Properties

Label 90.4.c.c.19.3
Level $90$
Weight $4$
Character 90.19
Analytic conductor $5.310$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{31})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.3
Root \(2.78388 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.4.c.c.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(-11.1355 - 1.00000i) q^{5} -22.2711i q^{7} -8.00000i q^{8} +(2.00000 - 22.2711i) q^{10} -22.2711 q^{11} -66.8132i q^{13} +44.5421 q^{14} +16.0000 q^{16} +62.0000i q^{17} -84.0000 q^{19} +(44.5421 + 4.00000i) q^{20} -44.5421i q^{22} -140.000i q^{23} +(123.000 + 22.2711i) q^{25} +133.626 q^{26} +89.0842i q^{28} -200.440 q^{29} +16.0000 q^{31} +32.0000i q^{32} -124.000 q^{34} +(-22.2711 + 248.000i) q^{35} +244.982i q^{37} -168.000i q^{38} +(-8.00000 + 89.0842i) q^{40} -222.711 q^{41} +356.337i q^{43} +89.0842 q^{44} +280.000 q^{46} +100.000i q^{47} -153.000 q^{49} +(-44.5421 + 246.000i) q^{50} +267.253i q^{52} -738.000i q^{53} +(248.000 + 22.2711i) q^{55} -178.168 q^{56} -400.879i q^{58} +645.861 q^{59} -358.000 q^{61} +32.0000i q^{62} -64.0000 q^{64} +(-66.8132 + 744.000i) q^{65} -846.300i q^{67} -248.000i q^{68} +(-496.000 - 44.5421i) q^{70} +935.384 q^{71} -445.421i q^{73} -489.963 q^{74} +336.000 q^{76} +496.000i q^{77} +936.000 q^{79} +(-178.168 - 16.0000i) q^{80} -445.421i q^{82} -1304.00i q^{83} +(62.0000 - 690.403i) q^{85} -712.674 q^{86} +178.168i q^{88} -712.674 q^{89} -1488.00 q^{91} +560.000i q^{92} -200.000 q^{94} +(935.384 + 84.0000i) q^{95} +757.216i q^{97} -306.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 8 q^{10} + 64 q^{16} - 336 q^{19} + 492 q^{25} + 64 q^{31} - 496 q^{34} - 32 q^{40} + 1120 q^{46} - 612 q^{49} + 992 q^{55} - 1432 q^{61} - 256 q^{64} - 1984 q^{70} + 1344 q^{76} + 3744 q^{79}+ \cdots - 800 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −11.1355 1.00000i −0.995992 0.0894427i
\(6\) 0 0
\(7\) 22.2711i 1.20252i −0.799052 0.601262i \(-0.794665\pi\)
0.799052 0.601262i \(-0.205335\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 22.2711i 0.0632456 0.704273i
\(11\) −22.2711 −0.610452 −0.305226 0.952280i \(-0.598732\pi\)
−0.305226 + 0.952280i \(0.598732\pi\)
\(12\) 0 0
\(13\) 66.8132i 1.42543i −0.701452 0.712717i \(-0.747464\pi\)
0.701452 0.712717i \(-0.252536\pi\)
\(14\) 44.5421 0.850313
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 62.0000i 0.884542i 0.896882 + 0.442271i \(0.145827\pi\)
−0.896882 + 0.442271i \(0.854173\pi\)
\(18\) 0 0
\(19\) −84.0000 −1.01426 −0.507130 0.861870i \(-0.669293\pi\)
−0.507130 + 0.861870i \(0.669293\pi\)
\(20\) 44.5421 + 4.00000i 0.497996 + 0.0447214i
\(21\) 0 0
\(22\) 44.5421i 0.431655i
\(23\) 140.000i 1.26922i −0.772833 0.634609i \(-0.781161\pi\)
0.772833 0.634609i \(-0.218839\pi\)
\(24\) 0 0
\(25\) 123.000 + 22.2711i 0.984000 + 0.178168i
\(26\) 133.626 1.00793
\(27\) 0 0
\(28\) 89.0842i 0.601262i
\(29\) −200.440 −1.28347 −0.641736 0.766926i \(-0.721785\pi\)
−0.641736 + 0.766926i \(0.721785\pi\)
\(30\) 0 0
\(31\) 16.0000 0.0926995 0.0463498 0.998925i \(-0.485241\pi\)
0.0463498 + 0.998925i \(0.485241\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −124.000 −0.625465
\(35\) −22.2711 + 248.000i −0.107557 + 1.19770i
\(36\) 0 0
\(37\) 244.982i 1.08851i 0.838921 + 0.544253i \(0.183187\pi\)
−0.838921 + 0.544253i \(0.816813\pi\)
\(38\) 168.000i 0.717189i
\(39\) 0 0
\(40\) −8.00000 + 89.0842i −0.0316228 + 0.352136i
\(41\) −222.711 −0.848330 −0.424165 0.905585i \(-0.639432\pi\)
−0.424165 + 0.905585i \(0.639432\pi\)
\(42\) 0 0
\(43\) 356.337i 1.26374i 0.775074 + 0.631871i \(0.217713\pi\)
−0.775074 + 0.631871i \(0.782287\pi\)
\(44\) 89.0842 0.305226
\(45\) 0 0
\(46\) 280.000 0.897473
\(47\) 100.000i 0.310351i 0.987887 + 0.155176i \(0.0495943\pi\)
−0.987887 + 0.155176i \(0.950406\pi\)
\(48\) 0 0
\(49\) −153.000 −0.446064
\(50\) −44.5421 + 246.000i −0.125984 + 0.695793i
\(51\) 0 0
\(52\) 267.253i 0.712717i
\(53\) 738.000i 1.91268i −0.292255 0.956341i \(-0.594405\pi\)
0.292255 0.956341i \(-0.405595\pi\)
\(54\) 0 0
\(55\) 248.000 + 22.2711i 0.608006 + 0.0546005i
\(56\) −178.168 −0.425156
\(57\) 0 0
\(58\) 400.879i 0.907552i
\(59\) 645.861 1.42515 0.712575 0.701596i \(-0.247529\pi\)
0.712575 + 0.701596i \(0.247529\pi\)
\(60\) 0 0
\(61\) −358.000 −0.751430 −0.375715 0.926735i \(-0.622603\pi\)
−0.375715 + 0.926735i \(0.622603\pi\)
\(62\) 32.0000i 0.0655485i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −66.8132 + 744.000i −0.127495 + 1.41972i
\(66\) 0 0
\(67\) 846.300i 1.54316i −0.636130 0.771582i \(-0.719466\pi\)
0.636130 0.771582i \(-0.280534\pi\)
\(68\) 248.000i 0.442271i
\(69\) 0 0
\(70\) −496.000 44.5421i −0.846905 0.0760543i
\(71\) 935.384 1.56352 0.781758 0.623581i \(-0.214323\pi\)
0.781758 + 0.623581i \(0.214323\pi\)
\(72\) 0 0
\(73\) 445.421i 0.714145i −0.934077 0.357073i \(-0.883775\pi\)
0.934077 0.357073i \(-0.116225\pi\)
\(74\) −489.963 −0.769690
\(75\) 0 0
\(76\) 336.000 0.507130
\(77\) 496.000i 0.734084i
\(78\) 0 0
\(79\) 936.000 1.33302 0.666508 0.745498i \(-0.267788\pi\)
0.666508 + 0.745498i \(0.267788\pi\)
\(80\) −178.168 16.0000i −0.248998 0.0223607i
\(81\) 0 0
\(82\) 445.421i 0.599860i
\(83\) 1304.00i 1.72449i −0.506492 0.862245i \(-0.669058\pi\)
0.506492 0.862245i \(-0.330942\pi\)
\(84\) 0 0
\(85\) 62.0000 690.403i 0.0791158 0.880996i
\(86\) −712.674 −0.893600
\(87\) 0 0
\(88\) 178.168i 0.215828i
\(89\) −712.674 −0.848801 −0.424400 0.905475i \(-0.639515\pi\)
−0.424400 + 0.905475i \(0.639515\pi\)
\(90\) 0 0
\(91\) −1488.00 −1.71412
\(92\) 560.000i 0.634609i
\(93\) 0 0
\(94\) −200.000 −0.219451
\(95\) 935.384 + 84.0000i 1.01019 + 0.0907181i
\(96\) 0 0
\(97\) 757.216i 0.792615i 0.918118 + 0.396307i \(0.129709\pi\)
−0.918118 + 0.396307i \(0.870291\pi\)
\(98\) 306.000i 0.315415i
\(99\) 0 0
\(100\) −492.000 89.0842i −0.492000 0.0890842i
\(101\) −645.861 −0.636292 −0.318146 0.948042i \(-0.603060\pi\)
−0.318146 + 0.948042i \(0.603060\pi\)
\(102\) 0 0
\(103\) 690.403i 0.660460i −0.943900 0.330230i \(-0.892874\pi\)
0.943900 0.330230i \(-0.107126\pi\)
\(104\) −534.505 −0.503967
\(105\) 0 0
\(106\) 1476.00 1.35247
\(107\) 696.000i 0.628830i 0.949286 + 0.314415i \(0.101808\pi\)
−0.949286 + 0.314415i \(0.898192\pi\)
\(108\) 0 0
\(109\) 1142.00 1.00352 0.501760 0.865007i \(-0.332686\pi\)
0.501760 + 0.865007i \(0.332686\pi\)
\(110\) −44.5421 + 496.000i −0.0386084 + 0.429925i
\(111\) 0 0
\(112\) 356.337i 0.300631i
\(113\) 78.0000i 0.0649347i 0.999473 + 0.0324674i \(0.0103365\pi\)
−0.999473 + 0.0324674i \(0.989664\pi\)
\(114\) 0 0
\(115\) −140.000 + 1558.97i −0.113522 + 1.26413i
\(116\) 801.758 0.641736
\(117\) 0 0
\(118\) 1291.72i 1.00773i
\(119\) 1380.81 1.06368
\(120\) 0 0
\(121\) −835.000 −0.627348
\(122\) 716.000i 0.531341i
\(123\) 0 0
\(124\) −64.0000 −0.0463498
\(125\) −1347.40 371.000i −0.964120 0.265466i
\(126\) 0 0
\(127\) 1313.99i 0.918094i 0.888412 + 0.459047i \(0.151809\pi\)
−0.888412 + 0.459047i \(0.848191\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −1488.00 133.626i −1.00389 0.0901524i
\(131\) 467.692 0.311927 0.155964 0.987763i \(-0.450152\pi\)
0.155964 + 0.987763i \(0.450152\pi\)
\(132\) 0 0
\(133\) 1870.77i 1.21967i
\(134\) 1692.60 1.09118
\(135\) 0 0
\(136\) 496.000 0.312733
\(137\) 1062.00i 0.662283i −0.943581 0.331142i \(-0.892566\pi\)
0.943581 0.331142i \(-0.107434\pi\)
\(138\) 0 0
\(139\) 860.000 0.524779 0.262389 0.964962i \(-0.415490\pi\)
0.262389 + 0.964962i \(0.415490\pi\)
\(140\) 89.0842 992.000i 0.0537785 0.598852i
\(141\) 0 0
\(142\) 1870.77i 1.10557i
\(143\) 1488.00i 0.870160i
\(144\) 0 0
\(145\) 2232.00 + 200.440i 1.27833 + 0.114797i
\(146\) 890.842 0.504977
\(147\) 0 0
\(148\) 979.927i 0.544253i
\(149\) −1358.53 −0.746950 −0.373475 0.927640i \(-0.621834\pi\)
−0.373475 + 0.927640i \(0.621834\pi\)
\(150\) 0 0
\(151\) −1376.00 −0.741571 −0.370786 0.928718i \(-0.620912\pi\)
−0.370786 + 0.928718i \(0.620912\pi\)
\(152\) 672.000i 0.358595i
\(153\) 0 0
\(154\) −992.000 −0.519076
\(155\) −178.168 16.0000i −0.0923280 0.00829130i
\(156\) 0 0
\(157\) 1848.50i 0.939657i −0.882758 0.469829i \(-0.844316\pi\)
0.882758 0.469829i \(-0.155684\pi\)
\(158\) 1872.00i 0.942584i
\(159\) 0 0
\(160\) 32.0000 356.337i 0.0158114 0.176068i
\(161\) −3117.95 −1.52627
\(162\) 0 0
\(163\) 222.711i 0.107019i −0.998567 0.0535093i \(-0.982959\pi\)
0.998567 0.0535093i \(-0.0170407\pi\)
\(164\) 890.842 0.424165
\(165\) 0 0
\(166\) 2608.00 1.21940
\(167\) 2172.00i 1.00643i −0.864160 0.503217i \(-0.832150\pi\)
0.864160 0.503217i \(-0.167850\pi\)
\(168\) 0 0
\(169\) −2267.00 −1.03186
\(170\) 1380.81 + 124.000i 0.622959 + 0.0559433i
\(171\) 0 0
\(172\) 1425.35i 0.631871i
\(173\) 3434.00i 1.50915i 0.656216 + 0.754573i \(0.272156\pi\)
−0.656216 + 0.754573i \(0.727844\pi\)
\(174\) 0 0
\(175\) 496.000 2739.34i 0.214252 1.18328i
\(176\) −356.337 −0.152613
\(177\) 0 0
\(178\) 1425.35i 0.600193i
\(179\) −3362.93 −1.40423 −0.702115 0.712064i \(-0.747761\pi\)
−0.702115 + 0.712064i \(0.747761\pi\)
\(180\) 0 0
\(181\) −1678.00 −0.689087 −0.344544 0.938770i \(-0.611966\pi\)
−0.344544 + 0.938770i \(0.611966\pi\)
\(182\) 2976.00i 1.21206i
\(183\) 0 0
\(184\) −1120.00 −0.448736
\(185\) 244.982 2728.00i 0.0973590 1.08414i
\(186\) 0 0
\(187\) 1380.81i 0.539971i
\(188\) 400.000i 0.155176i
\(189\) 0 0
\(190\) −168.000 + 1870.77i −0.0641474 + 0.714315i
\(191\) 1737.14 0.658090 0.329045 0.944314i \(-0.393273\pi\)
0.329045 + 0.944314i \(0.393273\pi\)
\(192\) 0 0
\(193\) 2449.82i 0.913687i −0.889547 0.456844i \(-0.848980\pi\)
0.889547 0.456844i \(-0.151020\pi\)
\(194\) −1514.43 −0.560463
\(195\) 0 0
\(196\) 612.000 0.223032
\(197\) 526.000i 0.190233i 0.995466 + 0.0951166i \(0.0303224\pi\)
−0.995466 + 0.0951166i \(0.969678\pi\)
\(198\) 0 0
\(199\) 744.000 0.265029 0.132514 0.991181i \(-0.457695\pi\)
0.132514 + 0.991181i \(0.457695\pi\)
\(200\) 178.168 984.000i 0.0629921 0.347897i
\(201\) 0 0
\(202\) 1291.72i 0.449927i
\(203\) 4464.00i 1.54341i
\(204\) 0 0
\(205\) 2480.00 + 222.711i 0.844930 + 0.0758770i
\(206\) 1380.81 0.467016
\(207\) 0 0
\(208\) 1069.01i 0.356358i
\(209\) 1870.77 0.619157
\(210\) 0 0
\(211\) 1476.00 0.481574 0.240787 0.970578i \(-0.422595\pi\)
0.240787 + 0.970578i \(0.422595\pi\)
\(212\) 2952.00i 0.956341i
\(213\) 0 0
\(214\) −1392.00 −0.444650
\(215\) 356.337 3968.00i 0.113032 1.25868i
\(216\) 0 0
\(217\) 356.337i 0.111473i
\(218\) 2284.00i 0.709596i
\(219\) 0 0
\(220\) −992.000 89.0842i −0.304003 0.0273003i
\(221\) 4142.42 1.26086
\(222\) 0 0
\(223\) 824.029i 0.247449i 0.992317 + 0.123724i \(0.0394839\pi\)
−0.992317 + 0.123724i \(0.960516\pi\)
\(224\) 712.674 0.212578
\(225\) 0 0
\(226\) −156.000 −0.0459158
\(227\) 2200.00i 0.643256i −0.946866 0.321628i \(-0.895770\pi\)
0.946866 0.321628i \(-0.104230\pi\)
\(228\) 0 0
\(229\) −5246.00 −1.51382 −0.756911 0.653517i \(-0.773293\pi\)
−0.756911 + 0.653517i \(0.773293\pi\)
\(230\) −3117.95 280.000i −0.893876 0.0802724i
\(231\) 0 0
\(232\) 1603.52i 0.453776i
\(233\) 842.000i 0.236744i 0.992969 + 0.118372i \(0.0377675\pi\)
−0.992969 + 0.118372i \(0.962233\pi\)
\(234\) 0 0
\(235\) 100.000 1113.55i 0.0277586 0.309107i
\(236\) −2583.44 −0.712575
\(237\) 0 0
\(238\) 2761.61i 0.752137i
\(239\) 5835.02 1.57923 0.789615 0.613603i \(-0.210280\pi\)
0.789615 + 0.613603i \(0.210280\pi\)
\(240\) 0 0
\(241\) 2530.00 0.676231 0.338115 0.941105i \(-0.390211\pi\)
0.338115 + 0.941105i \(0.390211\pi\)
\(242\) 1670.00i 0.443602i
\(243\) 0 0
\(244\) 1432.00 0.375715
\(245\) 1703.74 + 153.000i 0.444276 + 0.0398972i
\(246\) 0 0
\(247\) 5612.31i 1.44576i
\(248\) 128.000i 0.0327742i
\(249\) 0 0
\(250\) 742.000 2694.80i 0.187713 0.681736i
\(251\) −6748.13 −1.69696 −0.848482 0.529223i \(-0.822483\pi\)
−0.848482 + 0.529223i \(0.822483\pi\)
\(252\) 0 0
\(253\) 3117.95i 0.774797i
\(254\) −2627.98 −0.649191
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 258.000i 0.0626210i 0.999510 + 0.0313105i \(0.00996807\pi\)
−0.999510 + 0.0313105i \(0.990032\pi\)
\(258\) 0 0
\(259\) 5456.00 1.30895
\(260\) 267.253 2976.00i 0.0637473 0.709860i
\(261\) 0 0
\(262\) 935.384i 0.220566i
\(263\) 772.000i 0.181002i 0.995896 + 0.0905011i \(0.0288469\pi\)
−0.995896 + 0.0905011i \(0.971153\pi\)
\(264\) 0 0
\(265\) −738.000 + 8218.02i −0.171075 + 1.90501i
\(266\) −3741.54 −0.862438
\(267\) 0 0
\(268\) 3385.20i 0.771582i
\(269\) 2605.71 0.590607 0.295303 0.955404i \(-0.404579\pi\)
0.295303 + 0.955404i \(0.404579\pi\)
\(270\) 0 0
\(271\) −6392.00 −1.43279 −0.716395 0.697694i \(-0.754209\pi\)
−0.716395 + 0.697694i \(0.754209\pi\)
\(272\) 992.000i 0.221135i
\(273\) 0 0
\(274\) 2124.00 0.468305
\(275\) −2739.34 496.000i −0.600685 0.108763i
\(276\) 0 0
\(277\) 1759.41i 0.381635i −0.981626 0.190818i \(-0.938886\pi\)
0.981626 0.190818i \(-0.0611139\pi\)
\(278\) 1720.00i 0.371075i
\(279\) 0 0
\(280\) 1984.00 + 178.168i 0.423452 + 0.0380272i
\(281\) 6414.06 1.36168 0.680838 0.732434i \(-0.261616\pi\)
0.680838 + 0.732434i \(0.261616\pi\)
\(282\) 0 0
\(283\) 1380.81i 0.290037i 0.989429 + 0.145018i \(0.0463241\pi\)
−0.989429 + 0.145018i \(0.953676\pi\)
\(284\) −3741.54 −0.781758
\(285\) 0 0
\(286\) −2976.00 −0.615296
\(287\) 4960.00i 1.02014i
\(288\) 0 0
\(289\) 1069.00 0.217586
\(290\) −400.879 + 4464.00i −0.0811739 + 0.903914i
\(291\) 0 0
\(292\) 1781.68i 0.357073i
\(293\) 1374.00i 0.273959i −0.990574 0.136979i \(-0.956261\pi\)
0.990574 0.136979i \(-0.0437394\pi\)
\(294\) 0 0
\(295\) −7192.00 645.861i −1.41944 0.127469i
\(296\) 1959.85 0.384845
\(297\) 0 0
\(298\) 2717.07i 0.528173i
\(299\) −9353.84 −1.80919
\(300\) 0 0
\(301\) 7936.00 1.51968
\(302\) 2752.00i 0.524370i
\(303\) 0 0
\(304\) −1344.00 −0.253565
\(305\) 3986.52 + 358.000i 0.748418 + 0.0672099i
\(306\) 0 0
\(307\) 267.253i 0.0496838i −0.999691 0.0248419i \(-0.992092\pi\)
0.999691 0.0248419i \(-0.00790823\pi\)
\(308\) 1984.00i 0.367042i
\(309\) 0 0
\(310\) 32.0000 356.337i 0.00586283 0.0652857i
\(311\) 3607.91 0.657832 0.328916 0.944359i \(-0.393317\pi\)
0.328916 + 0.944359i \(0.393317\pi\)
\(312\) 0 0
\(313\) 7794.87i 1.40764i −0.710377 0.703821i \(-0.751476\pi\)
0.710377 0.703821i \(-0.248524\pi\)
\(314\) 3697.00 0.664438
\(315\) 0 0
\(316\) −3744.00 −0.666508
\(317\) 9334.00i 1.65378i −0.562360 0.826892i \(-0.690107\pi\)
0.562360 0.826892i \(-0.309893\pi\)
\(318\) 0 0
\(319\) 4464.00 0.783498
\(320\) 712.674 + 64.0000i 0.124499 + 0.0111803i
\(321\) 0 0
\(322\) 6235.90i 1.07923i
\(323\) 5208.00i 0.897154i
\(324\) 0 0
\(325\) 1488.00 8218.02i 0.253967 1.40263i
\(326\) 445.421 0.0756736
\(327\) 0 0
\(328\) 1781.68i 0.299930i
\(329\) 2227.11 0.373205
\(330\) 0 0
\(331\) 1636.00 0.271670 0.135835 0.990731i \(-0.456628\pi\)
0.135835 + 0.990731i \(0.456628\pi\)
\(332\) 5216.00i 0.862245i
\(333\) 0 0
\(334\) 4344.00 0.711656
\(335\) −846.300 + 9424.00i −0.138025 + 1.53698i
\(336\) 0 0
\(337\) 178.168i 0.0287996i 0.999896 + 0.0143998i \(0.00458375\pi\)
−0.999896 + 0.0143998i \(0.995416\pi\)
\(338\) 4534.00i 0.729636i
\(339\) 0 0
\(340\) −248.000 + 2761.61i −0.0395579 + 0.440498i
\(341\) −356.337 −0.0565886
\(342\) 0 0
\(343\) 4231.50i 0.666121i
\(344\) 2850.70 0.446800
\(345\) 0 0
\(346\) −6868.00 −1.06713
\(347\) 3840.00i 0.594069i 0.954867 + 0.297035i \(0.0959977\pi\)
−0.954867 + 0.297035i \(0.904002\pi\)
\(348\) 0 0
\(349\) −6682.00 −1.02487 −0.512434 0.858726i \(-0.671256\pi\)
−0.512434 + 0.858726i \(0.671256\pi\)
\(350\) 5478.68 + 992.000i 0.836708 + 0.151499i
\(351\) 0 0
\(352\) 712.674i 0.107914i
\(353\) 2110.00i 0.318142i −0.987267 0.159071i \(-0.949150\pi\)
0.987267 0.159071i \(-0.0508498\pi\)
\(354\) 0 0
\(355\) −10416.0 935.384i −1.55725 0.139845i
\(356\) 2850.70 0.424400
\(357\) 0 0
\(358\) 6725.86i 0.992941i
\(359\) −1870.77 −0.275029 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(360\) 0 0
\(361\) 197.000 0.0287214
\(362\) 3356.00i 0.487258i
\(363\) 0 0
\(364\) 5952.00 0.857059
\(365\) −445.421 + 4960.00i −0.0638751 + 0.711283i
\(366\) 0 0
\(367\) 9643.37i 1.37161i −0.727787 0.685803i \(-0.759451\pi\)
0.727787 0.685803i \(-0.240549\pi\)
\(368\) 2240.00i 0.317305i
\(369\) 0 0
\(370\) 5456.00 + 489.963i 0.766605 + 0.0688432i
\(371\) −16436.0 −2.30005
\(372\) 0 0
\(373\) 11558.7i 1.60452i 0.596975 + 0.802260i \(0.296369\pi\)
−0.596975 + 0.802260i \(0.703631\pi\)
\(374\) 2761.61 0.381817
\(375\) 0 0
\(376\) 800.000 0.109726
\(377\) 13392.0i 1.82950i
\(378\) 0 0
\(379\) 6220.00 0.843008 0.421504 0.906827i \(-0.361502\pi\)
0.421504 + 0.906827i \(0.361502\pi\)
\(380\) −3741.54 336.000i −0.505097 0.0453590i
\(381\) 0 0
\(382\) 3474.28i 0.465340i
\(383\) 13900.0i 1.85446i −0.374497 0.927228i \(-0.622185\pi\)
0.374497 0.927228i \(-0.377815\pi\)
\(384\) 0 0
\(385\) 496.000 5523.22i 0.0656584 0.731141i
\(386\) 4899.63 0.646074
\(387\) 0 0
\(388\) 3028.86i 0.396307i
\(389\) 3630.18 0.473156 0.236578 0.971613i \(-0.423974\pi\)
0.236578 + 0.971613i \(0.423974\pi\)
\(390\) 0 0
\(391\) 8680.00 1.12268
\(392\) 1224.00i 0.157707i
\(393\) 0 0
\(394\) −1052.00 −0.134515
\(395\) −10422.9 936.000i −1.32767 0.119229i
\(396\) 0 0
\(397\) 512.234i 0.0647564i 0.999476 + 0.0323782i \(0.0103081\pi\)
−0.999476 + 0.0323782i \(0.989692\pi\)
\(398\) 1488.00i 0.187404i
\(399\) 0 0
\(400\) 1968.00 + 356.337i 0.246000 + 0.0445421i
\(401\) −2984.32 −0.371646 −0.185823 0.982583i \(-0.559495\pi\)
−0.185823 + 0.982583i \(0.559495\pi\)
\(402\) 0 0
\(403\) 1069.01i 0.132137i
\(404\) 2583.44 0.318146
\(405\) 0 0
\(406\) −8928.00 −1.09135
\(407\) 5456.00i 0.664481i
\(408\) 0 0
\(409\) −14822.0 −1.79193 −0.895967 0.444121i \(-0.853516\pi\)
−0.895967 + 0.444121i \(0.853516\pi\)
\(410\) −445.421 + 4960.00i −0.0536531 + 0.597456i
\(411\) 0 0
\(412\) 2761.61i 0.330230i
\(413\) 14384.0i 1.71378i
\(414\) 0 0
\(415\) −1304.00 + 14520.7i −0.154243 + 1.71758i
\(416\) 2138.02 0.251983
\(417\) 0 0
\(418\) 3741.54i 0.437810i
\(419\) −8663.44 −1.01011 −0.505056 0.863087i \(-0.668528\pi\)
−0.505056 + 0.863087i \(0.668528\pi\)
\(420\) 0 0
\(421\) 4894.00 0.566553 0.283277 0.959038i \(-0.408579\pi\)
0.283277 + 0.959038i \(0.408579\pi\)
\(422\) 2952.00i 0.340524i
\(423\) 0 0
\(424\) −5904.00 −0.676235
\(425\) −1380.81 + 7626.00i −0.157597 + 0.870389i
\(426\) 0 0
\(427\) 7973.04i 0.903612i
\(428\) 2784.00i 0.314415i
\(429\) 0 0
\(430\) 7936.00 + 712.674i 0.890018 + 0.0799260i
\(431\) 9799.27 1.09516 0.547580 0.836753i \(-0.315549\pi\)
0.547580 + 0.836753i \(0.315549\pi\)
\(432\) 0 0
\(433\) 3697.00i 0.410315i 0.978729 + 0.205157i \(0.0657706\pi\)
−0.978729 + 0.205157i \(0.934229\pi\)
\(434\) 712.674 0.0788236
\(435\) 0 0
\(436\) −4568.00 −0.501760
\(437\) 11760.0i 1.28732i
\(438\) 0 0
\(439\) 9288.00 1.00978 0.504888 0.863185i \(-0.331534\pi\)
0.504888 + 0.863185i \(0.331534\pi\)
\(440\) 178.168 1984.00i 0.0193042 0.214962i
\(441\) 0 0
\(442\) 8284.83i 0.891560i
\(443\) 7368.00i 0.790213i 0.918635 + 0.395106i \(0.129292\pi\)
−0.918635 + 0.395106i \(0.870708\pi\)
\(444\) 0 0
\(445\) 7936.00 + 712.674i 0.845399 + 0.0759191i
\(446\) −1648.06 −0.174973
\(447\) 0 0
\(448\) 1425.35i 0.150316i
\(449\) −400.879 −0.0421351 −0.0210675 0.999778i \(-0.506707\pi\)
−0.0210675 + 0.999778i \(0.506707\pi\)
\(450\) 0 0
\(451\) 4960.00 0.517865
\(452\) 312.000i 0.0324674i
\(453\) 0 0
\(454\) 4400.00 0.454851
\(455\) 16569.7 + 1488.00i 1.70725 + 0.153315i
\(456\) 0 0
\(457\) 14743.4i 1.50912i 0.656230 + 0.754561i \(0.272150\pi\)
−0.656230 + 0.754561i \(0.727850\pi\)
\(458\) 10492.0i 1.07043i
\(459\) 0 0
\(460\) 560.000 6235.90i 0.0567612 0.632066i
\(461\) 4743.74 0.479258 0.239629 0.970865i \(-0.422974\pi\)
0.239629 + 0.970865i \(0.422974\pi\)
\(462\) 0 0
\(463\) 7282.64i 0.731000i 0.930811 + 0.365500i \(0.119102\pi\)
−0.930811 + 0.365500i \(0.880898\pi\)
\(464\) −3207.03 −0.320868
\(465\) 0 0
\(466\) −1684.00 −0.167403
\(467\) 5664.00i 0.561239i 0.959819 + 0.280620i \(0.0905399\pi\)
−0.959819 + 0.280620i \(0.909460\pi\)
\(468\) 0 0
\(469\) −18848.0 −1.85569
\(470\) 2227.11 + 200.000i 0.218572 + 0.0196283i
\(471\) 0 0
\(472\) 5166.89i 0.503867i
\(473\) 7936.00i 0.771454i
\(474\) 0 0
\(475\) −10332.0 1870.77i −0.998031 0.180709i
\(476\) −5523.22 −0.531841
\(477\) 0 0
\(478\) 11670.0i 1.11668i
\(479\) 10111.1 0.964480 0.482240 0.876039i \(-0.339823\pi\)
0.482240 + 0.876039i \(0.339823\pi\)
\(480\) 0 0
\(481\) 16368.0 1.55159
\(482\) 5060.00i 0.478167i
\(483\) 0 0
\(484\) 3340.00 0.313674
\(485\) 757.216 8432.00i 0.0708936 0.789438i
\(486\) 0 0
\(487\) 11558.7i 1.07551i −0.843101 0.537755i \(-0.819272\pi\)
0.843101 0.537755i \(-0.180728\pi\)
\(488\) 2864.00i 0.265670i
\(489\) 0 0
\(490\) −306.000 + 3407.47i −0.0282116 + 0.314151i
\(491\) 467.692 0.0429871 0.0214935 0.999769i \(-0.493158\pi\)
0.0214935 + 0.999769i \(0.493158\pi\)
\(492\) 0 0
\(493\) 12427.3i 1.13528i
\(494\) −11224.6 −1.02231
\(495\) 0 0
\(496\) 256.000 0.0231749
\(497\) 20832.0i 1.88017i
\(498\) 0 0
\(499\) −9204.00 −0.825707 −0.412853 0.910798i \(-0.635468\pi\)
−0.412853 + 0.910798i \(0.635468\pi\)
\(500\) 5389.60 + 1484.00i 0.482060 + 0.132733i
\(501\) 0 0
\(502\) 13496.3i 1.19994i
\(503\) 1260.00i 0.111691i 0.998439 + 0.0558455i \(0.0177854\pi\)
−0.998439 + 0.0558455i \(0.982215\pi\)
\(504\) 0 0
\(505\) 7192.00 + 645.861i 0.633742 + 0.0569117i
\(506\) −6235.90 −0.547864
\(507\) 0 0
\(508\) 5255.97i 0.459047i
\(509\) −2071.21 −0.180363 −0.0901814 0.995925i \(-0.528745\pi\)
−0.0901814 + 0.995925i \(0.528745\pi\)
\(510\) 0 0
\(511\) −9920.00 −0.858777
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −516.000 −0.0442797
\(515\) −690.403 + 7688.00i −0.0590734 + 0.657813i
\(516\) 0 0
\(517\) 2227.11i 0.189455i
\(518\) 10912.0i 0.925571i
\(519\) 0 0
\(520\) 5952.00 + 534.505i 0.501947 + 0.0450762i
\(521\) 5300.51 0.445719 0.222860 0.974851i \(-0.428461\pi\)
0.222860 + 0.974851i \(0.428461\pi\)
\(522\) 0 0
\(523\) 9309.30i 0.778331i −0.921168 0.389166i \(-0.872763\pi\)
0.921168 0.389166i \(-0.127237\pi\)
\(524\) −1870.77 −0.155964
\(525\) 0 0
\(526\) −1544.00 −0.127988
\(527\) 992.000i 0.0819966i
\(528\) 0 0
\(529\) −7433.00 −0.610915
\(530\) −16436.0 1476.00i −1.34705 0.120969i
\(531\) 0 0
\(532\) 7483.08i 0.609835i
\(533\) 14880.0i 1.20924i
\(534\) 0 0
\(535\) 696.000 7750.33i 0.0562443 0.626310i
\(536\) −6770.40 −0.545591
\(537\) 0 0
\(538\) 5211.43i 0.417622i
\(539\) 3407.47 0.272301
\(540\) 0 0
\(541\) 9658.00 0.767523 0.383761 0.923432i \(-0.374629\pi\)
0.383761 + 0.923432i \(0.374629\pi\)
\(542\) 12784.0i 1.01314i
\(543\) 0 0
\(544\) −1984.00 −0.156366
\(545\) −12716.8 1142.00i −0.999499 0.0897576i
\(546\) 0 0
\(547\) 890.842i 0.0696338i −0.999394 0.0348169i \(-0.988915\pi\)
0.999394 0.0348169i \(-0.0110848\pi\)
\(548\) 4248.00i 0.331142i
\(549\) 0 0
\(550\) 992.000 5478.68i 0.0769073 0.424749i
\(551\) 16836.9 1.30177
\(552\) 0 0
\(553\) 20845.7i 1.60298i
\(554\) 3518.83 0.269857
\(555\) 0 0
\(556\) −3440.00 −0.262389
\(557\) 9066.00i 0.689657i 0.938666 + 0.344828i \(0.112063\pi\)
−0.938666 + 0.344828i \(0.887937\pi\)
\(558\) 0 0
\(559\) 23808.0 1.80138
\(560\) −356.337 + 3968.00i −0.0268893 + 0.299426i
\(561\) 0 0
\(562\) 12828.1i 0.962850i
\(563\) 1568.00i 0.117377i 0.998276 + 0.0586886i \(0.0186919\pi\)
−0.998276 + 0.0586886i \(0.981308\pi\)
\(564\) 0 0
\(565\) 78.0000 868.571i 0.00580794 0.0646745i
\(566\) −2761.61 −0.205087
\(567\) 0 0
\(568\) 7483.08i 0.552787i
\(569\) 2093.48 0.154241 0.0771206 0.997022i \(-0.475427\pi\)
0.0771206 + 0.997022i \(0.475427\pi\)
\(570\) 0 0
\(571\) −13916.0 −1.01991 −0.509953 0.860202i \(-0.670337\pi\)
−0.509953 + 0.860202i \(0.670337\pi\)
\(572\) 5952.00i 0.435080i
\(573\) 0 0
\(574\) −9920.00 −0.721346
\(575\) 3117.95 17220.0i 0.226135 1.24891i
\(576\) 0 0
\(577\) 8106.66i 0.584896i −0.956281 0.292448i \(-0.905530\pi\)
0.956281 0.292448i \(-0.0944698\pi\)
\(578\) 2138.00i 0.153857i
\(579\) 0 0
\(580\) −8928.00 801.758i −0.639164 0.0573986i
\(581\) −29041.5 −2.07374
\(582\) 0 0
\(583\) 16436.0i 1.16760i
\(584\) −3563.37 −0.252488
\(585\) 0 0
\(586\) 2748.00 0.193718
\(587\) 20808.0i 1.46310i −0.681789 0.731549i \(-0.738798\pi\)
0.681789 0.731549i \(-0.261202\pi\)
\(588\) 0 0
\(589\) −1344.00 −0.0940213
\(590\) 1291.72 14384.0i 0.0901345 1.00369i
\(591\) 0 0
\(592\) 3919.71i 0.272127i
\(593\) 21486.0i 1.48790i 0.668236 + 0.743950i \(0.267050\pi\)
−0.668236 + 0.743950i \(0.732950\pi\)
\(594\) 0 0
\(595\) −15376.0 1380.81i −1.05942 0.0951387i
\(596\) 5434.14 0.373475
\(597\) 0 0
\(598\) 18707.7i 1.27929i
\(599\) 25923.5 1.76829 0.884145 0.467212i \(-0.154742\pi\)
0.884145 + 0.467212i \(0.154742\pi\)
\(600\) 0 0
\(601\) −250.000 −0.0169679 −0.00848395 0.999964i \(-0.502701\pi\)
−0.00848395 + 0.999964i \(0.502701\pi\)
\(602\) 15872.0i 1.07458i
\(603\) 0 0
\(604\) 5504.00 0.370786
\(605\) 9298.17 + 835.000i 0.624833 + 0.0561117i
\(606\) 0 0
\(607\) 13340.4i 0.892041i −0.895023 0.446020i \(-0.852841\pi\)
0.895023 0.446020i \(-0.147159\pi\)
\(608\) 2688.00i 0.179297i
\(609\) 0 0
\(610\) −716.000 + 7973.04i −0.0475246 + 0.529211i
\(611\) 6681.32 0.442385
\(612\) 0 0
\(613\) 14721.2i 0.969955i 0.874527 + 0.484977i \(0.161172\pi\)
−0.874527 + 0.484977i \(0.838828\pi\)
\(614\) 534.505 0.0351317
\(615\) 0 0
\(616\) 3968.00 0.259538
\(617\) 14410.0i 0.940235i −0.882604 0.470117i \(-0.844212\pi\)
0.882604 0.470117i \(-0.155788\pi\)
\(618\) 0 0
\(619\) 21580.0 1.40125 0.700625 0.713530i \(-0.252905\pi\)
0.700625 + 0.713530i \(0.252905\pi\)
\(620\) 712.674 + 64.0000i 0.0461640 + 0.00414565i
\(621\) 0 0
\(622\) 7215.82i 0.465158i
\(623\) 15872.0i 1.02070i
\(624\) 0 0
\(625\) 14633.0 + 5478.68i 0.936512 + 0.350636i
\(626\) 15589.7 0.995354
\(627\) 0 0
\(628\) 7393.99i 0.469829i
\(629\) −15188.9 −0.962829
\(630\) 0 0
\(631\) −15160.0 −0.956434 −0.478217 0.878242i \(-0.658717\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(632\) 7488.00i 0.471292i
\(633\) 0 0
\(634\) 18668.0 1.16940
\(635\) 1313.99 14632.0i 0.0821168 0.914415i
\(636\) 0 0
\(637\) 10222.4i 0.635835i
\(638\) 8928.00i 0.554017i
\(639\) 0 0
\(640\) −128.000 + 1425.35i −0.00790569 + 0.0880341i
\(641\) −6102.27 −0.376014 −0.188007 0.982168i \(-0.560203\pi\)
−0.188007 + 0.982168i \(0.560203\pi\)
\(642\) 0 0
\(643\) 14298.0i 0.876919i 0.898751 + 0.438459i \(0.144476\pi\)
−0.898751 + 0.438459i \(0.855524\pi\)
\(644\) 12471.8 0.763133
\(645\) 0 0
\(646\) 10416.0 0.634384
\(647\) 11916.0i 0.724059i 0.932167 + 0.362030i \(0.117916\pi\)
−0.932167 + 0.362030i \(0.882084\pi\)
\(648\) 0 0
\(649\) −14384.0 −0.869987
\(650\) 16436.0 + 2976.00i 0.991807 + 0.179582i
\(651\) 0 0
\(652\) 890.842i 0.0535093i
\(653\) 24646.0i 1.47699i 0.674261 + 0.738493i \(0.264462\pi\)
−0.674261 + 0.738493i \(0.735538\pi\)
\(654\) 0 0
\(655\) −5208.00 467.692i −0.310677 0.0278996i
\(656\) −3563.37 −0.212083
\(657\) 0 0
\(658\) 4454.21i 0.263896i
\(659\) −17928.2 −1.05976 −0.529881 0.848072i \(-0.677764\pi\)
−0.529881 + 0.848072i \(0.677764\pi\)
\(660\) 0 0
\(661\) −14638.0 −0.861350 −0.430675 0.902507i \(-0.641724\pi\)
−0.430675 + 0.902507i \(0.641724\pi\)
\(662\) 3272.00i 0.192100i
\(663\) 0 0
\(664\) −10432.0 −0.609699
\(665\) 1870.77 20832.0i 0.109091 1.21478i
\(666\) 0 0
\(667\) 28061.5i 1.62901i
\(668\) 8688.00i 0.503217i
\(669\) 0 0
\(670\) −18848.0 1692.60i −1.08681 0.0975983i
\(671\) 7973.04 0.458712
\(672\) 0 0
\(673\) 31134.9i 1.78330i 0.452721 + 0.891652i \(0.350453\pi\)
−0.452721 + 0.891652i \(0.649547\pi\)
\(674\) −356.337 −0.0203644
\(675\) 0 0
\(676\) 9068.00 0.515931
\(677\) 6382.00i 0.362305i −0.983455 0.181152i \(-0.942017\pi\)
0.983455 0.181152i \(-0.0579827\pi\)
\(678\) 0 0
\(679\) 16864.0 0.953138
\(680\) −5523.22 496.000i −0.311479 0.0279717i
\(681\) 0 0
\(682\) 712.674i 0.0400142i
\(683\) 4544.00i 0.254570i −0.991866 0.127285i \(-0.959374\pi\)
0.991866 0.127285i \(-0.0406263\pi\)
\(684\) 0 0
\(685\) −1062.00 + 11825.9i −0.0592364 + 0.659629i
\(686\) 8463.00 0.471019
\(687\) 0 0
\(688\) 5701.39i 0.315935i
\(689\) −49308.1 −2.72640
\(690\) 0 0
\(691\) 13564.0 0.746742 0.373371 0.927682i \(-0.378202\pi\)
0.373371 + 0.927682i \(0.378202\pi\)
\(692\) 13736.0i 0.754573i
\(693\) 0 0
\(694\) −7680.00 −0.420070
\(695\) −9576.55 860.000i −0.522675 0.0469376i
\(696\) 0 0
\(697\) 13808.1i 0.750384i
\(698\) 13364.0i 0.724692i
\(699\) 0 0
\(700\) −1984.00 + 10957.4i −0.107126 + 0.591642i
\(701\) −1492.16 −0.0803968 −0.0401984 0.999192i \(-0.512799\pi\)
−0.0401984 + 0.999192i \(0.512799\pi\)
\(702\) 0 0
\(703\) 20578.5i 1.10403i
\(704\) 1425.35 0.0763066
\(705\) 0 0
\(706\) 4220.00 0.224960
\(707\) 14384.0i 0.765157i
\(708\) 0 0
\(709\) 17826.0 0.944245 0.472122 0.881533i \(-0.343488\pi\)
0.472122 + 0.881533i \(0.343488\pi\)
\(710\) 1870.77 20832.0i 0.0988855 1.10114i
\(711\) 0 0
\(712\) 5701.39i 0.300096i
\(713\) 2240.00i 0.117656i
\(714\) 0 0
\(715\) 1488.00 16569.7i 0.0778294 0.866672i
\(716\) 13451.7 0.702115
\(717\) 0 0
\(718\) 3741.54i 0.194475i
\(719\) 18796.8 0.974967 0.487484 0.873132i \(-0.337915\pi\)
0.487484 + 0.873132i \(0.337915\pi\)
\(720\) 0 0
\(721\) −15376.0 −0.794219
\(722\) 394.000i 0.0203091i
\(723\) 0 0
\(724\) 6712.00 0.344544
\(725\) −24654.1 4464.00i −1.26294 0.228674i
\(726\) 0 0
\(727\) 33072.5i 1.68720i 0.536975 + 0.843598i \(0.319567\pi\)
−0.536975 + 0.843598i \(0.680433\pi\)
\(728\) 11904.0i 0.606032i
\(729\) 0 0
\(730\) −9920.00 890.842i −0.502953 0.0451665i
\(731\) −22092.9 −1.11783
\(732\) 0 0
\(733\) 34765.1i 1.75181i −0.482481 0.875907i \(-0.660264\pi\)
0.482481 0.875907i \(-0.339736\pi\)
\(734\) 19286.7 0.969872
\(735\) 0 0
\(736\) 4480.00 0.224368
\(737\) 18848.0i 0.942028i
\(738\) 0 0
\(739\) 22940.0 1.14190 0.570948 0.820986i \(-0.306576\pi\)
0.570948 + 0.820986i \(0.306576\pi\)
\(740\) −979.927 + 10912.0i −0.0486795 + 0.542072i
\(741\) 0 0
\(742\) 32872.1i 1.62638i
\(743\) 26460.0i 1.30649i 0.757146 + 0.653246i \(0.226593\pi\)
−0.757146 + 0.653246i \(0.773407\pi\)
\(744\) 0 0
\(745\) 15128.0 + 1358.53i 0.743956 + 0.0668092i
\(746\) −23117.4 −1.13457
\(747\) 0 0
\(748\) 5523.22i 0.269985i
\(749\) 15500.7 0.756184
\(750\) 0 0
\(751\) −30160.0 −1.46545 −0.732726 0.680524i \(-0.761752\pi\)
−0.732726 + 0.680524i \(0.761752\pi\)
\(752\) 1600.00i 0.0775878i
\(753\) 0 0
\(754\) −26784.0 −1.29365
\(755\) 15322.5 + 1376.00i 0.738599 + 0.0663282i
\(756\) 0 0
\(757\) 18596.3i 0.892860i −0.894818 0.446430i \(-0.852695\pi\)
0.894818 0.446430i \(-0.147305\pi\)
\(758\) 12440.0i 0.596097i
\(759\) 0 0
\(760\) 672.000 7483.08i 0.0320737 0.357157i
\(761\) −5478.68 −0.260975 −0.130488 0.991450i \(-0.541654\pi\)
−0.130488 + 0.991450i \(0.541654\pi\)
\(762\) 0 0
\(763\) 25433.5i 1.20676i
\(764\) −6948.57 −0.329045
\(765\) 0 0
\(766\) 27800.0 1.31130
\(767\) 43152.0i 2.03146i
\(768\) 0 0
\(769\) −29406.0 −1.37894 −0.689472 0.724313i \(-0.742157\pi\)
−0.689472 + 0.724313i \(0.742157\pi\)
\(770\) 11046.4 + 992.000i 0.516995 + 0.0464275i
\(771\) 0 0
\(772\) 9799.27i 0.456844i
\(773\) 31122.0i 1.44810i −0.689748 0.724050i \(-0.742279\pi\)
0.689748 0.724050i \(-0.257721\pi\)
\(774\) 0 0
\(775\) 1968.00 + 356.337i 0.0912163 + 0.0165161i
\(776\) 6057.73 0.280232
\(777\) 0 0
\(778\) 7260.36i 0.334572i
\(779\) 18707.7 0.860427
\(780\) 0 0
\(781\) −20832.0 −0.954453
\(782\) 17360.0i 0.793852i
\(783\) 0 0
\(784\) −2448.00 −0.111516
\(785\) −1848.50 + 20584.0i −0.0840455 + 0.935891i
\(786\) 0 0
\(787\) 34431.1i 1.55951i −0.626085 0.779755i \(-0.715344\pi\)
0.626085 0.779755i \(-0.284656\pi\)
\(788\) 2104.00i 0.0951166i
\(789\) 0 0
\(790\) 1872.00 20845.7i 0.0843073 0.938806i
\(791\) 1737.14 0.0780856
\(792\) 0 0
\(793\) 23919.1i 1.07111i
\(794\) −1024.47 −0.0457897
\(795\) 0 0
\(796\) −2976.00 −0.132514
\(797\) 13066.0i 0.580704i −0.956920 0.290352i \(-0.906228\pi\)
0.956920 0.290352i \(-0.0937725\pi\)
\(798\) 0 0
\(799\) −6200.00 −0.274518
\(800\) −712.674 + 3936.00i −0.0314960 + 0.173948i
\(801\) 0 0
\(802\) 5968.64i 0.262793i
\(803\) 9920.00i 0.435952i
\(804\) 0 0
\(805\) 34720.0 + 3117.95i 1.52015 + 0.136513i
\(806\) 2138.02 0.0934350
\(807\) 0 0
\(808\) 5166.89i 0.224963i
\(809\) 39954.3 1.73636 0.868181 0.496247i \(-0.165289\pi\)
0.868181 + 0.496247i \(0.165289\pi\)
\(810\) 0 0
\(811\) 14428.0 0.624705 0.312352 0.949966i \(-0.398883\pi\)
0.312352 + 0.949966i \(0.398883\pi\)
\(812\) 17856.0i 0.771703i
\(813\) 0 0
\(814\) 10912.0 0.469859
\(815\) −222.711 + 2480.00i −0.00957204 + 0.106590i
\(816\) 0 0
\(817\) 29932.3i 1.28176i
\(818\) 29644.0i 1.26709i
\(819\) 0 0
\(820\) −9920.00 890.842i −0.422465 0.0379385i
\(821\) 16591.9 0.705314 0.352657 0.935753i \(-0.385278\pi\)
0.352657 + 0.935753i \(0.385278\pi\)
\(822\) 0 0
\(823\) 25322.2i 1.07251i −0.844056 0.536255i \(-0.819838\pi\)
0.844056 0.536255i \(-0.180162\pi\)
\(824\) −5523.22 −0.233508
\(825\) 0 0
\(826\) 28768.0 1.21182
\(827\) 16592.0i 0.697655i 0.937187 + 0.348827i \(0.113420\pi\)
−0.937187 + 0.348827i \(0.886580\pi\)
\(828\) 0 0
\(829\) −18234.0 −0.763924 −0.381962 0.924178i \(-0.624751\pi\)
−0.381962 + 0.924178i \(0.624751\pi\)
\(830\) −29041.5 2608.00i −1.21451 0.109066i
\(831\) 0 0
\(832\) 4276.04i 0.178179i
\(833\) 9486.00i 0.394562i
\(834\) 0 0
\(835\) −2172.00 + 24186.4i −0.0900182 + 1.00240i
\(836\) −7483.08 −0.309578
\(837\) 0 0
\(838\) 17326.9i 0.714257i
\(839\) −31357.6 −1.29033 −0.645165 0.764044i \(-0.723211\pi\)
−0.645165 + 0.764044i \(0.723211\pi\)
\(840\) 0 0
\(841\) 15787.0 0.647300
\(842\) 9788.00i 0.400614i
\(843\) 0 0
\(844\) −5904.00 −0.240787
\(845\) 25244.2 + 2267.00i 1.02773 + 0.0922925i
\(846\) 0 0
\(847\) 18596.3i 0.754401i
\(848\) 11808.0i 0.478170i
\(849\) 0 0
\(850\) −15252.0 2761.61i −0.615458 0.111438i
\(851\) 34297.4 1.38155
\(852\) 0 0
\(853\) 2249.38i 0.0902898i 0.998980 + 0.0451449i \(0.0143750\pi\)
−0.998980 + 0.0451449i \(0.985625\pi\)
\(854\) −15946.1 −0.638950
\(855\) 0 0
\(856\) 5568.00 0.222325
\(857\) 25206.0i 1.00469i 0.864667 + 0.502346i \(0.167530\pi\)
−0.864667 + 0.502346i \(0.832470\pi\)
\(858\) 0 0
\(859\) −17540.0 −0.696690 −0.348345 0.937366i \(-0.613256\pi\)
−0.348345 + 0.937366i \(0.613256\pi\)
\(860\) −1425.35 + 15872.0i −0.0565162 + 0.629338i
\(861\) 0 0
\(862\) 19598.5i 0.774395i
\(863\) 33108.0i 1.30592i −0.757392 0.652960i \(-0.773527\pi\)
0.757392 0.652960i \(-0.226473\pi\)
\(864\) 0 0
\(865\) 3434.00 38239.4i 0.134982 1.50310i
\(866\) −7393.99 −0.290136
\(867\) 0 0
\(868\) 1425.35i 0.0557367i
\(869\) −20845.7 −0.813743
\(870\) 0 0
\(871\) −56544.0 −2.19968
\(872\) 9136.00i 0.354798i
\(873\) 0 0
\(874\) −23520.0 −0.910270
\(875\) −8262.56 + 30008.0i −0.319229 + 1.15938i
\(876\) 0 0
\(877\) 29152.8i 1.12249i 0.827651 + 0.561243i \(0.189677\pi\)
−0.827651 + 0.561243i \(0.810323\pi\)
\(878\) 18576.0i 0.714020i
\(879\) 0 0
\(880\) 3968.00 + 356.337i 0.152001 + 0.0136501i
\(881\) 8819.34 0.337266 0.168633 0.985679i \(-0.446065\pi\)
0.168633 + 0.985679i \(0.446065\pi\)
\(882\) 0 0
\(883\) 19643.1i 0.748632i 0.927301 + 0.374316i \(0.122122\pi\)
−0.927301 + 0.374316i \(0.877878\pi\)
\(884\) −16569.7 −0.630428
\(885\) 0 0
\(886\) −14736.0 −0.558765
\(887\) 8004.00i 0.302985i 0.988458 + 0.151493i \(0.0484080\pi\)
−0.988458 + 0.151493i \(0.951592\pi\)
\(888\) 0 0
\(889\) 29264.0 1.10403
\(890\) −1425.35 + 15872.0i −0.0536829 + 0.597787i
\(891\) 0 0
\(892\) 3296.12i 0.123724i
\(893\) 8400.00i 0.314776i
\(894\) 0 0
\(895\) 37448.0 + 3362.93i 1.39860 + 0.125598i
\(896\) −2850.70 −0.106289
\(897\) 0 0
\(898\) 801.758i 0.0297940i
\(899\) −3207.03 −0.118977
\(900\) 0 0
\(901\) 45756.0 1.69185
\(902\) 9920.00i 0.366186i
\(903\) 0 0
\(904\) 624.000 0.0229579
\(905\) 18685.4 + 1678.00i 0.686325 + 0.0616338i
\(906\) 0 0
\(907\) 1336.26i 0.0489194i −0.999701 0.0244597i \(-0.992213\pi\)
0.999701 0.0244597i \(-0.00778654\pi\)
\(908\) 8800.00i 0.321628i
\(909\) 0 0
\(910\) −2976.00 + 33139.3i −0.108410 + 1.20721i
\(911\) −32070.3 −1.16634 −0.583171 0.812350i \(-0.698188\pi\)
−0.583171 + 0.812350i \(0.698188\pi\)
\(912\) 0 0
\(913\) 29041.5i 1.05272i
\(914\) −29486.9 −1.06711
\(915\) 0 0
\(916\) 20984.0 0.756911
\(917\) 10416.0i 0.375100i
\(918\) 0 0
\(919\) −2832.00 −0.101653 −0.0508265 0.998707i \(-0.516186\pi\)
−0.0508265 + 0.998707i \(0.516186\pi\)
\(920\) 12471.8 + 1120.00i 0.446938 + 0.0401362i
\(921\) 0 0
\(922\) 9487.47i 0.338886i
\(923\) 62496.0i 2.22869i
\(924\) 0 0
\(925\) −5456.00 + 30132.7i −0.193937 + 1.07109i
\(926\) −14565.3 −0.516895
\(927\) 0 0
\(928\) 6414.06i 0.226888i
\(929\) 31936.7 1.12789 0.563945 0.825813i \(-0.309283\pi\)
0.563945 + 0.825813i \(0.309283\pi\)
\(930\) 0 0
\(931\) 12852.0 0.452425
\(932\) 3368.00i 0.118372i
\(933\) 0 0
\(934\) −11328.0 −0.396856
\(935\) −1380.81 + 15376.0i −0.0482964 + 0.537806i
\(936\) 0 0
\(937\) 25745.3i 0.897613i 0.893629 + 0.448807i \(0.148151\pi\)
−0.893629 + 0.448807i \(0.851849\pi\)
\(938\) 37696.0i 1.31217i
\(939\) 0 0
\(940\) −400.000 + 4454.21i −0.0138793 + 0.154554i
\(941\) 7059.93 0.244577 0.122289 0.992495i \(-0.460977\pi\)
0.122289 + 0.992495i \(0.460977\pi\)
\(942\) 0 0
\(943\) 31179.5i 1.07672i
\(944\) 10333.8 0.356288
\(945\) 0 0
\(946\) 15872.0 0.545500
\(947\) 1752.00i 0.0601186i 0.999548 + 0.0300593i \(0.00956962\pi\)
−0.999548 + 0.0300593i \(0.990430\pi\)
\(948\) 0 0
\(949\) −29760.0 −1.01797
\(950\) 3741.54 20664.0i 0.127781 0.705714i
\(951\) 0 0
\(952\) 11046.4i 0.376069i
\(953\) 3850.00i 0.130864i −0.997857 0.0654322i \(-0.979157\pi\)
0.997857 0.0654322i \(-0.0208426\pi\)
\(954\) 0 0
\(955\) −19344.0 1737.14i −0.655453 0.0588614i
\(956\) −23340.1 −0.789615
\(957\) 0 0
\(958\) 20222.1i 0.681991i
\(959\) −23651.9 −0.796411
\(960\) 0 0
\(961\) −29535.0 −0.991407
\(962\) 32736.0i 1.09714i
\(963\) 0 0
\(964\) −10120.0 −0.338115
\(965\) −2449.82 + 27280.0i −0.0817227 + 0.910025i
\(966\) 0 0
\(967\) 24475.9i 0.813952i 0.913439 + 0.406976i \(0.133417\pi\)
−0.913439 + 0.406976i \(0.866583\pi\)
\(968\) 6680.00i 0.221801i
\(969\) 0 0
\(970\) 16864.0 + 1514.43i 0.558217 + 0.0501294i
\(971\) −2204.83 −0.0728697 −0.0364349 0.999336i \(-0.511600\pi\)
−0.0364349 + 0.999336i \(0.511600\pi\)
\(972\) 0 0
\(973\) 19153.1i 0.631059i
\(974\) 23117.4 0.760501
\(975\) 0 0
\(976\) −5728.00 −0.187857
\(977\) 29982.0i 0.981790i 0.871219 + 0.490895i \(0.163330\pi\)
−0.871219 + 0.490895i \(0.836670\pi\)
\(978\) 0 0
\(979\) 15872.0 0.518153
\(980\) −6814.94 612.000i −0.222138 0.0199486i
\(981\) 0 0
\(982\) 935.384i 0.0303965i
\(983\) 35284.0i 1.14485i −0.819958 0.572424i \(-0.806003\pi\)
0.819958 0.572424i \(-0.193997\pi\)
\(984\) 0 0
\(985\) 526.000 5857.29i 0.0170150 0.189471i
\(986\) 24854.5 0.802767
\(987\) 0 0
\(988\) 22449.2i 0.722880i
\(989\) 49887.2 1.60396
\(990\) 0 0
\(991\) −11528.0 −0.369525 −0.184762 0.982783i \(-0.559152\pi\)
−0.184762 + 0.982783i \(0.559152\pi\)
\(992\) 512.000i 0.0163871i
\(993\) 0 0
\(994\) 41664.0 1.32948
\(995\) −8284.83 744.000i −0.263967 0.0237049i
\(996\) 0 0
\(997\) 9955.16i 0.316232i −0.987421 0.158116i \(-0.949458\pi\)
0.987421 0.158116i \(-0.0505420\pi\)
\(998\) 18408.0i 0.583863i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.4.c.c.19.3 yes 4
3.2 odd 2 inner 90.4.c.c.19.2 yes 4
4.3 odd 2 720.4.f.l.289.1 4
5.2 odd 4 450.4.a.u.1.2 2
5.3 odd 4 450.4.a.v.1.1 2
5.4 even 2 inner 90.4.c.c.19.1 4
12.11 even 2 720.4.f.l.289.4 4
15.2 even 4 450.4.a.v.1.2 2
15.8 even 4 450.4.a.u.1.1 2
15.14 odd 2 inner 90.4.c.c.19.4 yes 4
20.19 odd 2 720.4.f.l.289.2 4
60.59 even 2 720.4.f.l.289.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.4.c.c.19.1 4 5.4 even 2 inner
90.4.c.c.19.2 yes 4 3.2 odd 2 inner
90.4.c.c.19.3 yes 4 1.1 even 1 trivial
90.4.c.c.19.4 yes 4 15.14 odd 2 inner
450.4.a.u.1.1 2 15.8 even 4
450.4.a.u.1.2 2 5.2 odd 4
450.4.a.v.1.1 2 5.3 odd 4
450.4.a.v.1.2 2 15.2 even 4
720.4.f.l.289.1 4 4.3 odd 2
720.4.f.l.289.2 4 20.19 odd 2
720.4.f.l.289.3 4 60.59 even 2
720.4.f.l.289.4 4 12.11 even 2