Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 891.n (of order , degree , not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
The algebraic -expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136.1 | −2.33604 | + | 1.04007i | 0 | 3.03706 | − | 3.37300i | 1.88024 | + | 0.837138i | 0 | −3.87187 | − | 0.822992i | −2.00615 | + | 6.17430i | 0 | −5.26300 | ||||||||
136.2 | −2.26297 | + | 1.00754i | 0 | 2.76762 | − | 3.07376i | −2.42411 | − | 1.07928i | 0 | −0.234155 | − | 0.0497713i | −1.63516 | + | 5.03251i | 0 | 6.57309 | ||||||||
136.3 | −1.67544 | + | 0.745953i | 0 | 0.912387 | − | 1.01331i | −0.0824312 | − | 0.0367007i | 0 | 4.60859 | + | 0.979587i | 0.360704 | − | 1.11013i | 0 | 0.165485 | ||||||||
136.4 | −1.24612 | + | 0.554810i | 0 | −0.0932499 | + | 0.103565i | 1.89778 | + | 0.844946i | 0 | 0.101465 | + | 0.0215671i | 0.901773 | − | 2.77537i | 0 | −2.83366 | ||||||||
136.5 | −1.05062 | + | 0.467766i | 0 | −0.453266 | + | 0.503403i | −3.57276 | − | 1.59069i | 0 | −4.48724 | − | 0.953792i | 0.951502 | − | 2.92842i | 0 | 4.49768 | ||||||||
136.6 | −0.575085 | + | 0.256045i | 0 | −1.07310 | + | 1.19179i | −1.24862 | − | 0.555922i | 0 | 0.575145 | + | 0.122251i | 0.701028 | − | 2.15754i | 0 | 0.860404 | ||||||||
136.7 | 0.575085 | − | 0.256045i | 0 | −1.07310 | + | 1.19179i | 1.24862 | + | 0.555922i | 0 | 0.575145 | + | 0.122251i | −0.701028 | + | 2.15754i | 0 | 0.860404 | ||||||||
136.8 | 1.05062 | − | 0.467766i | 0 | −0.453266 | + | 0.503403i | 3.57276 | + | 1.59069i | 0 | −4.48724 | − | 0.953792i | −0.951502 | + | 2.92842i | 0 | 4.49768 | ||||||||
136.9 | 1.24612 | − | 0.554810i | 0 | −0.0932499 | + | 0.103565i | −1.89778 | − | 0.844946i | 0 | 0.101465 | + | 0.0215671i | −0.901773 | + | 2.77537i | 0 | −2.83366 | ||||||||
136.10 | 1.67544 | − | 0.745953i | 0 | 0.912387 | − | 1.01331i | 0.0824312 | + | 0.0367007i | 0 | 4.60859 | + | 0.979587i | −0.360704 | + | 1.11013i | 0 | 0.165485 | ||||||||
136.11 | 2.26297 | − | 1.00754i | 0 | 2.76762 | − | 3.07376i | 2.42411 | + | 1.07928i | 0 | −0.234155 | − | 0.0497713i | 1.63516 | − | 5.03251i | 0 | 6.57309 | ||||||||
136.12 | 2.33604 | − | 1.04007i | 0 | 3.03706 | − | 3.37300i | −1.88024 | − | 0.837138i | 0 | −3.87187 | − | 0.822992i | 2.00615 | − | 6.17430i | 0 | −5.26300 | ||||||||
190.1 | −2.33604 | − | 1.04007i | 0 | 3.03706 | + | 3.37300i | 1.88024 | − | 0.837138i | 0 | −3.87187 | + | 0.822992i | −2.00615 | − | 6.17430i | 0 | −5.26300 | ||||||||
190.2 | −2.26297 | − | 1.00754i | 0 | 2.76762 | + | 3.07376i | −2.42411 | + | 1.07928i | 0 | −0.234155 | + | 0.0497713i | −1.63516 | − | 5.03251i | 0 | 6.57309 | ||||||||
190.3 | −1.67544 | − | 0.745953i | 0 | 0.912387 | + | 1.01331i | −0.0824312 | + | 0.0367007i | 0 | 4.60859 | − | 0.979587i | 0.360704 | + | 1.11013i | 0 | 0.165485 | ||||||||
190.4 | −1.24612 | − | 0.554810i | 0 | −0.0932499 | − | 0.103565i | 1.89778 | − | 0.844946i | 0 | 0.101465 | − | 0.0215671i | 0.901773 | + | 2.77537i | 0 | −2.83366 | ||||||||
190.5 | −1.05062 | − | 0.467766i | 0 | −0.453266 | − | 0.503403i | −3.57276 | + | 1.59069i | 0 | −4.48724 | + | 0.953792i | 0.951502 | + | 2.92842i | 0 | 4.49768 | ||||||||
190.6 | −0.575085 | − | 0.256045i | 0 | −1.07310 | − | 1.19179i | −1.24862 | + | 0.555922i | 0 | 0.575145 | − | 0.122251i | 0.701028 | + | 2.15754i | 0 | 0.860404 | ||||||||
190.7 | 0.575085 | + | 0.256045i | 0 | −1.07310 | − | 1.19179i | 1.24862 | − | 0.555922i | 0 | 0.575145 | − | 0.122251i | −0.701028 | − | 2.15754i | 0 | 0.860404 | ||||||||
190.8 | 1.05062 | + | 0.467766i | 0 | −0.453266 | − | 0.503403i | 3.57276 | − | 1.59069i | 0 | −4.48724 | + | 0.953792i | −0.951502 | − | 2.92842i | 0 | 4.49768 | ||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
99.m | even | 15 | 1 | inner |
99.n | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 891.2.n.l | 96 | |
3.b | odd | 2 | 1 | inner | 891.2.n.l | 96 | |
9.c | even | 3 | 1 | 891.2.f.g | ✓ | 48 | |
9.c | even | 3 | 1 | inner | 891.2.n.l | 96 | |
9.d | odd | 6 | 1 | 891.2.f.g | ✓ | 48 | |
9.d | odd | 6 | 1 | inner | 891.2.n.l | 96 | |
11.c | even | 5 | 1 | inner | 891.2.n.l | 96 | |
33.h | odd | 10 | 1 | inner | 891.2.n.l | 96 | |
99.m | even | 15 | 1 | 891.2.f.g | ✓ | 48 | |
99.m | even | 15 | 1 | inner | 891.2.n.l | 96 | |
99.m | even | 15 | 1 | 9801.2.a.cr | 24 | ||
99.n | odd | 30 | 1 | 891.2.f.g | ✓ | 48 | |
99.n | odd | 30 | 1 | inner | 891.2.n.l | 96 | |
99.n | odd | 30 | 1 | 9801.2.a.cr | 24 | ||
99.o | odd | 30 | 1 | 9801.2.a.cq | 24 | ||
99.p | even | 30 | 1 | 9801.2.a.cq | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
891.2.f.g | ✓ | 48 | 9.c | even | 3 | 1 | |
891.2.f.g | ✓ | 48 | 9.d | odd | 6 | 1 | |
891.2.f.g | ✓ | 48 | 99.m | even | 15 | 1 | |
891.2.f.g | ✓ | 48 | 99.n | odd | 30 | 1 | |
891.2.n.l | 96 | 1.a | even | 1 | 1 | trivial | |
891.2.n.l | 96 | 3.b | odd | 2 | 1 | inner | |
891.2.n.l | 96 | 9.c | even | 3 | 1 | inner | |
891.2.n.l | 96 | 9.d | odd | 6 | 1 | inner | |
891.2.n.l | 96 | 11.c | even | 5 | 1 | inner | |
891.2.n.l | 96 | 33.h | odd | 10 | 1 | inner | |
891.2.n.l | 96 | 99.m | even | 15 | 1 | inner | |
891.2.n.l | 96 | 99.n | odd | 30 | 1 | inner | |
9801.2.a.cq | 24 | 99.o | odd | 30 | 1 | ||
9801.2.a.cq | 24 | 99.p | even | 30 | 1 | ||
9801.2.a.cr | 24 | 99.m | even | 15 | 1 | ||
9801.2.a.cr | 24 | 99.n | odd | 30 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .