 + 19.0526i −0.450578 + 0.780423i
\(597\) 0 0
\(598\) 8.00000 + 13.8564i 0.327144 + 0.566631i
\(599\) 4.00000 + 6.92820i 0.163436 + 0.283079i 0.936099 0.351738i \(-0.114409\pi\)
−0.772663 + 0.634816i \(0.781076\pi\)
\(600\) 0 0
\(601\) −13.0000 + 22.5167i −0.530281 + 0.918474i 0.469095 + 0.883148i \(0.344580\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) 1.00000 1.73205i 0.0406558 0.0704179i
\(606\) 0 0
\(607\) 2.00000 + 3.46410i 0.0811775 + 0.140604i 0.903756 0.428048i \(-0.140799\pi\)
−0.822578 + 0.568652i \(0.807465\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 6.00000 10.3923i 0.242933 0.420772i
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −16.0000 + 27.7128i −0.645707 + 1.11840i
\(615\) 0 0
\(616\) 6.00000 + 10.3923i 0.241747 + 0.418718i
\(617\) 15.0000 + 25.9808i 0.603877 + 1.04595i 0.992228 + 0.124434i \(0.0397116\pi\)
−0.388351 + 0.921512i \(0.626955\pi\)
\(618\) 0 0
\(619\) −22.0000 + 38.1051i −0.884255 + 1.53157i −0.0376891 + 0.999290i \(0.512000\pi\)
−0.846566 + 0.532284i \(0.821334\pi\)
\(620\) −16.0000 −0.642575
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 12.0000 20.7846i 0.480770 0.832718i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 11.0000 + 19.0526i 0.439648 + 0.761493i
\(627\) 0 0
\(628\) 7.00000 12.1244i 0.279330 0.483814i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −6.00000 + 10.3923i −0.238667 + 0.413384i
\(633\) 0 0
\(634\) −11.0000 19.0526i −0.436866 0.756674i
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 9.00000 15.5885i 0.356593 0.617637i
\(638\) −6.00000 −0.237542
\(639\) 0 0
\(640\) 6.00000 0.237171
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −10.0000 17.3205i −0.394362 0.683054i 0.598658 0.801005i \(-0.295701\pi\)
−0.993019 + 0.117951i \(0.962368\pi\)
\(644\) 16.0000 + 27.7128i 0.630488 + 1.09204i
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) −1.00000 + 1.73205i −0.0392232 + 0.0679366i
\(651\) 0 0
\(652\) 2.00000 + 3.46410i 0.0783260 + 0.135665i
\(653\) 1.00000 + 1.73205i 0.0391330 + 0.0677804i 0.884929 0.465727i \(-0.154207\pi\)
−0.845796 + 0.533507i \(0.820874\pi\)
\(654\) 0 0
\(655\) −12.0000 + 20.7846i −0.468879 + 0.812122i
\(656\) 2.00000 0.0780869
\(657\) 0 0
\(658\) 32.0000 1.24749
\(659\) −2.00000 + 3.46410i −0.0779089 + 0.134942i −0.902348 0.431009i \(-0.858158\pi\)
0.824439 + 0.565951i \(0.191491\pi\)
\(660\) 0 0
\(661\) 13.0000 + 22.5167i 0.505641 + 0.875797i 0.999979 + 0.00652642i \(0.00207744\pi\)
−0.494337 + 0.869270i \(0.664589\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) 18.0000 31.1769i 0.698535 1.20990i
\(665\) 0 0
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 0 0
\(669\) 0 0
\(670\) −4.00000 6.92820i −0.154533 0.267660i
\(671\) −3.00000 5.19615i −0.115814 0.200595i
\(672\) 0 0
\(673\) 23.0000 39.8372i 0.886585 1.53561i 0.0426985 0.999088i \(-0.486405\pi\)
0.843886 0.536522i \(-0.180262\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) −9.00000 + 15.5885i −0.345898 + 0.599113i −0.985517 0.169580i \(-0.945759\pi\)
0.639618 + 0.768693i \(0.279092\pi\)
\(678\) 0 0
\(679\) −4.00000 6.92820i −0.153506 0.265880i
\(680\) 6.00000 + 10.3923i 0.230089 + 0.398527i
\(681\) 0 0
\(682\) 4.00000 6.92820i 0.153168 0.265295i
\(683\) 20.0000 0.765279 0.382639 0.923898i \(-0.375015\pi\)
0.382639 + 0.923898i \(0.375015\pi\)
\(684\) 0 0
\(685\) −4.00000 −0.152832
\(686\) −4.00000 + 6.92820i −0.152721 + 0.264520i
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) 0 0
\(691\) 14.0000 24.2487i 0.532585 0.922464i −0.466691 0.884420i \(-0.654554\pi\)
0.999276 0.0380440i \(-0.0121127\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −8.00000 + 13.8564i −0.303457 + 0.525603i
\(696\) 0 0
\(697\) −2.00000 3.46410i −0.0757554 0.131212i
\(698\) −3.00000 5.19615i −0.113552 0.196677i
\(699\) 0 0
\(700\) −2.00000 + 3.46410i −0.0755929 + 0.130931i
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −3.50000 + 6.06218i −0.131911 + 0.228477i
\(705\) 0 0
\(706\) −9.00000 15.5885i −0.338719 0.586679i
\(707\) −4.00000 6.92820i −0.150435 0.260562i
\(708\) 0 0
\(709\) −19.0000 + 32.9090i −0.713560 + 1.23592i 0.249952 + 0.968258i \(0.419585\pi\)
−0.963512 + 0.267664i \(0.913748\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 18.0000 0.674579
\(713\) 32.0000 55.4256i 1.19841 2.07571i
\(714\) 0 0
\(715\) −2.00000 3.46410i −0.0747958 0.129550i
\(716\) 6.00000 + 10.3923i 0.224231 + 0.388379i
\(717\) 0 0
\(718\) 4.00000 6.92820i 0.149279 0.258558i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 9.50000 16.4545i 0.353553 0.612372i
\(723\) 0 0
\(724\) 11.0000 + 19.0526i 0.408812 + 0.708083i
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) 0 0
\(727\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(728\) 24.0000 0.889499
\(729\) 0 0
\(730\) 28.0000 1.03633
\(731\) 0 0
\(732\) 0 0
\(733\) −15.0000 25.9808i −0.554038 0.959621i −0.997978 0.0635649i \(-0.979753\pi\)
0.443940 0.896056i \(-0.353580\pi\)
\(734\) 16.0000 + 27.7128i 0.590571 + 1.02290i
\(735\) 0 0
\(736\) −20.0000 + 34.6410i −0.737210 + 1.27688i
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) −6.00000 + 10.3923i −0.220564 + 0.382029i
\(741\) 0 0
\(742\) −12.0000 20.7846i −0.440534 0.763027i
\(743\) −20.0000 34.6410i −0.733729 1.27086i −0.955279 0.295707i \(-0.904445\pi\)
0.221550 0.975149i \(-0.428888\pi\)
\(744\) 0 0
\(745\) −22.0000 + 38.1051i −0.806018 + 1.39606i
\(746\) −2.00000 −0.0732252
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) 24.0000 41.5692i 0.876941 1.51891i
\(750\) 0 0
\(751\) 4.00000 + 6.92820i 0.145962 + 0.252814i 0.929731 0.368238i \(-0.120039\pi\)
−0.783769 + 0.621052i \(0.786706\pi\)
\(752\) 4.00000 + 6.92820i 0.145865 + 0.252646i
\(753\) 0 0
\(754\) −6.00000 + 10.3923i −0.218507 + 0.378465i
\(755\) −40.0000 −1.45575
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) −14.0000 + 24.2487i −0.508503 + 0.880753i
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 5.19615i −0.108750 0.188360i 0.806514 0.591215i \(-0.201351\pi\)
−0.915264 + 0.402854i \(0.868018\pi\)
\(762\) 0 0
\(763\) 4.00000 6.92820i 0.144810 0.250818i
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) −4.00000 + 6.92820i −0.144432 + 0.250163i
\(768\) 0 0
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 4.00000 + 6.92820i 0.144150 + 0.249675i
\(771\) 0 0
\(772\) −7.00000 + 12.1244i −0.251936 + 0.436365i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 3.00000 5.19615i 0.107694 0.186531i
\(777\) 0 0
\(778\) 9.00000 + 15.5885i 0.322666 + 0.558873i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −16.0000 −0.572159
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 14.0000 24.2487i 0.499681 0.865474i
\(786\) 0 0
\(787\) 4.00000 + 6.92820i 0.142585 + 0.246964i 0.928469 0.371409i \(-0.121125\pi\)
−0.785885 + 0.618373i \(0.787792\pi\)
\(788\) −7.00000 12.1244i −0.249365 0.431912i
\(789\) 0 0
\(790\) −4.00000 + 6.92820i −0.142314 + 0.246494i
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 1.00000 1.73205i 0.0354887 0.0614682i
\(795\) 0 0
\(796\) 0 0
\(797\) 5.00000 + 8.66025i 0.177109 + 0.306762i 0.940889 0.338715i \(-0.109992\pi\)
−0.763780 + 0.645477i \(0.776659\pi\)
\(798\) 0 0
\(799\) 8.00000 13.8564i 0.283020 0.490204i
\(800\) −5.00000 −0.176777
\(801\) 0 0
\(802\) 26.0000 0.918092
\(803\) 7.00000 12.1244i 0.247025 0.427859i
\(804\) 0 0
\(805\) 32.0000 + 55.4256i 1.12785 + 1.95350i
\(806\) −8.00000 13.8564i −0.281788 0.488071i
\(807\) 0 0
\(808\) 3.00000 5.19615i 0.105540 0.182800i
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) −56.0000 −1.96643 −0.983213 0.182462i \(-0.941593\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) −12.0000 + 20.7846i −0.421117 + 0.729397i
\(813\) 0 0
\(814\) −3.00000 5.19615i −0.105150 0.182125i
\(815\) 4.00000 + 6.92820i 0.140114 + 0.242684i
\(816\) 0 0
\(817\) 0 0
\(818\) 18.0000 0.629355
\(819\) 0 0
\(820\) −4.00000 −0.139686
\(821\) 7.00000 12.1244i 0.244302 0.423143i −0.717633 0.696421i \(-0.754775\pi\)
0.961935 + 0.273278i \(0.0881079\pi\)
\(822\) 0 0
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) 12.0000 + 20.7846i 0.418040 + 0.724066i
\(825\) 0 0
\(826\) 8.00000 13.8564i 0.278356 0.482126i
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 12.0000 20.7846i 0.416526 0.721444i
\(831\) 0 0
\(832\) 7.00000 + 12.1244i 0.242681 + 0.420336i
\(833\) 9.00000 + 15.5885i 0.311832 + 0.540108i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −4.00000 −0.138178
\(839\) 28.0000 48.4974i 0.966667 1.67432i 0.261600 0.965176i \(-0.415750\pi\)
0.705067 0.709141i \(-0.250917\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 13.0000 + 22.5167i 0.448010 + 0.775975i
\(843\) 0 0
\(844\) 0 0
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 3.00000 5.19615i 0.103020 0.178437i
\(849\) 0 0
\(850\) −1.00000 1.73205i −0.0342997 0.0594089i
\(851\) −24.0000 41.5692i −0.822709 1.42497i
\(852\) 0 0
\(853\) 17.0000 29.4449i 0.582069 1.00817i −0.413165 0.910656i \(-0.635577\pi\)
0.995234 0.0975167i \(-0.0310899\pi\)
\(854\) 24.0000 0.821263
\(855\) 0 0
\(856\) 36.0000 1.23045
\(857\) 5.00000 8.66025i 0.170797 0.295829i −0.767902 0.640567i \(-0.778699\pi\)
0.938699 + 0.344739i \(0.112033\pi\)
\(858\) 0 0
\(859\) 18.0000 + 31.1769i 0.614152 + 1.06374i 0.990533 + 0.137277i \(0.0438352\pi\)
−0.376381 + 0.926465i \(0.622831\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000 20.7846i 0.408722 0.707927i
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) −17.0000 + 29.4449i −0.577684 + 1.00058i
\(867\) 0 0
\(868\) −16.0000 27.7128i −0.543075 0.940634i
\(869\) 2.00000 + 3.46410i 0.0678454 + 0.117512i
\(870\) 0 0
\(871\) −4.00000 + 6.92820i −0.135535 + 0.234753i
\(872\) 6.00000 0.203186
\(873\) 0 0
\(874\) 0 0
\(875\) −24.0000 + 41.5692i −0.811348 + 1.40530i
\(876\) 0 0
\(877\) −3.00000 5.19615i −0.101303 0.175462i 0.810919 0.585159i \(-0.198968\pi\)
−0.912222 + 0.409697i \(0.865634\pi\)
\(878\) 10.0000 + 17.3205i 0.337484 + 0.584539i
\(879\) 0 0
\(880\) −1.00000 + 1.73205i −0.0337100 + 0.0583874i
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 2.00000 3.46410i 0.0672673 0.116510i
\(885\) 0 0
\(886\) −14.0000 24.2487i −0.470339 0.814651i
\(887\) −4.00000 6.92820i −0.134307 0.232626i 0.791026 0.611783i \(-0.209547\pi\)
−0.925332 + 0.379157i \(0.876214\pi\)
\(888\) 0 0
\(889\) 8.00000 13.8564i 0.268311 0.464729i
\(890\) 12.0000 0.402241
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 0 0
\(894\) 0 0
\(895\) 12.0000 + 20.7846i 0.401116 + 0.694753i
\(896\) 6.00000 + 10.3923i 0.200446 + 0.347183i
\(897\) 0 0
\(898\) −1.00000 + 1.73205i −0.0333704 + 0.0577993i
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 1.00000 1.73205i 0.0332964 0.0576710i
\(903\) 0 0
\(904\) −9.00000 15.5885i −0.299336 0.518464i
\(905\) 22.0000 + 38.1051i 0.731305 + 1.26666i
\(906\) 0 0
\(907\) −6.00000 + 10.3923i −0.199227 + 0.345071i −0.948278 0.317441i \(-0.897176\pi\)
0.749051 + 0.662512i \(0.230510\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 16.0000 0.530395
\(911\) −12.0000 + 20.7846i −0.397578 + 0.688625i −0.993426 0.114472i \(-0.963482\pi\)
0.595849 + 0.803097i \(0.296816\pi\)
\(912\) 0 0
\(913\) −6.00000 10.3923i −0.198571 0.343935i
\(914\) −9.00000 15.5885i −0.297694 0.515620i
\(915\) 0 0
\(916\) 3.00000 5.19615i 0.0991228 0.171686i
\(917\) −48.0000 −1.58510
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) −24.0000 + 41.5692i −0.791257 + 1.37050i
\(921\) 0 0
\(922\) 15.0000 + 25.9808i 0.493999 + 0.855631i
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000 5.19615i 0.0986394 0.170848i
\(926\) 16.0000 0.525793
\(927\) 0 0
\(928\) −30.0000 −0.984798
\(929\) 3.00000 5.19615i 0.0984268 0.170480i −0.812607 0.582812i \(-0.801952\pi\)
0.911034 + 0.412332i \(0.135286\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 15.0000 + 25.9808i 0.491341 + 0.851028i
\(933\) 0 0
\(934\) 6.00000 10.3923i 0.196326 0.340047i
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 8.00000 13.8564i 0.261209 0.452428i
\(939\) 0 0
\(940\) −8.00000 13.8564i −0.260931 0.451946i
\(941\) 27.0000 + 46.7654i 0.880175 + 1.52451i 0.851146 + 0.524929i \(0.175908\pi\)
0.0290288 + 0.999579i \(0.490759\pi\)
\(942\) 0 0
\(943\) 8.00000 13.8564i 0.260516 0.451227i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) 0 0
\(951\) 0 0
\(952\) −12.0000 + 20.7846i −0.388922 + 0.673633i
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 12.0000 20.7846i 0.388108 0.672222i
\(957\) 0 0
\(958\) −4.00000 6.92820i −0.129234 0.223840i
\(959\) −4.00000 6.92820i −0.129167 0.223723i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) −14.0000 + 24.2487i −0.450676 + 0.780594i
\(966\) 0 0
\(967\) −2.00000 3.46410i −0.0643157 0.111398i 0.832075 0.554664i \(-0.187153\pi\)
−0.896390 + 0.443266i \(0.853820\pi\)
\(968\) 1.50000 + 2.59808i 0.0482118 + 0.0835053i
\(969\) 0 0
\(970\) 2.00000 3.46410i 0.0642161 0.111226i
\(971\) −52.0000 −1.66876 −0.834380 0.551190i \(-0.814174\pi\)
−0.834380 + 0.551190i \(0.814174\pi\)
\(972\) 0 0
\(973\) −32.0000 −1.02587
\(974\) 8.00000 13.8564i 0.256337 0.443988i
\(975\) 0 0
\(976\) 3.00000 + 5.19615i 0.0960277 + 0.166325i
\(977\) 3.00000 + 5.19615i 0.0959785 + 0.166240i 0.910017 0.414572i \(-0.136069\pi\)
−0.814038 + 0.580812i \(0.802735\pi\)
\(978\) 0 0
\(979\) 3.00000 5.19615i 0.0958804 0.166070i
\(980\) 18.0000 0.574989
\(981\) 0 0
\(982\) 4.00000 0.127645
\(983\) −12.0000 + 20.7846i −0.382741 + 0.662926i −0.991453 0.130465i \(-0.958353\pi\)
0.608712 + 0.793391i \(0.291686\pi\)
\(984\) 0 0
\(985\) −14.0000 24.2487i −0.446077 0.772628i
\(986\) −6.00000 10.3923i −0.191079 0.330958i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 20.0000 34.6410i 0.635001 1.09985i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.e.e.298.1 2
3.2 odd 2 891.2.e.g.298.1 2
9.2 odd 6 99.2.a.b.1.1 1
9.4 even 3 inner 891.2.e.e.595.1 2
9.5 odd 6 891.2.e.g.595.1 2
9.7 even 3 33.2.a.a.1.1 1
36.7 odd 6 528.2.a.g.1.1 1
36.11 even 6 1584.2.a.o.1.1 1
45.2 even 12 2475.2.c.d.199.1 2
45.7 odd 12 825.2.c.a.199.2 2
45.29 odd 6 2475.2.a.g.1.1 1
45.34 even 6 825.2.a.a.1.1 1
45.38 even 12 2475.2.c.d.199.2 2
45.43 odd 12 825.2.c.a.199.1 2
63.20 even 6 4851.2.a.b.1.1 1
63.34 odd 6 1617.2.a.j.1.1 1
72.11 even 6 6336.2.a.n.1.1 1
72.29 odd 6 6336.2.a.x.1.1 1
72.43 odd 6 2112.2.a.j.1.1 1
72.61 even 6 2112.2.a.bb.1.1 1
99.7 odd 30 363.2.e.g.148.1 4
99.16 even 15 363.2.e.e.124.1 4
99.25 even 15 363.2.e.e.130.1 4
99.43 odd 6 363.2.a.b.1.1 1
99.52 odd 30 363.2.e.g.130.1 4
99.61 odd 30 363.2.e.g.124.1 4
99.65 even 6 1089.2.a.j.1.1 1
99.70 even 15 363.2.e.e.148.1 4
99.79 odd 30 363.2.e.g.202.1 4
99.97 even 15 363.2.e.e.202.1 4
117.25 even 6 5577.2.a.a.1.1 1
153.16 even 6 9537.2.a.m.1.1 1
396.43 even 6 5808.2.a.t.1.1 1
495.439 odd 6 9075.2.a.q.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.a.a.1.1 1 9.7 even 3
99.2.a.b.1.1 1 9.2 odd 6
363.2.a.b.1.1 1 99.43 odd 6
363.2.e.e.124.1 4 99.16 even 15
363.2.e.e.130.1 4 99.25 even 15
363.2.e.e.148.1 4 99.70 even 15
363.2.e.e.202.1 4 99.97 even 15
363.2.e.g.124.1 4 99.61 odd 30
363.2.e.g.130.1 4 99.52 odd 30
363.2.e.g.148.1 4 99.7 odd 30
363.2.e.g.202.1 4 99.79 odd 30
528.2.a.g.1.1 1 36.7 odd 6
825.2.a.a.1.1 1 45.34 even 6
825.2.c.a.199.1 2 45.43 odd 12
825.2.c.a.199.2 2 45.7 odd 12
891.2.e.e.298.1 2 1.1 even 1 trivial
891.2.e.e.595.1 2 9.4 even 3 inner
891.2.e.g.298.1 2 3.2 odd 2
891.2.e.g.595.1 2 9.5 odd 6
1089.2.a.j.1.1 1 99.65 even 6
1584.2.a.o.1.1 1 36.11 even 6
1617.2.a.j.1.1 1 63.34 odd 6
2112.2.a.j.1.1 1 72.43 odd 6
2112.2.a.bb.1.1 1 72.61 even 6
2475.2.a.g.1.1 1 45.29 odd 6
2475.2.c.d.199.1 2 45.2 even 12
2475.2.c.d.199.2 2 45.38 even 12
4851.2.a.b.1.1 1 63.20 even 6
5577.2.a.a.1.1 1 117.25 even 6
5808.2.a.t.1.1 1 396.43 even 6
6336.2.a.n.1.1 1 72.11 even 6
6336.2.a.x.1.1 1 72.29 odd 6
9075.2.a.q.1.1 1 495.439 odd 6
9537.2.a.m.1.1 1 153.16 even 6