Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [891,2,Mod(136,891)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(891, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([20, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("891.136");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 891 = 3^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 891.n (of order \(15\), degree \(8\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.11467082010\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136.1 | −2.33604 | + | 1.04007i | 0 | 3.03706 | − | 3.37300i | 1.88024 | + | 0.837138i | 0 | −3.87187 | − | 0.822992i | −2.00615 | + | 6.17430i | 0 | −5.26300 | ||||||||
136.2 | −2.26297 | + | 1.00754i | 0 | 2.76762 | − | 3.07376i | −2.42411 | − | 1.07928i | 0 | −0.234155 | − | 0.0497713i | −1.63516 | + | 5.03251i | 0 | 6.57309 | ||||||||
136.3 | −1.67544 | + | 0.745953i | 0 | 0.912387 | − | 1.01331i | −0.0824312 | − | 0.0367007i | 0 | 4.60859 | + | 0.979587i | 0.360704 | − | 1.11013i | 0 | 0.165485 | ||||||||
136.4 | −1.24612 | + | 0.554810i | 0 | −0.0932499 | + | 0.103565i | 1.89778 | + | 0.844946i | 0 | 0.101465 | + | 0.0215671i | 0.901773 | − | 2.77537i | 0 | −2.83366 | ||||||||
136.5 | −1.05062 | + | 0.467766i | 0 | −0.453266 | + | 0.503403i | −3.57276 | − | 1.59069i | 0 | −4.48724 | − | 0.953792i | 0.951502 | − | 2.92842i | 0 | 4.49768 | ||||||||
136.6 | −0.575085 | + | 0.256045i | 0 | −1.07310 | + | 1.19179i | −1.24862 | − | 0.555922i | 0 | 0.575145 | + | 0.122251i | 0.701028 | − | 2.15754i | 0 | 0.860404 | ||||||||
136.7 | 0.575085 | − | 0.256045i | 0 | −1.07310 | + | 1.19179i | 1.24862 | + | 0.555922i | 0 | 0.575145 | + | 0.122251i | −0.701028 | + | 2.15754i | 0 | 0.860404 | ||||||||
136.8 | 1.05062 | − | 0.467766i | 0 | −0.453266 | + | 0.503403i | 3.57276 | + | 1.59069i | 0 | −4.48724 | − | 0.953792i | −0.951502 | + | 2.92842i | 0 | 4.49768 | ||||||||
136.9 | 1.24612 | − | 0.554810i | 0 | −0.0932499 | + | 0.103565i | −1.89778 | − | 0.844946i | 0 | 0.101465 | + | 0.0215671i | −0.901773 | + | 2.77537i | 0 | −2.83366 | ||||||||
136.10 | 1.67544 | − | 0.745953i | 0 | 0.912387 | − | 1.01331i | 0.0824312 | + | 0.0367007i | 0 | 4.60859 | + | 0.979587i | −0.360704 | + | 1.11013i | 0 | 0.165485 | ||||||||
136.11 | 2.26297 | − | 1.00754i | 0 | 2.76762 | − | 3.07376i | 2.42411 | + | 1.07928i | 0 | −0.234155 | − | 0.0497713i | 1.63516 | − | 5.03251i | 0 | 6.57309 | ||||||||
136.12 | 2.33604 | − | 1.04007i | 0 | 3.03706 | − | 3.37300i | −1.88024 | − | 0.837138i | 0 | −3.87187 | − | 0.822992i | 2.00615 | − | 6.17430i | 0 | −5.26300 | ||||||||
190.1 | −2.33604 | − | 1.04007i | 0 | 3.03706 | + | 3.37300i | 1.88024 | − | 0.837138i | 0 | −3.87187 | + | 0.822992i | −2.00615 | − | 6.17430i | 0 | −5.26300 | ||||||||
190.2 | −2.26297 | − | 1.00754i | 0 | 2.76762 | + | 3.07376i | −2.42411 | + | 1.07928i | 0 | −0.234155 | + | 0.0497713i | −1.63516 | − | 5.03251i | 0 | 6.57309 | ||||||||
190.3 | −1.67544 | − | 0.745953i | 0 | 0.912387 | + | 1.01331i | −0.0824312 | + | 0.0367007i | 0 | 4.60859 | − | 0.979587i | 0.360704 | + | 1.11013i | 0 | 0.165485 | ||||||||
190.4 | −1.24612 | − | 0.554810i | 0 | −0.0932499 | − | 0.103565i | 1.89778 | − | 0.844946i | 0 | 0.101465 | − | 0.0215671i | 0.901773 | + | 2.77537i | 0 | −2.83366 | ||||||||
190.5 | −1.05062 | − | 0.467766i | 0 | −0.453266 | − | 0.503403i | −3.57276 | + | 1.59069i | 0 | −4.48724 | + | 0.953792i | 0.951502 | + | 2.92842i | 0 | 4.49768 | ||||||||
190.6 | −0.575085 | − | 0.256045i | 0 | −1.07310 | − | 1.19179i | −1.24862 | + | 0.555922i | 0 | 0.575145 | − | 0.122251i | 0.701028 | + | 2.15754i | 0 | 0.860404 | ||||||||
190.7 | 0.575085 | + | 0.256045i | 0 | −1.07310 | − | 1.19179i | 1.24862 | − | 0.555922i | 0 | 0.575145 | − | 0.122251i | −0.701028 | − | 2.15754i | 0 | 0.860404 | ||||||||
190.8 | 1.05062 | + | 0.467766i | 0 | −0.453266 | − | 0.503403i | 3.57276 | − | 1.59069i | 0 | −4.48724 | + | 0.953792i | −0.951502 | − | 2.92842i | 0 | 4.49768 | ||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
99.m | even | 15 | 1 | inner |
99.n | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 891.2.n.l | 96 | |
3.b | odd | 2 | 1 | inner | 891.2.n.l | 96 | |
9.c | even | 3 | 1 | 891.2.f.g | ✓ | 48 | |
9.c | even | 3 | 1 | inner | 891.2.n.l | 96 | |
9.d | odd | 6 | 1 | 891.2.f.g | ✓ | 48 | |
9.d | odd | 6 | 1 | inner | 891.2.n.l | 96 | |
11.c | even | 5 | 1 | inner | 891.2.n.l | 96 | |
33.h | odd | 10 | 1 | inner | 891.2.n.l | 96 | |
99.m | even | 15 | 1 | 891.2.f.g | ✓ | 48 | |
99.m | even | 15 | 1 | inner | 891.2.n.l | 96 | |
99.m | even | 15 | 1 | 9801.2.a.cr | 24 | ||
99.n | odd | 30 | 1 | 891.2.f.g | ✓ | 48 | |
99.n | odd | 30 | 1 | inner | 891.2.n.l | 96 | |
99.n | odd | 30 | 1 | 9801.2.a.cr | 24 | ||
99.o | odd | 30 | 1 | 9801.2.a.cq | 24 | ||
99.p | even | 30 | 1 | 9801.2.a.cq | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
891.2.f.g | ✓ | 48 | 9.c | even | 3 | 1 | |
891.2.f.g | ✓ | 48 | 9.d | odd | 6 | 1 | |
891.2.f.g | ✓ | 48 | 99.m | even | 15 | 1 | |
891.2.f.g | ✓ | 48 | 99.n | odd | 30 | 1 | |
891.2.n.l | 96 | 1.a | even | 1 | 1 | trivial | |
891.2.n.l | 96 | 3.b | odd | 2 | 1 | inner | |
891.2.n.l | 96 | 9.c | even | 3 | 1 | inner | |
891.2.n.l | 96 | 9.d | odd | 6 | 1 | inner | |
891.2.n.l | 96 | 11.c | even | 5 | 1 | inner | |
891.2.n.l | 96 | 33.h | odd | 10 | 1 | inner | |
891.2.n.l | 96 | 99.m | even | 15 | 1 | inner | |
891.2.n.l | 96 | 99.n | odd | 30 | 1 | inner | |
9801.2.a.cq | 24 | 99.o | odd | 30 | 1 | ||
9801.2.a.cq | 24 | 99.p | even | 30 | 1 | ||
9801.2.a.cr | 24 | 99.m | even | 15 | 1 | ||
9801.2.a.cr | 24 | 99.n | odd | 30 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{96} - 16 T_{2}^{94} + 76 T_{2}^{92} + 556 T_{2}^{90} - 9664 T_{2}^{88} + 60402 T_{2}^{86} + \cdots + 500246412961 \) acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\).