Properties

Label 896.2.bh.a.625.15
Level $896$
Weight $2$
Character 896.625
Analytic conductor $7.155$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [896,2,Mod(81,896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(896, base_ring=CyclotomicField(24))
 
chi = DirichletCharacter(H, H._module([0, 9, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("896.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.bh (of order \(24\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 625.15
Character \(\chi\) \(=\) 896.625
Dual form 896.2.bh.a.529.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.118403 + 0.154306i) q^{3} +(2.39583 - 1.83839i) q^{5} +(-1.47323 + 2.19764i) q^{7} +(0.766666 + 2.86124i) q^{9} +O(q^{10})\) \(q+(-0.118403 + 0.154306i) q^{3} +(2.39583 - 1.83839i) q^{5} +(-1.47323 + 2.19764i) q^{7} +(0.766666 + 2.86124i) q^{9} +(-5.43183 + 0.715114i) q^{11} +(-5.50652 + 2.28087i) q^{13} +0.587363i q^{15} +(-3.70249 + 2.13763i) q^{17} +(-0.183696 + 1.39531i) q^{19} +(-0.164674 - 0.487536i) q^{21} +(0.326660 + 1.21911i) q^{23} +(1.06625 - 3.97929i) q^{25} +(-1.07136 - 0.443773i) q^{27} +(0.497218 + 1.20039i) q^{29} +(0.251275 + 0.435222i) q^{31} +(0.532801 - 0.922838i) q^{33} +(0.510497 + 7.97352i) q^{35} +(5.39866 - 4.14254i) q^{37} +(0.300037 - 1.11975i) q^{39} +(-3.02206 + 3.02206i) q^{41} +(3.49881 - 8.44689i) q^{43} +(7.09686 + 5.44561i) q^{45} +(7.99998 + 4.61879i) q^{47} +(-2.65920 - 6.47523i) q^{49} +(0.108537 - 0.824421i) q^{51} +(-7.09730 + 0.934377i) q^{53} +(-11.6991 + 11.6991i) q^{55} +(-0.193554 - 0.193554i) q^{57} +(-0.00968333 - 0.0735522i) q^{59} +(9.08657 + 1.19627i) q^{61} +(-7.41743 - 2.53040i) q^{63} +(-8.99956 + 15.5877i) q^{65} +(-0.469449 + 0.611798i) q^{67} +(-0.226794 - 0.0939414i) q^{69} +(7.84105 + 7.84105i) q^{71} +(-6.92569 - 1.85573i) q^{73} +(0.487783 + 0.635691i) q^{75} +(6.43076 - 12.9907i) q^{77} +(0.877666 + 0.506720i) q^{79} +(-7.50061 + 4.33048i) q^{81} +(6.18602 - 2.56233i) q^{83} +(-4.94075 + 11.9280i) q^{85} +(-0.244100 - 0.0654064i) q^{87} +(-13.9937 + 3.74960i) q^{89} +(3.09982 - 15.4616i) q^{91} +(-0.0969094 - 0.0127584i) q^{93} +(2.12501 + 3.68062i) q^{95} +0.451869 q^{97} +(-6.21051 - 14.9935i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 4 q^{3} - 4 q^{5} + 8 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 240 q + 4 q^{3} - 4 q^{5} + 8 q^{7} - 4 q^{9} + 4 q^{11} - 16 q^{13} + 4 q^{19} - 8 q^{21} + 12 q^{23} - 4 q^{25} + 16 q^{27} - 16 q^{29} + 56 q^{31} - 8 q^{33} + 32 q^{35} - 4 q^{37} + 4 q^{39} - 16 q^{41} + 8 q^{45} + 28 q^{51} - 20 q^{53} + 16 q^{55} - 16 q^{57} + 36 q^{59} - 4 q^{61} + 16 q^{63} - 8 q^{65} - 36 q^{67} - 16 q^{69} - 48 q^{71} - 4 q^{73} - 16 q^{75} - 8 q^{77} + 96 q^{83} - 56 q^{85} + 4 q^{87} - 4 q^{89} + 56 q^{91} + 20 q^{93} + 8 q^{95} - 32 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.118403 + 0.154306i −0.0683603 + 0.0890888i −0.826282 0.563257i \(-0.809548\pi\)
0.757922 + 0.652346i \(0.226215\pi\)
\(4\) 0 0
\(5\) 2.39583 1.83839i 1.07145 0.822151i 0.0867170 0.996233i \(-0.472362\pi\)
0.984731 + 0.174082i \(0.0556958\pi\)
\(6\) 0 0
\(7\) −1.47323 + 2.19764i −0.556828 + 0.830628i
\(8\) 0 0
\(9\) 0.766666 + 2.86124i 0.255555 + 0.953746i
\(10\) 0 0
\(11\) −5.43183 + 0.715114i −1.63776 + 0.215615i −0.892464 0.451120i \(-0.851025\pi\)
−0.745295 + 0.666735i \(0.767691\pi\)
\(12\) 0 0
\(13\) −5.50652 + 2.28087i −1.52723 + 0.632601i −0.979025 0.203741i \(-0.934690\pi\)
−0.548209 + 0.836342i \(0.684690\pi\)
\(14\) 0 0
\(15\) 0.587363i 0.151657i
\(16\) 0 0
\(17\) −3.70249 + 2.13763i −0.897986 + 0.518453i −0.876546 0.481318i \(-0.840158\pi\)
−0.0214399 + 0.999770i \(0.506825\pi\)
\(18\) 0 0
\(19\) −0.183696 + 1.39531i −0.0421427 + 0.320105i 0.957369 + 0.288867i \(0.0932785\pi\)
−0.999512 + 0.0312385i \(0.990055\pi\)
\(20\) 0 0
\(21\) −0.164674 0.487536i −0.0359348 0.106389i
\(22\) 0 0
\(23\) 0.326660 + 1.21911i 0.0681133 + 0.254202i 0.991584 0.129467i \(-0.0413267\pi\)
−0.923470 + 0.383670i \(0.874660\pi\)
\(24\) 0 0
\(25\) 1.06625 3.97929i 0.213250 0.795859i
\(26\) 0 0
\(27\) −1.07136 0.443773i −0.206184 0.0854042i
\(28\) 0 0
\(29\) 0.497218 + 1.20039i 0.0923310 + 0.222907i 0.963298 0.268435i \(-0.0865065\pi\)
−0.870967 + 0.491342i \(0.836507\pi\)
\(30\) 0 0
\(31\) 0.251275 + 0.435222i 0.0451304 + 0.0781682i 0.887708 0.460406i \(-0.152296\pi\)
−0.842578 + 0.538575i \(0.818963\pi\)
\(32\) 0 0
\(33\) 0.532801 0.922838i 0.0927487 0.160646i
\(34\) 0 0
\(35\) 0.510497 + 7.97352i 0.0862897 + 1.34777i
\(36\) 0 0
\(37\) 5.39866 4.14254i 0.887535 0.681029i −0.0608517 0.998147i \(-0.519382\pi\)
0.948386 + 0.317118i \(0.102715\pi\)
\(38\) 0 0
\(39\) 0.300037 1.11975i 0.0480444 0.179304i
\(40\) 0 0
\(41\) −3.02206 + 3.02206i −0.471966 + 0.471966i −0.902550 0.430584i \(-0.858308\pi\)
0.430584 + 0.902550i \(0.358308\pi\)
\(42\) 0 0
\(43\) 3.49881 8.44689i 0.533564 1.28814i −0.395584 0.918430i \(-0.629458\pi\)
0.929148 0.369708i \(-0.120542\pi\)
\(44\) 0 0
\(45\) 7.09686 + 5.44561i 1.05794 + 0.811784i
\(46\) 0 0
\(47\) 7.99998 + 4.61879i 1.16692 + 0.673720i 0.952952 0.303121i \(-0.0980287\pi\)
0.213965 + 0.976841i \(0.431362\pi\)
\(48\) 0 0
\(49\) −2.65920 6.47523i −0.379886 0.925033i
\(50\) 0 0
\(51\) 0.108537 0.824421i 0.0151982 0.115442i
\(52\) 0 0
\(53\) −7.09730 + 0.934377i −0.974889 + 0.128347i −0.601106 0.799169i \(-0.705273\pi\)
−0.373783 + 0.927516i \(0.621940\pi\)
\(54\) 0 0
\(55\) −11.6991 + 11.6991i −1.57751 + 1.57751i
\(56\) 0 0
\(57\) −0.193554 0.193554i −0.0256369 0.0256369i
\(58\) 0 0
\(59\) −0.00968333 0.0735522i −0.00126066 0.00957568i 0.990803 0.135313i \(-0.0432038\pi\)
−0.992064 + 0.125737i \(0.959871\pi\)
\(60\) 0 0
\(61\) 9.08657 + 1.19627i 1.16342 + 0.153167i 0.687406 0.726273i \(-0.258749\pi\)
0.476010 + 0.879440i \(0.342083\pi\)
\(62\) 0 0
\(63\) −7.41743 2.53040i −0.934508 0.318800i
\(64\) 0 0
\(65\) −8.99956 + 15.5877i −1.11626 + 1.93342i
\(66\) 0 0
\(67\) −0.469449 + 0.611798i −0.0573523 + 0.0747430i −0.821149 0.570714i \(-0.806666\pi\)
0.763796 + 0.645457i \(0.223333\pi\)
\(68\) 0 0
\(69\) −0.226794 0.0939414i −0.0273028 0.0113092i
\(70\) 0 0
\(71\) 7.84105 + 7.84105i 0.930561 + 0.930561i 0.997741 0.0671798i \(-0.0214001\pi\)
−0.0671798 + 0.997741i \(0.521400\pi\)
\(72\) 0 0
\(73\) −6.92569 1.85573i −0.810591 0.217197i −0.170362 0.985382i \(-0.554494\pi\)
−0.640229 + 0.768184i \(0.721160\pi\)
\(74\) 0 0
\(75\) 0.487783 + 0.635691i 0.0563243 + 0.0734033i
\(76\) 0 0
\(77\) 6.43076 12.9907i 0.732854 1.48043i
\(78\) 0 0
\(79\) 0.877666 + 0.506720i 0.0987451 + 0.0570105i 0.548559 0.836112i \(-0.315176\pi\)
−0.449814 + 0.893122i \(0.648510\pi\)
\(80\) 0 0
\(81\) −7.50061 + 4.33048i −0.833402 + 0.481165i
\(82\) 0 0
\(83\) 6.18602 2.56233i 0.679004 0.281253i −0.0164063 0.999865i \(-0.505223\pi\)
0.695411 + 0.718613i \(0.255223\pi\)
\(84\) 0 0
\(85\) −4.94075 + 11.9280i −0.535899 + 1.29378i
\(86\) 0 0
\(87\) −0.244100 0.0654064i −0.0261703 0.00701231i
\(88\) 0 0
\(89\) −13.9937 + 3.74960i −1.48333 + 0.397456i −0.907478 0.420100i \(-0.861995\pi\)
−0.575849 + 0.817556i \(0.695328\pi\)
\(90\) 0 0
\(91\) 3.09982 15.4616i 0.324950 1.62081i
\(92\) 0 0
\(93\) −0.0969094 0.0127584i −0.0100490 0.00132298i
\(94\) 0 0
\(95\) 2.12501 + 3.68062i 0.218021 + 0.377624i
\(96\) 0 0
\(97\) 0.451869 0.0458804 0.0229402 0.999737i \(-0.492697\pi\)
0.0229402 + 0.999737i \(0.492697\pi\)
\(98\) 0 0
\(99\) −6.21051 14.9935i −0.624180 1.50690i
\(100\) 0 0
\(101\) 0.453155 + 3.44206i 0.0450906 + 0.342497i 0.999089 + 0.0426844i \(0.0135910\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(102\) 0 0
\(103\) −8.80466 + 2.35920i −0.867549 + 0.232459i −0.665028 0.746819i \(-0.731580\pi\)
−0.202522 + 0.979278i \(0.564914\pi\)
\(104\) 0 0
\(105\) −1.29081 0.865320i −0.125970 0.0844466i
\(106\) 0 0
\(107\) −7.67351 10.0003i −0.741826 0.966766i −1.00000 0.000667722i \(-0.999787\pi\)
0.258174 0.966098i \(-0.416879\pi\)
\(108\) 0 0
\(109\) 11.0120 + 8.44984i 1.05476 + 0.809348i 0.982166 0.188014i \(-0.0602049\pi\)
0.0725963 + 0.997361i \(0.476872\pi\)
\(110\) 0 0
\(111\) 1.32354i 0.125625i
\(112\) 0 0
\(113\) 0.0684958i 0.00644354i 0.999995 + 0.00322177i \(0.00102552\pi\)
−0.999995 + 0.00322177i \(0.998974\pi\)
\(114\) 0 0
\(115\) 3.02382 + 2.32026i 0.281973 + 0.216365i
\(116\) 0 0
\(117\) −10.7478 14.0068i −0.993633 1.29493i
\(118\) 0 0
\(119\) 0.756872 11.2859i 0.0693823 1.03458i
\(120\) 0 0
\(121\) 18.3682 4.92175i 1.66984 0.447432i
\(122\) 0 0
\(123\) −0.108501 0.824145i −0.00978318 0.0743107i
\(124\) 0 0
\(125\) 1.01736 + 2.45613i 0.0909957 + 0.219683i
\(126\) 0 0
\(127\) 6.18288 0.548642 0.274321 0.961638i \(-0.411547\pi\)
0.274321 + 0.961638i \(0.411547\pi\)
\(128\) 0 0
\(129\) 0.889137 + 1.54003i 0.0782841 + 0.135592i
\(130\) 0 0
\(131\) −8.65291 1.13918i −0.756009 0.0995304i −0.257337 0.966322i \(-0.582845\pi\)
−0.498671 + 0.866791i \(0.666178\pi\)
\(132\) 0 0
\(133\) −2.79575 2.45930i −0.242422 0.213248i
\(134\) 0 0
\(135\) −3.38263 + 0.906374i −0.291131 + 0.0780082i
\(136\) 0 0
\(137\) 11.1426 + 2.98566i 0.951980 + 0.255082i 0.701202 0.712962i \(-0.252647\pi\)
0.250778 + 0.968045i \(0.419314\pi\)
\(138\) 0 0
\(139\) −6.81777 + 16.4595i −0.578275 + 1.39608i 0.316084 + 0.948731i \(0.397632\pi\)
−0.894359 + 0.447349i \(0.852368\pi\)
\(140\) 0 0
\(141\) −1.65993 + 0.687567i −0.139792 + 0.0579036i
\(142\) 0 0
\(143\) 28.2794 16.3271i 2.36484 1.36534i
\(144\) 0 0
\(145\) 3.39803 + 1.96185i 0.282191 + 0.162923i
\(146\) 0 0
\(147\) 1.31403 + 0.356358i 0.108379 + 0.0293919i
\(148\) 0 0
\(149\) 7.52295 + 9.80409i 0.616304 + 0.803183i 0.992355 0.123416i \(-0.0393850\pi\)
−0.376051 + 0.926599i \(0.622718\pi\)
\(150\) 0 0
\(151\) 6.48936 + 1.73882i 0.528097 + 0.141503i 0.513009 0.858383i \(-0.328531\pi\)
0.0150875 + 0.999886i \(0.495197\pi\)
\(152\) 0 0
\(153\) −8.95485 8.95485i −0.723957 0.723957i
\(154\) 0 0
\(155\) 1.40212 + 0.580777i 0.112621 + 0.0466491i
\(156\) 0 0
\(157\) 0.632229 0.823937i 0.0504574 0.0657573i −0.767443 0.641117i \(-0.778471\pi\)
0.817900 + 0.575360i \(0.195138\pi\)
\(158\) 0 0
\(159\) 0.696164 1.20579i 0.0552094 0.0956255i
\(160\) 0 0
\(161\) −3.16041 1.07815i −0.249075 0.0849701i
\(162\) 0 0
\(163\) −2.67408 0.352050i −0.209450 0.0275747i 0.0250708 0.999686i \(-0.492019\pi\)
−0.234521 + 0.972111i \(0.575352\pi\)
\(164\) 0 0
\(165\) −0.420032 3.19046i −0.0326994 0.248377i
\(166\) 0 0
\(167\) −4.37579 4.37579i −0.338609 0.338609i 0.517235 0.855843i \(-0.326961\pi\)
−0.855843 + 0.517235i \(0.826961\pi\)
\(168\) 0 0
\(169\) 15.9270 15.9270i 1.22515 1.22515i
\(170\) 0 0
\(171\) −4.13313 + 0.544137i −0.316069 + 0.0416112i
\(172\) 0 0
\(173\) 0.198608 1.50858i 0.0150999 0.114695i −0.982235 0.187655i \(-0.939911\pi\)
0.997335 + 0.0729600i \(0.0232446\pi\)
\(174\) 0 0
\(175\) 7.17421 + 8.20563i 0.542319 + 0.620287i
\(176\) 0 0
\(177\) 0.0124961 + 0.00721463i 0.000939265 + 0.000542285i
\(178\) 0 0
\(179\) 17.8811 + 13.7206i 1.33650 + 1.02553i 0.996368 + 0.0851496i \(0.0271368\pi\)
0.340127 + 0.940379i \(0.389530\pi\)
\(180\) 0 0
\(181\) 6.77001 16.3442i 0.503211 1.21486i −0.444515 0.895772i \(-0.646624\pi\)
0.947726 0.319087i \(-0.103376\pi\)
\(182\) 0 0
\(183\) −1.26047 + 1.26047i −0.0931769 + 0.0931769i
\(184\) 0 0
\(185\) 5.31870 19.8496i 0.391038 1.45937i
\(186\) 0 0
\(187\) 18.5827 14.2590i 1.35890 1.04272i
\(188\) 0 0
\(189\) 2.55361 1.70069i 0.185748 0.123707i
\(190\) 0 0
\(191\) −10.0442 + 17.3971i −0.726772 + 1.25881i 0.231468 + 0.972843i \(0.425647\pi\)
−0.958240 + 0.285964i \(0.907686\pi\)
\(192\) 0 0
\(193\) 8.76441 + 15.1804i 0.630876 + 1.09271i 0.987373 + 0.158413i \(0.0506376\pi\)
−0.356497 + 0.934296i \(0.616029\pi\)
\(194\) 0 0
\(195\) −1.33970 3.23433i −0.0959380 0.231615i
\(196\) 0 0
\(197\) −8.32147 3.44687i −0.592880 0.245579i 0.0660089 0.997819i \(-0.478973\pi\)
−0.658889 + 0.752240i \(0.728973\pi\)
\(198\) 0 0
\(199\) 2.15738 8.05144i 0.152932 0.570751i −0.846341 0.532641i \(-0.821200\pi\)
0.999274 0.0381102i \(-0.0121338\pi\)
\(200\) 0 0
\(201\) −0.0388199 0.144878i −0.00273815 0.0102189i
\(202\) 0 0
\(203\) −3.37053 0.675744i −0.236565 0.0474279i
\(204\) 0 0
\(205\) −1.68463 + 12.7960i −0.117660 + 0.893715i
\(206\) 0 0
\(207\) −3.23773 + 1.86930i −0.225038 + 0.129926i
\(208\) 0 0
\(209\) 7.71043i 0.533342i
\(210\) 0 0
\(211\) 0.534006 0.221193i 0.0367625 0.0152275i −0.364226 0.931310i \(-0.618667\pi\)
0.400989 + 0.916083i \(0.368667\pi\)
\(212\) 0 0
\(213\) −2.13833 + 0.281517i −0.146516 + 0.0192892i
\(214\) 0 0
\(215\) −7.14607 26.6695i −0.487358 1.81884i
\(216\) 0 0
\(217\) −1.32664 0.0889691i −0.0900585 0.00603961i
\(218\) 0 0
\(219\) 1.10638 0.848953i 0.0747620 0.0573669i
\(220\) 0 0
\(221\) 15.5122 20.2158i 1.04346 1.35986i
\(222\) 0 0
\(223\) 5.07246 0.339677 0.169839 0.985472i \(-0.445675\pi\)
0.169839 + 0.985472i \(0.445675\pi\)
\(224\) 0 0
\(225\) 12.2032 0.813544
\(226\) 0 0
\(227\) −6.69399 + 8.72378i −0.444296 + 0.579018i −0.960791 0.277272i \(-0.910570\pi\)
0.516496 + 0.856290i \(0.327236\pi\)
\(228\) 0 0
\(229\) 12.5005 9.59199i 0.826058 0.633856i −0.106728 0.994288i \(-0.534037\pi\)
0.932786 + 0.360432i \(0.117371\pi\)
\(230\) 0 0
\(231\) 1.24312 + 2.53045i 0.0817916 + 0.166492i
\(232\) 0 0
\(233\) −3.50730 13.0894i −0.229771 0.857516i −0.980437 0.196834i \(-0.936934\pi\)
0.750666 0.660682i \(-0.229733\pi\)
\(234\) 0 0
\(235\) 27.6577 3.64121i 1.80419 0.237526i
\(236\) 0 0
\(237\) −0.182109 + 0.0754319i −0.0118292 + 0.00489983i
\(238\) 0 0
\(239\) 5.02121i 0.324795i −0.986725 0.162397i \(-0.948077\pi\)
0.986725 0.162397i \(-0.0519227\pi\)
\(240\) 0 0
\(241\) −20.7477 + 11.9787i −1.33648 + 0.771615i −0.986283 0.165062i \(-0.947218\pi\)
−0.350194 + 0.936677i \(0.613884\pi\)
\(242\) 0 0
\(243\) 0.673966 5.11928i 0.0432349 0.328402i
\(244\) 0 0
\(245\) −18.2750 10.6249i −1.16755 0.678802i
\(246\) 0 0
\(247\) −2.17100 8.10227i −0.138137 0.515535i
\(248\) 0 0
\(249\) −0.337062 + 1.25793i −0.0213604 + 0.0797182i
\(250\) 0 0
\(251\) −15.8433 6.56249i −1.00002 0.414221i −0.178214 0.983992i \(-0.557032\pi\)
−0.821803 + 0.569771i \(0.807032\pi\)
\(252\) 0 0
\(253\) −2.64617 6.38841i −0.166363 0.401636i
\(254\) 0 0
\(255\) −1.25557 2.17471i −0.0786267 0.136185i
\(256\) 0 0
\(257\) 1.21717 2.10820i 0.0759249 0.131506i −0.825563 0.564310i \(-0.809142\pi\)
0.901488 + 0.432804i \(0.142476\pi\)
\(258\) 0 0
\(259\) 1.15033 + 17.9672i 0.0714782 + 1.11643i
\(260\) 0 0
\(261\) −3.05340 + 2.34296i −0.189001 + 0.145025i
\(262\) 0 0
\(263\) −7.18443 + 26.8126i −0.443011 + 1.65334i 0.278125 + 0.960545i \(0.410287\pi\)
−0.721136 + 0.692794i \(0.756380\pi\)
\(264\) 0 0
\(265\) −15.2862 + 15.2862i −0.939023 + 0.939023i
\(266\) 0 0
\(267\) 1.07831 2.60328i 0.0659917 0.159318i
\(268\) 0 0
\(269\) −7.77004 5.96216i −0.473747 0.363519i 0.344120 0.938926i \(-0.388177\pi\)
−0.817868 + 0.575406i \(0.804844\pi\)
\(270\) 0 0
\(271\) −23.9839 13.8471i −1.45692 0.841152i −0.458059 0.888922i \(-0.651455\pi\)
−0.998858 + 0.0477701i \(0.984789\pi\)
\(272\) 0 0
\(273\) 2.01879 + 2.30903i 0.122183 + 0.139749i
\(274\) 0 0
\(275\) −2.94603 + 22.3773i −0.177652 + 1.34940i
\(276\) 0 0
\(277\) 1.11886 0.147300i 0.0672256 0.00885042i −0.0968384 0.995300i \(-0.530873\pi\)
0.164064 + 0.986450i \(0.447540\pi\)
\(278\) 0 0
\(279\) −1.05263 + 1.05263i −0.0630192 + 0.0630192i
\(280\) 0 0
\(281\) 6.68419 + 6.68419i 0.398746 + 0.398746i 0.877790 0.479045i \(-0.159017\pi\)
−0.479045 + 0.877790i \(0.659017\pi\)
\(282\) 0 0
\(283\) 2.81117 + 21.3530i 0.167107 + 1.26930i 0.845250 + 0.534372i \(0.179452\pi\)
−0.678143 + 0.734930i \(0.737215\pi\)
\(284\) 0 0
\(285\) −0.819552 0.107896i −0.0485460 0.00639121i
\(286\) 0 0
\(287\) −2.18920 11.0936i −0.129225 0.654832i
\(288\) 0 0
\(289\) 0.638965 1.10672i 0.0375862 0.0651012i
\(290\) 0 0
\(291\) −0.0535029 + 0.0697263i −0.00313639 + 0.00408743i
\(292\) 0 0
\(293\) −11.8675 4.91570i −0.693309 0.287178i 0.00806883 0.999967i \(-0.497432\pi\)
−0.701378 + 0.712789i \(0.747432\pi\)
\(294\) 0 0
\(295\) −0.158417 0.158417i −0.00922339 0.00922339i
\(296\) 0 0
\(297\) 6.13682 + 1.64435i 0.356094 + 0.0954151i
\(298\) 0 0
\(299\) −4.57940 5.96799i −0.264834 0.345138i
\(300\) 0 0
\(301\) 13.4086 + 20.1333i 0.772860 + 1.16046i
\(302\) 0 0
\(303\) −0.584787 0.337627i −0.0335951 0.0193961i
\(304\) 0 0
\(305\) 23.9691 13.8386i 1.37247 0.792394i
\(306\) 0 0
\(307\) −18.8697 + 7.81608i −1.07695 + 0.446087i −0.849438 0.527688i \(-0.823059\pi\)
−0.227512 + 0.973775i \(0.573059\pi\)
\(308\) 0 0
\(309\) 0.678463 1.63795i 0.0385964 0.0931799i
\(310\) 0 0
\(311\) −2.85627 0.765335i −0.161964 0.0433981i 0.176926 0.984224i \(-0.443385\pi\)
−0.338890 + 0.940826i \(0.610051\pi\)
\(312\) 0 0
\(313\) 26.9261 7.21483i 1.52195 0.407806i 0.601569 0.798821i \(-0.294542\pi\)
0.920384 + 0.391015i \(0.127876\pi\)
\(314\) 0 0
\(315\) −22.4228 + 7.57368i −1.26338 + 0.426729i
\(316\) 0 0
\(317\) −32.5474 4.28495i −1.82805 0.240667i −0.863457 0.504422i \(-0.831705\pi\)
−0.964590 + 0.263756i \(0.915039\pi\)
\(318\) 0 0
\(319\) −3.55922 6.16475i −0.199278 0.345160i
\(320\) 0 0
\(321\) 2.45168 0.136839
\(322\) 0 0
\(323\) −2.30252 5.55878i −0.128116 0.309299i
\(324\) 0 0
\(325\) 3.20495 + 24.3440i 0.177779 + 1.35036i
\(326\) 0 0
\(327\) −2.60773 + 0.698739i −0.144208 + 0.0386403i
\(328\) 0 0
\(329\) −21.9362 + 10.7765i −1.20938 + 0.594128i
\(330\) 0 0
\(331\) −3.65442 4.76253i −0.200865 0.261772i 0.682050 0.731306i \(-0.261089\pi\)
−0.882915 + 0.469534i \(0.844422\pi\)
\(332\) 0 0
\(333\) 15.9918 + 12.2709i 0.876343 + 0.672441i
\(334\) 0 0
\(335\) 2.32879i 0.127236i
\(336\) 0 0
\(337\) 8.26077i 0.449993i 0.974360 + 0.224996i \(0.0722370\pi\)
−0.974360 + 0.224996i \(0.927763\pi\)
\(338\) 0 0
\(339\) −0.0105693 0.00811014i −0.000574048 0.000440482i
\(340\) 0 0
\(341\) −1.67612 2.18436i −0.0907670 0.118290i
\(342\) 0 0
\(343\) 18.1478 + 3.69554i 0.979890 + 0.199540i
\(344\) 0 0
\(345\) −0.716062 + 0.191868i −0.0385515 + 0.0103298i
\(346\) 0 0
\(347\) −3.23389 24.5639i −0.173605 1.31866i −0.827240 0.561848i \(-0.810090\pi\)
0.653636 0.756809i \(-0.273243\pi\)
\(348\) 0 0
\(349\) 7.17014 + 17.3102i 0.383809 + 0.926596i 0.991222 + 0.132210i \(0.0422073\pi\)
−0.607413 + 0.794386i \(0.707793\pi\)
\(350\) 0 0
\(351\) 6.91168 0.368918
\(352\) 0 0
\(353\) −1.24335 2.15355i −0.0661769 0.114622i 0.831039 0.556215i \(-0.187747\pi\)
−0.897215 + 0.441593i \(0.854413\pi\)
\(354\) 0 0
\(355\) 33.2007 + 4.37095i 1.76211 + 0.231986i
\(356\) 0 0
\(357\) 1.65188 + 1.45309i 0.0874266 + 0.0769054i
\(358\) 0 0
\(359\) 16.1733 4.33362i 0.853594 0.228720i 0.194614 0.980880i \(-0.437655\pi\)
0.658980 + 0.752160i \(0.270988\pi\)
\(360\) 0 0
\(361\) 16.4395 + 4.40494i 0.865234 + 0.231839i
\(362\) 0 0
\(363\) −1.41540 + 3.41709i −0.0742894 + 0.179350i
\(364\) 0 0
\(365\) −20.0043 + 8.28607i −1.04707 + 0.433712i
\(366\) 0 0
\(367\) 6.07154 3.50540i 0.316932 0.182981i −0.333092 0.942894i \(-0.608092\pi\)
0.650024 + 0.759914i \(0.274759\pi\)
\(368\) 0 0
\(369\) −10.9637 6.32991i −0.570749 0.329522i
\(370\) 0 0
\(371\) 8.40252 16.9738i 0.436237 0.881237i
\(372\) 0 0
\(373\) 10.9932 + 14.3266i 0.569207 + 0.741805i 0.985917 0.167234i \(-0.0534836\pi\)
−0.416710 + 0.909039i \(0.636817\pi\)
\(374\) 0 0
\(375\) −0.499456 0.133829i −0.0257918 0.00691089i
\(376\) 0 0
\(377\) −5.47588 5.47588i −0.282022 0.282022i
\(378\) 0 0
\(379\) 3.29244 + 1.36377i 0.169121 + 0.0700523i 0.465638 0.884975i \(-0.345825\pi\)
−0.296516 + 0.955028i \(0.595825\pi\)
\(380\) 0 0
\(381\) −0.732074 + 0.954058i −0.0375053 + 0.0488779i
\(382\) 0 0
\(383\) 10.0023 17.3246i 0.511096 0.885244i −0.488821 0.872384i \(-0.662573\pi\)
0.999917 0.0128604i \(-0.00409371\pi\)
\(384\) 0 0
\(385\) −8.47491 42.9458i −0.431922 2.18872i
\(386\) 0 0
\(387\) 26.8510 + 3.53500i 1.36491 + 0.179694i
\(388\) 0 0
\(389\) −0.604023 4.58801i −0.0306252 0.232621i 0.969286 0.245936i \(-0.0790952\pi\)
−0.999911 + 0.0133142i \(0.995762\pi\)
\(390\) 0 0
\(391\) −3.81547 3.81547i −0.192957 0.192957i
\(392\) 0 0
\(393\) 1.20032 1.20032i 0.0605480 0.0605480i
\(394\) 0 0
\(395\) 3.03429 0.399471i 0.152671 0.0200996i
\(396\) 0 0
\(397\) 3.56041 27.0440i 0.178692 1.35730i −0.633425 0.773804i \(-0.718352\pi\)
0.812117 0.583495i \(-0.198315\pi\)
\(398\) 0 0
\(399\) 0.710512 0.140212i 0.0355701 0.00701940i
\(400\) 0 0
\(401\) 1.09372 + 0.631459i 0.0546177 + 0.0315336i 0.527060 0.849828i \(-0.323294\pi\)
−0.472442 + 0.881362i \(0.656628\pi\)
\(402\) 0 0
\(403\) −2.37634 1.82343i −0.118374 0.0908315i
\(404\) 0 0
\(405\) −10.0091 + 24.1641i −0.497357 + 1.20072i
\(406\) 0 0
\(407\) −26.3622 + 26.3622i −1.30673 + 1.30673i
\(408\) 0 0
\(409\) −2.26792 + 8.46400i −0.112142 + 0.418518i −0.999057 0.0434134i \(-0.986177\pi\)
0.886916 + 0.461931i \(0.152843\pi\)
\(410\) 0 0
\(411\) −1.78003 + 1.36587i −0.0878026 + 0.0673733i
\(412\) 0 0
\(413\) 0.175907 + 0.0870787i 0.00865580 + 0.00428486i
\(414\) 0 0
\(415\) 10.1101 17.5112i 0.496286 0.859592i
\(416\) 0 0
\(417\) −1.73257 3.00089i −0.0848441 0.146954i
\(418\) 0 0
\(419\) −0.789499 1.90602i −0.0385696 0.0931152i 0.903421 0.428755i \(-0.141048\pi\)
−0.941990 + 0.335640i \(0.891048\pi\)
\(420\) 0 0
\(421\) 8.35055 + 3.45891i 0.406981 + 0.168577i 0.576776 0.816902i \(-0.304311\pi\)
−0.169795 + 0.985479i \(0.554311\pi\)
\(422\) 0 0
\(423\) −7.08214 + 26.4309i −0.344346 + 1.28512i
\(424\) 0 0
\(425\) 4.55850 + 17.0126i 0.221120 + 0.825230i
\(426\) 0 0
\(427\) −16.0156 + 18.2066i −0.775047 + 0.881079i
\(428\) 0 0
\(429\) −0.829000 + 6.29688i −0.0400245 + 0.304016i
\(430\) 0 0
\(431\) −2.36261 + 1.36406i −0.113803 + 0.0657043i −0.555821 0.831302i \(-0.687596\pi\)
0.442018 + 0.897006i \(0.354263\pi\)
\(432\) 0 0
\(433\) 23.1713i 1.11354i 0.830666 + 0.556771i \(0.187960\pi\)
−0.830666 + 0.556771i \(0.812040\pi\)
\(434\) 0 0
\(435\) −0.705065 + 0.292047i −0.0338053 + 0.0140026i
\(436\) 0 0
\(437\) −1.76104 + 0.231845i −0.0842420 + 0.0110907i
\(438\) 0 0
\(439\) 4.54888 + 16.9766i 0.217106 + 0.810251i 0.985415 + 0.170171i \(0.0544320\pi\)
−0.768308 + 0.640080i \(0.778901\pi\)
\(440\) 0 0
\(441\) 16.4885 12.5729i 0.785165 0.598712i
\(442\) 0 0
\(443\) −5.38327 + 4.13073i −0.255767 + 0.196257i −0.728684 0.684850i \(-0.759868\pi\)
0.472917 + 0.881107i \(0.343201\pi\)
\(444\) 0 0
\(445\) −26.6333 + 34.7092i −1.26254 + 1.64537i
\(446\) 0 0
\(447\) −2.40358 −0.113685
\(448\) 0 0
\(449\) 18.3637 0.866635 0.433318 0.901241i \(-0.357343\pi\)
0.433318 + 0.901241i \(0.357343\pi\)
\(450\) 0 0
\(451\) 14.2542 18.5764i 0.671204 0.874730i
\(452\) 0 0
\(453\) −1.03667 + 0.795468i −0.0487072 + 0.0373743i
\(454\) 0 0
\(455\) −20.9977 42.7420i −0.984386 2.00377i
\(456\) 0 0
\(457\) −6.02250 22.4763i −0.281720 1.05140i −0.951203 0.308567i \(-0.900151\pi\)
0.669482 0.742828i \(-0.266516\pi\)
\(458\) 0 0
\(459\) 4.91534 0.647117i 0.229428 0.0302048i
\(460\) 0 0
\(461\) −25.1245 + 10.4069i −1.17016 + 0.484698i −0.881247 0.472657i \(-0.843295\pi\)
−0.288917 + 0.957354i \(0.593295\pi\)
\(462\) 0 0
\(463\) 11.5497i 0.536761i 0.963313 + 0.268381i \(0.0864885\pi\)
−0.963313 + 0.268381i \(0.913512\pi\)
\(464\) 0 0
\(465\) −0.255633 + 0.147590i −0.0118547 + 0.00684432i
\(466\) 0 0
\(467\) −1.34169 + 10.1912i −0.0620861 + 0.471590i 0.931954 + 0.362576i \(0.118103\pi\)
−0.994040 + 0.109014i \(0.965231\pi\)
\(468\) 0 0
\(469\) −0.652903 1.93299i −0.0301483 0.0892574i
\(470\) 0 0
\(471\) 0.0522806 + 0.195114i 0.00240896 + 0.00899037i
\(472\) 0 0
\(473\) −12.9645 + 48.3841i −0.596108 + 2.22470i
\(474\) 0 0
\(475\) 5.35647 + 2.21872i 0.245772 + 0.101802i
\(476\) 0 0
\(477\) −8.11473 19.5907i −0.371548 0.896997i
\(478\) 0 0
\(479\) 8.77291 + 15.1951i 0.400844 + 0.694283i 0.993828 0.110932i \(-0.0353834\pi\)
−0.592984 + 0.805215i \(0.702050\pi\)
\(480\) 0 0
\(481\) −20.2792 + 35.1246i −0.924653 + 1.60155i
\(482\) 0 0
\(483\) 0.540569 0.360015i 0.0245967 0.0163812i
\(484\) 0 0
\(485\) 1.08260 0.830710i 0.0491584 0.0377206i
\(486\) 0 0
\(487\) 3.33054 12.4297i 0.150921 0.563245i −0.848499 0.529197i \(-0.822493\pi\)
0.999420 0.0340483i \(-0.0108400\pi\)
\(488\) 0 0
\(489\) 0.370944 0.370944i 0.0167747 0.0167747i
\(490\) 0 0
\(491\) −15.2024 + 36.7019i −0.686076 + 1.65633i 0.0664663 + 0.997789i \(0.478828\pi\)
−0.752542 + 0.658544i \(0.771172\pi\)
\(492\) 0 0
\(493\) −4.40694 3.38156i −0.198479 0.152298i
\(494\) 0 0
\(495\) −42.4432 24.5046i −1.90768 1.10140i
\(496\) 0 0
\(497\) −28.7834 + 5.68011i −1.29111 + 0.254788i
\(498\) 0 0
\(499\) −3.23014 + 24.5353i −0.144601 + 1.09835i 0.753150 + 0.657849i \(0.228533\pi\)
−0.897751 + 0.440504i \(0.854800\pi\)
\(500\) 0 0
\(501\) 1.19332 0.157104i 0.0533136 0.00701887i
\(502\) 0 0
\(503\) 13.6066 13.6066i 0.606689 0.606689i −0.335390 0.942079i \(-0.608868\pi\)
0.942079 + 0.335390i \(0.108868\pi\)
\(504\) 0 0
\(505\) 7.41351 + 7.41351i 0.329897 + 0.329897i
\(506\) 0 0
\(507\) 0.571825 + 4.34344i 0.0253956 + 0.192899i
\(508\) 0 0
\(509\) −24.1716 3.18225i −1.07139 0.141051i −0.425861 0.904789i \(-0.640029\pi\)
−0.645527 + 0.763738i \(0.723362\pi\)
\(510\) 0 0
\(511\) 14.2813 12.4862i 0.631769 0.552358i
\(512\) 0 0
\(513\) 0.816005 1.41336i 0.0360275 0.0624014i
\(514\) 0 0
\(515\) −16.7574 + 21.8386i −0.738418 + 0.962324i
\(516\) 0 0
\(517\) −46.7575 19.3676i −2.05639 0.851786i
\(518\) 0 0
\(519\) 0.209268 + 0.209268i 0.00918583 + 0.00918583i
\(520\) 0 0
\(521\) 19.7383 + 5.28886i 0.864750 + 0.231709i 0.663816 0.747896i \(-0.268936\pi\)
0.200934 + 0.979605i \(0.435602\pi\)
\(522\) 0 0
\(523\) 21.5776 + 28.1205i 0.943525 + 1.22963i 0.973175 + 0.230065i \(0.0738939\pi\)
−0.0296506 + 0.999560i \(0.509439\pi\)
\(524\) 0 0
\(525\) −2.11563 + 0.135451i −0.0923338 + 0.00591158i
\(526\) 0 0
\(527\) −1.86069 1.07427i −0.0810530 0.0467960i
\(528\) 0 0
\(529\) 18.5391 10.7035i 0.806046 0.465371i
\(530\) 0 0
\(531\) 0.203026 0.0840963i 0.00881059 0.00364947i
\(532\) 0 0
\(533\) 9.74808 23.5340i 0.422236 1.01937i
\(534\) 0 0
\(535\) −36.7688 9.85218i −1.58966 0.425947i
\(536\) 0 0
\(537\) −4.23437 + 1.13459i −0.182726 + 0.0489614i
\(538\) 0 0
\(539\) 19.0749 + 33.2707i 0.821613 + 1.43307i
\(540\) 0 0
\(541\) 9.81306 + 1.29191i 0.421896 + 0.0555437i 0.338486 0.940972i \(-0.390085\pi\)
0.0834107 + 0.996515i \(0.473419\pi\)
\(542\) 0 0
\(543\) 1.72043 + 2.97987i 0.0738307 + 0.127878i
\(544\) 0 0
\(545\) 41.9171 1.79553
\(546\) 0 0
\(547\) 2.30920 + 5.57491i 0.0987344 + 0.238366i 0.965527 0.260303i \(-0.0838224\pi\)
−0.866793 + 0.498669i \(0.833822\pi\)
\(548\) 0 0
\(549\) 3.54356 + 26.9160i 0.151235 + 1.14875i
\(550\) 0 0
\(551\) −1.76625 + 0.473265i −0.0752447 + 0.0201618i
\(552\) 0 0
\(553\) −2.40659 + 1.18227i −0.102339 + 0.0502754i
\(554\) 0 0
\(555\) 2.43317 + 3.17098i 0.103283 + 0.134600i
\(556\) 0 0
\(557\) −26.1993 20.1034i −1.11010 0.851810i −0.120085 0.992764i \(-0.538317\pi\)
−0.990016 + 0.140953i \(0.954983\pi\)
\(558\) 0 0
\(559\) 54.4933i 2.30482i
\(560\) 0 0
\(561\) 4.55574i 0.192343i
\(562\) 0 0
\(563\) −33.6425 25.8148i −1.41786 1.08797i −0.982196 0.187858i \(-0.939846\pi\)
−0.435668 0.900108i \(-0.643488\pi\)
\(564\) 0 0
\(565\) 0.125922 + 0.164104i 0.00529757 + 0.00690392i
\(566\) 0 0
\(567\) 1.53329 22.8634i 0.0643922 0.960172i
\(568\) 0 0
\(569\) −0.667826 + 0.178943i −0.0279967 + 0.00750170i −0.272790 0.962074i \(-0.587946\pi\)
0.244794 + 0.969575i \(0.421280\pi\)
\(570\) 0 0
\(571\) 0.400155 + 3.03948i 0.0167460 + 0.127198i 0.997776 0.0666583i \(-0.0212337\pi\)
−0.981030 + 0.193856i \(0.937900\pi\)
\(572\) 0 0
\(573\) −1.49521 3.60975i −0.0624633 0.150800i
\(574\) 0 0
\(575\) 5.19951 0.216834
\(576\) 0 0
\(577\) −23.0936 39.9993i −0.961399 1.66519i −0.718993 0.695017i \(-0.755397\pi\)
−0.242406 0.970175i \(-0.577936\pi\)
\(578\) 0 0
\(579\) −3.38017 0.445008i −0.140475 0.0184939i
\(580\) 0 0
\(581\) −3.48234 + 17.3695i −0.144472 + 0.720609i
\(582\) 0 0
\(583\) 37.8832 10.1508i 1.56896 0.420402i
\(584\) 0 0
\(585\) −51.4997 13.7993i −2.12925 0.570531i
\(586\) 0 0
\(587\) 0.997077 2.40716i 0.0411538 0.0993540i −0.901966 0.431807i \(-0.857876\pi\)
0.943120 + 0.332453i \(0.107876\pi\)
\(588\) 0 0
\(589\) −0.653426 + 0.270658i −0.0269239 + 0.0111523i
\(590\) 0 0
\(591\) 1.51716 0.875935i 0.0624078 0.0360312i
\(592\) 0 0
\(593\) 19.2249 + 11.0995i 0.789473 + 0.455802i 0.839777 0.542932i \(-0.182686\pi\)
−0.0503042 + 0.998734i \(0.516019\pi\)
\(594\) 0 0
\(595\) −18.9346 28.4306i −0.776243 1.16554i
\(596\) 0 0
\(597\) 0.986948 + 1.28622i 0.0403931 + 0.0526413i
\(598\) 0 0
\(599\) 19.3702 + 5.19023i 0.791446 + 0.212067i 0.631825 0.775111i \(-0.282306\pi\)
0.159621 + 0.987178i \(0.448973\pi\)
\(600\) 0 0
\(601\) 17.5555 + 17.5555i 0.716102 + 0.716102i 0.967805 0.251703i \(-0.0809905\pi\)
−0.251703 + 0.967805i \(0.580991\pi\)
\(602\) 0 0
\(603\) −2.11041 0.874160i −0.0859425 0.0355985i
\(604\) 0 0
\(605\) 34.9591 45.5596i 1.42129 1.85226i
\(606\) 0 0
\(607\) −15.1703 + 26.2757i −0.615742 + 1.06650i 0.374512 + 0.927222i \(0.377810\pi\)
−0.990254 + 0.139274i \(0.955523\pi\)
\(608\) 0 0
\(609\) 0.503355 0.440084i 0.0203970 0.0178331i
\(610\) 0 0
\(611\) −54.5869 7.18651i −2.20835 0.290735i
\(612\) 0 0
\(613\) −0.908361 6.89968i −0.0366883 0.278676i −0.999949 0.0101071i \(-0.996783\pi\)
0.963261 0.268569i \(-0.0865506\pi\)
\(614\) 0 0
\(615\) −1.77505 1.77505i −0.0715768 0.0715768i
\(616\) 0 0
\(617\) 3.00134 3.00134i 0.120829 0.120829i −0.644106 0.764936i \(-0.722771\pi\)
0.764936 + 0.644106i \(0.222771\pi\)
\(618\) 0 0
\(619\) −0.367838 + 0.0484268i −0.0147847 + 0.00194644i −0.137915 0.990444i \(-0.544040\pi\)
0.123130 + 0.992391i \(0.460707\pi\)
\(620\) 0 0
\(621\) 0.191038 1.45108i 0.00766608 0.0582297i
\(622\) 0 0
\(623\) 12.3756 36.2770i 0.495819 1.45341i
\(624\) 0 0
\(625\) 24.7914 + 14.3133i 0.991657 + 0.572534i
\(626\) 0 0
\(627\) 1.18977 + 0.912942i 0.0475148 + 0.0364594i
\(628\) 0 0
\(629\) −11.1333 + 26.8781i −0.443912 + 1.07170i
\(630\) 0 0
\(631\) 34.5848 34.5848i 1.37680 1.37680i 0.526830 0.849971i \(-0.323381\pi\)
0.849971 0.526830i \(-0.176619\pi\)
\(632\) 0 0
\(633\) −0.0290967 + 0.108591i −0.00115649 + 0.00431609i
\(634\) 0 0
\(635\) 14.8131 11.3665i 0.587841 0.451067i
\(636\) 0 0
\(637\) 29.4121 + 29.5907i 1.16535 + 1.17243i
\(638\) 0 0
\(639\) −16.4236 + 28.4466i −0.649709 + 1.12533i
\(640\) 0 0
\(641\) 3.23073 + 5.59579i 0.127606 + 0.221021i 0.922749 0.385402i \(-0.125937\pi\)
−0.795142 + 0.606423i \(0.792604\pi\)
\(642\) 0 0
\(643\) −2.82466 6.81934i −0.111394 0.268929i 0.858345 0.513073i \(-0.171493\pi\)
−0.969739 + 0.244144i \(0.921493\pi\)
\(644\) 0 0
\(645\) 4.96139 + 2.05508i 0.195355 + 0.0809185i
\(646\) 0 0
\(647\) 0.271500 1.01325i 0.0106738 0.0398351i −0.960384 0.278682i \(-0.910103\pi\)
0.971057 + 0.238846i \(0.0767693\pi\)
\(648\) 0 0
\(649\) 0.105196 + 0.392598i 0.00412932 + 0.0154108i
\(650\) 0 0
\(651\) 0.170808 0.194176i 0.00669449 0.00761034i
\(652\) 0 0
\(653\) 1.71660 13.0389i 0.0671757 0.510250i −0.924470 0.381256i \(-0.875492\pi\)
0.991645 0.128994i \(-0.0411749\pi\)
\(654\) 0 0
\(655\) −22.8252 + 13.1781i −0.891853 + 0.514912i
\(656\) 0 0
\(657\) 21.2388i 0.828603i
\(658\) 0 0
\(659\) 9.08982 3.76512i 0.354089 0.146668i −0.198547 0.980091i \(-0.563622\pi\)
0.552636 + 0.833423i \(0.313622\pi\)
\(660\) 0 0
\(661\) 26.6893 3.51371i 1.03809 0.136668i 0.407837 0.913055i \(-0.366283\pi\)
0.630256 + 0.776387i \(0.282950\pi\)
\(662\) 0 0
\(663\) 1.28274 + 4.78725i 0.0498175 + 0.185921i
\(664\) 0 0
\(665\) −11.2193 0.752401i −0.435065 0.0291769i
\(666\) 0 0
\(667\) −1.30099 + 0.998284i −0.0503745 + 0.0386537i
\(668\) 0 0
\(669\) −0.600597 + 0.782713i −0.0232204 + 0.0302614i
\(670\) 0 0
\(671\) −50.2122 −1.93842
\(672\) 0 0
\(673\) −28.1530 −1.08522 −0.542609 0.839985i \(-0.682563\pi\)
−0.542609 + 0.839985i \(0.682563\pi\)
\(674\) 0 0
\(675\) −2.90824 + 3.79010i −0.111938 + 0.145881i
\(676\) 0 0
\(677\) 20.6879 15.8744i 0.795102 0.610103i −0.129264 0.991610i \(-0.541261\pi\)
0.924366 + 0.381507i \(0.124595\pi\)
\(678\) 0 0
\(679\) −0.665706 + 0.993044i −0.0255475 + 0.0381095i
\(680\) 0 0
\(681\) −0.553543 2.06585i −0.0212118 0.0791636i
\(682\) 0 0
\(683\) −3.51722 + 0.463050i −0.134583 + 0.0177181i −0.197516 0.980300i \(-0.563288\pi\)
0.0629339 + 0.998018i \(0.479954\pi\)
\(684\) 0 0
\(685\) 32.1847 13.3313i 1.22971 0.509364i
\(686\) 0 0
\(687\) 3.06463i 0.116923i
\(688\) 0 0
\(689\) 36.9502 21.3332i 1.40769 0.812731i
\(690\) 0 0
\(691\) 0.159432 1.21101i 0.00606507 0.0460688i −0.988145 0.153525i \(-0.950937\pi\)
0.994210 + 0.107457i \(0.0342707\pi\)
\(692\) 0 0
\(693\) 42.0997 + 8.44040i 1.59924 + 0.320624i
\(694\) 0 0
\(695\) 13.9248 + 51.9680i 0.528197 + 1.97126i
\(696\) 0 0
\(697\) 4.72909 17.6492i 0.179127 0.668511i
\(698\) 0 0
\(699\) 2.43506 + 1.00863i 0.0921023 + 0.0381500i
\(700\) 0 0
\(701\) 9.67092 + 23.3477i 0.365266 + 0.881830i 0.994512 + 0.104623i \(0.0333637\pi\)
−0.629246 + 0.777206i \(0.716636\pi\)
\(702\) 0 0
\(703\) 4.78840 + 8.29375i 0.180598 + 0.312805i
\(704\) 0 0
\(705\) −2.71291 + 4.69890i −0.102174 + 0.176971i
\(706\) 0 0
\(707\) −8.23199 4.07506i −0.309596 0.153259i
\(708\) 0 0
\(709\) −1.27025 + 0.974694i −0.0477051 + 0.0366054i −0.632339 0.774692i \(-0.717905\pi\)
0.584634 + 0.811297i \(0.301238\pi\)
\(710\) 0 0
\(711\) −0.776971 + 2.89969i −0.0291387 + 0.108747i
\(712\) 0 0
\(713\) −0.448503 + 0.448503i −0.0167966 + 0.0167966i
\(714\) 0 0
\(715\) 37.7371 91.1054i 1.41129 3.40715i
\(716\) 0 0
\(717\) 0.774804 + 0.594528i 0.0289356 + 0.0222031i
\(718\) 0 0
\(719\) 6.32208 + 3.65005i 0.235774 + 0.136124i 0.613233 0.789902i \(-0.289869\pi\)
−0.377459 + 0.926026i \(0.623202\pi\)
\(720\) 0 0
\(721\) 7.78661 22.8251i 0.289988 0.850050i
\(722\) 0 0
\(723\) 0.608211 4.61982i 0.0226196 0.171813i
\(724\) 0 0
\(725\) 5.30686 0.698662i 0.197092 0.0259476i
\(726\) 0 0
\(727\) 15.9338 15.9338i 0.590952 0.590952i −0.346937 0.937888i \(-0.612778\pi\)
0.937888 + 0.346937i \(0.112778\pi\)
\(728\) 0 0
\(729\) −17.6625 17.6625i −0.654168 0.654168i
\(730\) 0 0
\(731\) 5.10202 + 38.7537i 0.188705 + 1.43336i
\(732\) 0 0
\(733\) 8.04946 + 1.05973i 0.297314 + 0.0391421i 0.277707 0.960666i \(-0.410425\pi\)
0.0196063 + 0.999808i \(0.493759\pi\)
\(734\) 0 0
\(735\) 3.80331 1.56192i 0.140287 0.0576122i
\(736\) 0 0
\(737\) 2.11246 3.65889i 0.0778135 0.134777i
\(738\) 0 0
\(739\) 24.1438 31.4648i 0.888143 1.15745i −0.0985941 0.995128i \(-0.531435\pi\)
0.986738 0.162323i \(-0.0518988\pi\)
\(740\) 0 0
\(741\) 1.50728 + 0.624338i 0.0553715 + 0.0229356i
\(742\) 0 0
\(743\) 33.9729 + 33.9729i 1.24634 + 1.24634i 0.957323 + 0.289020i \(0.0933295\pi\)
0.289020 + 0.957323i \(0.406671\pi\)
\(744\) 0 0
\(745\) 36.0474 + 9.65887i 1.32067 + 0.353874i
\(746\) 0 0
\(747\) 12.0741 + 15.7352i 0.441767 + 0.575722i
\(748\) 0 0
\(749\) 33.2818 2.13084i 1.21609 0.0778591i
\(750\) 0 0
\(751\) −9.05161 5.22595i −0.330298 0.190698i 0.325675 0.945482i \(-0.394408\pi\)
−0.655973 + 0.754784i \(0.727742\pi\)
\(752\) 0 0
\(753\) 2.88853 1.66769i 0.105264 0.0607741i
\(754\) 0 0
\(755\) 18.7440 7.76403i 0.682165 0.282562i
\(756\) 0 0
\(757\) 2.64470 6.38487i 0.0961232 0.232062i −0.868503 0.495684i \(-0.834917\pi\)
0.964626 + 0.263622i \(0.0849173\pi\)
\(758\) 0 0
\(759\) 1.29909 + 0.348090i 0.0471539 + 0.0126349i
\(760\) 0 0
\(761\) −43.3060 + 11.6038i −1.56984 + 0.420637i −0.935762 0.352632i \(-0.885287\pi\)
−0.634078 + 0.773269i \(0.718620\pi\)
\(762\) 0 0
\(763\) −34.7929 + 11.7519i −1.25959 + 0.425448i
\(764\) 0 0
\(765\) −37.9168 4.99184i −1.37088 0.180480i
\(766\) 0 0
\(767\) 0.221085 + 0.382930i 0.00798291 + 0.0138268i
\(768\) 0 0
\(769\) −24.3333 −0.877480 −0.438740 0.898614i \(-0.644575\pi\)
−0.438740 + 0.898614i \(0.644575\pi\)
\(770\) 0 0
\(771\) 0.181191 + 0.437435i 0.00652545 + 0.0157538i
\(772\) 0 0
\(773\) 1.78908 + 13.5894i 0.0643486 + 0.488776i 0.993027 + 0.117890i \(0.0376129\pi\)
−0.928678 + 0.370887i \(0.879054\pi\)
\(774\) 0 0
\(775\) 1.99980 0.535844i 0.0718349 0.0192481i
\(776\) 0 0
\(777\) −2.90866 1.94987i −0.104347 0.0699513i
\(778\) 0 0
\(779\) −3.66156 4.77184i −0.131189 0.170969i
\(780\) 0 0
\(781\) −48.1985 36.9840i −1.72468 1.32339i
\(782\) 0 0
\(783\) 1.50671i 0.0538453i
\(784\) 0 0
\(785\) 3.13629i 0.111939i
\(786\) 0 0
\(787\) −43.4167 33.3148i −1.54764 1.18754i −0.908076 0.418804i \(-0.862449\pi\)
−0.639561 0.768740i \(-0.720884\pi\)
\(788\) 0 0
\(789\) −3.28670 4.28331i −0.117010 0.152490i
\(790\) 0 0
\(791\) −0.150529 0.100910i −0.00535219 0.00358794i
\(792\) 0 0
\(793\) −52.7639 + 14.1381i −1.87370 + 0.502057i
\(794\) 0 0
\(795\) −0.548819 4.16869i −0.0194646 0.147848i
\(796\) 0 0
\(797\) 13.4980 + 32.5870i 0.478122 + 1.15429i 0.960489 + 0.278320i \(0.0897774\pi\)
−0.482366 + 0.875970i \(0.660223\pi\)
\(798\) 0 0
\(799\) −39.4932 −1.39717
\(800\) 0 0
\(801\) −21.4570 37.1645i −0.758144 1.31314i
\(802\) 0 0
\(803\) 38.9462 + 5.12737i 1.37438 + 0.180941i
\(804\) 0 0
\(805\) −9.55386 + 3.22699i −0.336729 + 0.113736i
\(806\) 0 0
\(807\) 1.84000 0.493026i 0.0647710 0.0173553i
\(808\) 0 0
\(809\) 23.5700 + 6.31557i 0.828678 + 0.222043i 0.648137 0.761524i \(-0.275549\pi\)
0.180541 + 0.983567i \(0.442215\pi\)
\(810\) 0 0
\(811\) 16.1023 38.8745i 0.565429 1.36507i −0.339942 0.940446i \(-0.610407\pi\)
0.905371 0.424621i \(-0.139593\pi\)
\(812\) 0 0
\(813\) 4.97647 2.06132i 0.174532 0.0722937i
\(814\) 0 0
\(815\) −7.05385 + 4.07254i −0.247086 + 0.142655i
\(816\) 0 0
\(817\) 11.1433 + 6.43357i 0.389854 + 0.225082i
\(818\) 0 0
\(819\) 46.6157 2.98453i 1.62889 0.104288i
\(820\) 0 0
\(821\) 0.799478 + 1.04190i 0.0279020 + 0.0363625i 0.807096 0.590420i \(-0.201038\pi\)
−0.779194 + 0.626783i \(0.784371\pi\)
\(822\) 0 0
\(823\) −8.10536 2.17183i −0.282535 0.0757051i 0.114768 0.993392i \(-0.463387\pi\)
−0.397304 + 0.917687i \(0.630054\pi\)
\(824\) 0 0
\(825\) −3.10415 3.10415i −0.108072 0.108072i
\(826\) 0 0
\(827\) 9.70756 + 4.02100i 0.337565 + 0.139824i 0.545026 0.838419i \(-0.316520\pi\)
−0.207461 + 0.978243i \(0.566520\pi\)
\(828\) 0 0
\(829\) −9.33231 + 12.1621i −0.324125 + 0.422407i −0.926786 0.375589i \(-0.877440\pi\)
0.602661 + 0.797997i \(0.294107\pi\)
\(830\) 0 0
\(831\) −0.109747 + 0.190088i −0.00380709 + 0.00659407i
\(832\) 0 0
\(833\) 23.6874 + 18.2901i 0.820718 + 0.633714i
\(834\) 0 0
\(835\) −18.5280 2.43926i −0.641189 0.0844141i
\(836\) 0 0
\(837\) −0.0760675 0.577790i −0.00262928 0.0199714i
\(838\) 0 0
\(839\) −13.7601 13.7601i −0.475050 0.475050i 0.428494 0.903545i \(-0.359044\pi\)
−0.903545 + 0.428494i \(0.859044\pi\)
\(840\) 0 0
\(841\) 19.3124 19.3124i 0.665944 0.665944i
\(842\) 0 0
\(843\) −1.82285 + 0.239982i −0.0627821 + 0.00826542i
\(844\) 0 0
\(845\) 8.87841 67.4382i 0.305427 2.31995i
\(846\) 0 0
\(847\) −16.2444 + 47.6175i −0.558163 + 1.63616i
\(848\) 0 0
\(849\) −3.62775 2.09448i −0.124504 0.0718825i
\(850\) 0 0
\(851\) 6.81375 + 5.22837i 0.233572 + 0.179226i
\(852\) 0 0
\(853\) 18.5187 44.7080i 0.634067 1.53077i −0.200400 0.979714i \(-0.564224\pi\)
0.834467 0.551058i \(-0.185776\pi\)
\(854\) 0 0
\(855\) −8.90196 + 8.90196i −0.304441 + 0.304441i
\(856\) 0 0
\(857\) −6.34114 + 23.6655i −0.216609 + 0.808397i 0.768985 + 0.639267i \(0.220762\pi\)
−0.985594 + 0.169129i \(0.945904\pi\)
\(858\) 0 0
\(859\) −4.83863 + 3.71281i −0.165092 + 0.126680i −0.688003 0.725708i \(-0.741513\pi\)
0.522911 + 0.852387i \(0.324846\pi\)
\(860\) 0 0
\(861\) 1.97102 + 0.975708i 0.0671721 + 0.0332520i
\(862\) 0 0
\(863\) 24.9061 43.1386i 0.847814 1.46846i −0.0353411 0.999375i \(-0.511252\pi\)
0.883155 0.469081i \(-0.155415\pi\)
\(864\) 0 0
\(865\) −2.29752 3.97942i −0.0781181 0.135304i
\(866\) 0 0
\(867\) 0.0951183 + 0.229636i 0.00323039 + 0.00779884i
\(868\) 0 0
\(869\) −5.12969 2.12479i −0.174013 0.0720785i
\(870\) 0 0
\(871\) 1.18960 4.43963i 0.0403079 0.150431i
\(872\) 0 0
\(873\) 0.346433 + 1.29290i 0.0117250 + 0.0437582i
\(874\) 0 0
\(875\) −6.89649 1.38265i −0.233144 0.0467420i
\(876\) 0 0
\(877\) −4.30096 + 32.6691i −0.145233 + 1.10316i 0.751231 + 0.660039i \(0.229460\pi\)
−0.896464 + 0.443116i \(0.853873\pi\)
\(878\) 0 0
\(879\) 2.16368 1.24920i 0.0729792 0.0421345i
\(880\) 0 0
\(881\) 6.14703i 0.207099i −0.994624 0.103549i \(-0.966980\pi\)
0.994624 0.103549i \(-0.0330200\pi\)
\(882\) 0 0
\(883\) −36.8658 + 15.2703i −1.24063 + 0.513887i −0.903913 0.427717i \(-0.859318\pi\)
−0.336721 + 0.941604i \(0.609318\pi\)
\(884\) 0 0
\(885\) 0.0432018 0.00568763i 0.00145221 0.000191188i
\(886\) 0 0
\(887\) 7.05302 + 26.3222i 0.236817 + 0.883814i 0.977321 + 0.211762i \(0.0679202\pi\)
−0.740504 + 0.672052i \(0.765413\pi\)
\(888\) 0 0
\(889\) −9.10879 + 13.5877i −0.305499 + 0.455717i
\(890\) 0 0
\(891\) 37.6453 28.8862i 1.26116 0.967725i
\(892\) 0 0
\(893\) −7.91419 + 10.3140i −0.264838 + 0.345144i
\(894\) 0 0
\(895\) 68.0639 2.27513
\(896\) 0 0
\(897\) 1.46312 0.0488520
\(898\) 0 0
\(899\) −0.397497 + 0.518029i −0.0132573 + 0.0172772i
\(900\) 0 0
\(901\) 24.2803 18.6310i 0.808895 0.620687i
\(902\) 0 0
\(903\) −4.69432 0.314816i −0.156217 0.0104764i
\(904\) 0 0
\(905\) −13.8272 51.6039i −0.459633 1.71537i
\(906\) 0 0
\(907\) −19.5273 + 2.57082i −0.648394 + 0.0853627i −0.447548 0.894260i \(-0.647703\pi\)
−0.200847 + 0.979623i \(0.564369\pi\)
\(908\) 0 0
\(909\) −9.50112 + 3.93549i −0.315132 + 0.130532i
\(910\) 0 0
\(911\) 15.2338i 0.504719i −0.967634 0.252360i \(-0.918793\pi\)
0.967634 0.252360i \(-0.0812066\pi\)
\(912\) 0 0
\(913\) −31.7691 + 18.3419i −1.05140 + 0.607028i
\(914\) 0 0
\(915\) −0.702645 + 5.33712i −0.0232287 + 0.176440i
\(916\) 0 0
\(917\) 15.2512 17.3377i 0.503639 0.572541i
\(918\) 0 0
\(919\) 13.9437 + 52.0387i 0.459961 + 1.71660i 0.673079 + 0.739571i \(0.264971\pi\)
−0.213118 + 0.977026i \(0.568362\pi\)
\(920\) 0 0
\(921\) 1.02816 3.83716i 0.0338792 0.126439i
\(922\) 0 0
\(923\) −61.0613 25.2924i −2.00986 0.832510i
\(924\) 0 0
\(925\) −10.7281 25.8998i −0.352737 0.851581i
\(926\) 0 0
\(927\) −13.5005 23.3835i −0.443414 0.768015i
\(928\) 0 0
\(929\) −11.2640 + 19.5098i −0.369559 + 0.640095i −0.989497 0.144556i \(-0.953824\pi\)
0.619938 + 0.784651i \(0.287158\pi\)
\(930\) 0 0
\(931\) 9.52342 2.52093i 0.312117 0.0826201i
\(932\) 0 0
\(933\) 0.456288 0.350122i 0.0149382 0.0114625i
\(934\) 0 0
\(935\) 18.3074 68.3242i 0.598716 2.23444i
\(936\) 0 0
\(937\) −10.5179 + 10.5179i −0.343606 + 0.343606i −0.857721 0.514115i \(-0.828120\pi\)
0.514115 + 0.857721i \(0.328120\pi\)
\(938\) 0 0
\(939\) −2.07485 + 5.00913i −0.0677102 + 0.163467i
\(940\) 0 0
\(941\) 23.6476 + 18.1455i 0.770890 + 0.591525i 0.917531 0.397665i \(-0.130179\pi\)
−0.146640 + 0.989190i \(0.546846\pi\)
\(942\) 0 0
\(943\) −4.67141 2.69704i −0.152122 0.0878278i
\(944\) 0 0
\(945\) 2.99151 8.76909i 0.0973138 0.285258i
\(946\) 0 0
\(947\) 6.68210 50.7556i 0.217139 1.64934i −0.441781 0.897123i \(-0.645653\pi\)
0.658920 0.752213i \(-0.271013\pi\)
\(948\) 0 0
\(949\) 42.3691 5.57800i 1.37536 0.181070i
\(950\) 0 0
\(951\) 4.51493 4.51493i 0.146406 0.146406i
\(952\) 0 0
\(953\) −6.86940 6.86940i −0.222522 0.222522i 0.587038 0.809560i \(-0.300294\pi\)
−0.809560 + 0.587038i \(0.800294\pi\)
\(954\) 0 0
\(955\) 7.91831 + 60.1455i 0.256230 + 1.94626i
\(956\) 0 0
\(957\) 1.37268 + 0.180717i 0.0443726 + 0.00584176i
\(958\) 0 0
\(959\) −22.9770 + 20.0889i −0.741967 + 0.648704i
\(960\) 0 0
\(961\) 15.3737 26.6281i 0.495926 0.858970i
\(962\) 0 0
\(963\) 22.7302 29.6226i 0.732471 0.954575i
\(964\) 0 0
\(965\) 48.9055 + 20.2573i 1.57432 + 0.652106i
\(966\) 0 0
\(967\) −10.0451 10.0451i −0.323029 0.323029i 0.526899 0.849928i \(-0.323355\pi\)
−0.849928 + 0.526899i \(0.823355\pi\)
\(968\) 0 0
\(969\) 1.13038 + 0.302885i 0.0363131 + 0.00973007i
\(970\) 0 0
\(971\) −3.80805 4.96274i −0.122206 0.159262i 0.728244 0.685318i \(-0.240337\pi\)
−0.850450 + 0.526056i \(0.823670\pi\)
\(972\) 0 0
\(973\) −26.1280 39.2316i −0.837624 1.25771i
\(974\) 0 0
\(975\) −4.13592 2.38787i −0.132455 0.0764731i
\(976\) 0 0
\(977\) −42.1874 + 24.3569i −1.34969 + 0.779246i −0.988206 0.153131i \(-0.951064\pi\)
−0.361488 + 0.932377i \(0.617731\pi\)
\(978\) 0 0
\(979\) 73.3299 30.3743i 2.34363 0.970765i
\(980\) 0 0
\(981\) −15.7344 + 37.9863i −0.502362 + 1.21281i
\(982\) 0 0
\(983\) 49.5761 + 13.2839i 1.58123 + 0.423690i 0.939307 0.343078i \(-0.111470\pi\)
0.641925 + 0.766768i \(0.278136\pi\)
\(984\) 0 0
\(985\) −26.2735 + 7.03997i −0.837144 + 0.224312i
\(986\) 0 0
\(987\) 0.934439 4.66087i 0.0297435 0.148357i
\(988\) 0 0
\(989\) 11.4406 + 1.50619i 0.363791 + 0.0478940i
\(990\) 0 0
\(991\) 26.5712 + 46.0226i 0.844062 + 1.46196i 0.886434 + 0.462856i \(0.153175\pi\)
−0.0423722 + 0.999102i \(0.513492\pi\)
\(992\) 0 0
\(993\) 1.16758 0.0370522
\(994\) 0 0
\(995\) −9.63294 23.2560i −0.305385 0.737264i
\(996\) 0 0
\(997\) 4.40157 + 33.4332i 0.139399 + 1.05884i 0.907958 + 0.419062i \(0.137641\pi\)
−0.768559 + 0.639779i \(0.779026\pi\)
\(998\) 0 0
\(999\) −7.62228 + 2.04238i −0.241158 + 0.0646182i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.bh.a.625.15 240
4.3 odd 2 224.2.bd.a.37.15 240
7.4 even 3 inner 896.2.bh.a.753.16 240
28.11 odd 6 224.2.bd.a.165.5 yes 240
32.13 even 8 inner 896.2.bh.a.401.16 240
32.19 odd 8 224.2.bd.a.205.5 yes 240
224.109 even 24 inner 896.2.bh.a.529.15 240
224.179 odd 24 224.2.bd.a.109.15 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.bd.a.37.15 240 4.3 odd 2
224.2.bd.a.109.15 yes 240 224.179 odd 24
224.2.bd.a.165.5 yes 240 28.11 odd 6
224.2.bd.a.205.5 yes 240 32.19 odd 8
896.2.bh.a.401.16 240 32.13 even 8 inner
896.2.bh.a.529.15 240 224.109 even 24 inner
896.2.bh.a.625.15 240 1.1 even 1 trivial
896.2.bh.a.753.16 240 7.4 even 3 inner