Properties

Label 9.20.a.a
Level $9$
Weight $20$
Character orbit 9.a
Self dual yes
Analytic conductor $20.594$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9,20,Mod(1,9)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 20, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9.1");
 
S:= CuspForms(chi, 20);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.5935026901\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 456 q^{2} - 316352 q^{4} + 2377410 q^{5} - 16917544 q^{7} + 383331840 q^{8} - 1084098960 q^{10} + 16212108 q^{11} + 50421615062 q^{13} + 7714400064 q^{14} - 8939761664 q^{16} - 225070099506 q^{17}+ \cdots + 50\!\cdots\!92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−456.000 0 −316352. 2.37741e6 0 −1.69175e7 3.83332e8 0 −1.08410e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.20.a.a 1
3.b odd 2 1 1.20.a.a 1
12.b even 2 1 16.20.a.a 1
15.d odd 2 1 25.20.a.a 1
15.e even 4 2 25.20.b.a 2
21.c even 2 1 49.20.a.b 1
24.f even 2 1 64.20.a.h 1
24.h odd 2 1 64.20.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.20.a.a 1 3.b odd 2 1
9.20.a.a 1 1.a even 1 1 trivial
16.20.a.a 1 12.b even 2 1
25.20.a.a 1 15.d odd 2 1
25.20.b.a 2 15.e even 4 2
49.20.a.b 1 21.c even 2 1
64.20.a.b 1 24.h odd 2 1
64.20.a.h 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 456 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(9))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 456 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2377410 \) Copy content Toggle raw display
$7$ \( T + 16917544 \) Copy content Toggle raw display
$11$ \( T - 16212108 \) Copy content Toggle raw display
$13$ \( T - 50421615062 \) Copy content Toggle raw display
$17$ \( T + 225070099506 \) Copy content Toggle raw display
$19$ \( T + 1710278572660 \) Copy content Toggle raw display
$23$ \( T + 14036534788872 \) Copy content Toggle raw display
$29$ \( T + 1137835269510 \) Copy content Toggle raw display
$31$ \( T + 104626880141728 \) Copy content Toggle raw display
$37$ \( T + 169392327370594 \) Copy content Toggle raw display
$41$ \( T - 3309984750560838 \) Copy content Toggle raw display
$43$ \( T - 1127913532193492 \) Copy content Toggle raw display
$47$ \( T + 3498693987674256 \) Copy content Toggle raw display
$53$ \( T + 29\!\cdots\!02 \) Copy content Toggle raw display
$59$ \( T + 58\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T - 23\!\cdots\!42 \) Copy content Toggle raw display
$67$ \( T + 20\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( T - 17\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T - 29\!\cdots\!22 \) Copy content Toggle raw display
$79$ \( T + 92\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T + 12\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T + 43\!\cdots\!30 \) Copy content Toggle raw display
$97$ \( T + 63\!\cdots\!94 \) Copy content Toggle raw display
show more
show less