Properties

Label 891.2.n.l
Level 891891
Weight 22
Character orbit 891.n
Analytic conductor 7.1157.115
Analytic rank 00
Dimension 9696
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(136,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 891=3411 891 = 3^{4} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 891.n (of order 1515, degree 88, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.114670820107.11467082010
Analytic rank: 00
Dimension: 9696
Relative dimension: 1212 over Q(ζ15)\Q(\zeta_{15})
Twist minimal: yes
Sato-Tate group: SU(2)[C15]\mathrm{SU}(2)[C_{15}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 96q+8q4+14q7+64q10+14q13+4q1616q1916q22+20q2536q28+4q3184q3424q37+106q4084q4376q46+54q4952q52++66q97+O(q100) 96 q + 8 q^{4} + 14 q^{7} + 64 q^{10} + 14 q^{13} + 4 q^{16} - 16 q^{19} - 16 q^{22} + 20 q^{25} - 36 q^{28} + 4 q^{31} - 84 q^{34} - 24 q^{37} + 106 q^{40} - 84 q^{43} - 76 q^{46} + 54 q^{49} - 52 q^{52}+ \cdots + 66 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
136.1 −2.33604 + 1.04007i 0 3.03706 3.37300i 1.88024 + 0.837138i 0 −3.87187 0.822992i −2.00615 + 6.17430i 0 −5.26300
136.2 −2.26297 + 1.00754i 0 2.76762 3.07376i −2.42411 1.07928i 0 −0.234155 0.0497713i −1.63516 + 5.03251i 0 6.57309
136.3 −1.67544 + 0.745953i 0 0.912387 1.01331i −0.0824312 0.0367007i 0 4.60859 + 0.979587i 0.360704 1.11013i 0 0.165485
136.4 −1.24612 + 0.554810i 0 −0.0932499 + 0.103565i 1.89778 + 0.844946i 0 0.101465 + 0.0215671i 0.901773 2.77537i 0 −2.83366
136.5 −1.05062 + 0.467766i 0 −0.453266 + 0.503403i −3.57276 1.59069i 0 −4.48724 0.953792i 0.951502 2.92842i 0 4.49768
136.6 −0.575085 + 0.256045i 0 −1.07310 + 1.19179i −1.24862 0.555922i 0 0.575145 + 0.122251i 0.701028 2.15754i 0 0.860404
136.7 0.575085 0.256045i 0 −1.07310 + 1.19179i 1.24862 + 0.555922i 0 0.575145 + 0.122251i −0.701028 + 2.15754i 0 0.860404
136.8 1.05062 0.467766i 0 −0.453266 + 0.503403i 3.57276 + 1.59069i 0 −4.48724 0.953792i −0.951502 + 2.92842i 0 4.49768
136.9 1.24612 0.554810i 0 −0.0932499 + 0.103565i −1.89778 0.844946i 0 0.101465 + 0.0215671i −0.901773 + 2.77537i 0 −2.83366
136.10 1.67544 0.745953i 0 0.912387 1.01331i 0.0824312 + 0.0367007i 0 4.60859 + 0.979587i −0.360704 + 1.11013i 0 0.165485
136.11 2.26297 1.00754i 0 2.76762 3.07376i 2.42411 + 1.07928i 0 −0.234155 0.0497713i 1.63516 5.03251i 0 6.57309
136.12 2.33604 1.04007i 0 3.03706 3.37300i −1.88024 0.837138i 0 −3.87187 0.822992i 2.00615 6.17430i 0 −5.26300
190.1 −2.33604 1.04007i 0 3.03706 + 3.37300i 1.88024 0.837138i 0 −3.87187 + 0.822992i −2.00615 6.17430i 0 −5.26300
190.2 −2.26297 1.00754i 0 2.76762 + 3.07376i −2.42411 + 1.07928i 0 −0.234155 + 0.0497713i −1.63516 5.03251i 0 6.57309
190.3 −1.67544 0.745953i 0 0.912387 + 1.01331i −0.0824312 + 0.0367007i 0 4.60859 0.979587i 0.360704 + 1.11013i 0 0.165485
190.4 −1.24612 0.554810i 0 −0.0932499 0.103565i 1.89778 0.844946i 0 0.101465 0.0215671i 0.901773 + 2.77537i 0 −2.83366
190.5 −1.05062 0.467766i 0 −0.453266 0.503403i −3.57276 + 1.59069i 0 −4.48724 + 0.953792i 0.951502 + 2.92842i 0 4.49768
190.6 −0.575085 0.256045i 0 −1.07310 1.19179i −1.24862 + 0.555922i 0 0.575145 0.122251i 0.701028 + 2.15754i 0 0.860404
190.7 0.575085 + 0.256045i 0 −1.07310 1.19179i 1.24862 0.555922i 0 0.575145 0.122251i −0.701028 2.15754i 0 0.860404
190.8 1.05062 + 0.467766i 0 −0.453266 0.503403i 3.57276 1.59069i 0 −4.48724 + 0.953792i −0.951502 2.92842i 0 4.49768
See all 96 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 136.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
11.c even 5 1 inner
33.h odd 10 1 inner
99.m even 15 1 inner
99.n odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 891.2.n.l 96
3.b odd 2 1 inner 891.2.n.l 96
9.c even 3 1 891.2.f.g 48
9.c even 3 1 inner 891.2.n.l 96
9.d odd 6 1 891.2.f.g 48
9.d odd 6 1 inner 891.2.n.l 96
11.c even 5 1 inner 891.2.n.l 96
33.h odd 10 1 inner 891.2.n.l 96
99.m even 15 1 891.2.f.g 48
99.m even 15 1 inner 891.2.n.l 96
99.m even 15 1 9801.2.a.cr 24
99.n odd 30 1 891.2.f.g 48
99.n odd 30 1 inner 891.2.n.l 96
99.n odd 30 1 9801.2.a.cr 24
99.o odd 30 1 9801.2.a.cq 24
99.p even 30 1 9801.2.a.cq 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
891.2.f.g 48 9.c even 3 1
891.2.f.g 48 9.d odd 6 1
891.2.f.g 48 99.m even 15 1
891.2.f.g 48 99.n odd 30 1
891.2.n.l 96 1.a even 1 1 trivial
891.2.n.l 96 3.b odd 2 1 inner
891.2.n.l 96 9.c even 3 1 inner
891.2.n.l 96 9.d odd 6 1 inner
891.2.n.l 96 11.c even 5 1 inner
891.2.n.l 96 33.h odd 10 1 inner
891.2.n.l 96 99.m even 15 1 inner
891.2.n.l 96 99.n odd 30 1 inner
9801.2.a.cq 24 99.o odd 30 1
9801.2.a.cq 24 99.p even 30 1
9801.2.a.cr 24 99.m even 15 1
9801.2.a.cr 24 99.n odd 30 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T29616T294+76T292+556T2909664T288+60402T286++500246412961 T_{2}^{96} - 16 T_{2}^{94} + 76 T_{2}^{92} + 556 T_{2}^{90} - 9664 T_{2}^{88} + 60402 T_{2}^{86} + \cdots + 500246412961 acting on S2new(891,[χ])S_{2}^{\mathrm{new}}(891, [\chi]). Copy content Toggle raw display