Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [90,4,Mod(23,90)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(90, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([10, 9]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("90.23");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 90.l (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.31017190052\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −0.517638 | + | 1.93185i | −4.93707 | + | 1.62028i | −3.46410 | − | 2.00000i | 5.77745 | − | 9.57189i | −0.574521 | − | 10.3764i | −1.66858 | − | 0.447095i | 5.65685 | − | 5.65685i | 21.7494 | − | 15.9989i | 15.5008 | + | 16.1159i |
23.2 | −0.517638 | + | 1.93185i | −4.22825 | − | 3.02025i | −3.46410 | − | 2.00000i | −11.1170 | + | 1.18817i | 8.02337 | − | 6.60496i | 23.8855 | + | 6.40009i | 5.65685 | − | 5.65685i | 8.75622 | + | 25.5407i | 3.45924 | − | 22.0915i |
23.3 | −0.517638 | + | 1.93185i | −3.91985 | − | 3.41098i | −3.46410 | − | 2.00000i | 8.87803 | + | 6.79563i | 8.61857 | − | 5.80691i | −1.19100 | − | 0.319128i | 5.65685 | − | 5.65685i | 3.73043 | + | 26.7411i | −17.7238 | + | 13.6334i |
23.4 | −0.517638 | + | 1.93185i | −3.78220 | + | 3.56300i | −3.46410 | − | 2.00000i | −2.13754 | + | 10.9741i | −4.92537 | − | 9.15100i | −11.0581 | − | 2.96302i | 5.65685 | − | 5.65685i | 1.61012 | − | 26.9519i | −20.0939 | − | 9.81002i |
23.5 | −0.517638 | + | 1.93185i | 1.36699 | + | 5.01312i | −3.46410 | − | 2.00000i | −6.13463 | − | 9.34700i | −10.3922 | + | 0.0458498i | −25.4835 | − | 6.82827i | 5.65685 | − | 5.65685i | −23.2627 | + | 13.7058i | 21.2325 | − | 7.01283i |
23.6 | −0.517638 | + | 1.93185i | 1.63624 | + | 4.93181i | −3.46410 | − | 2.00000i | 11.1207 | + | 1.15355i | −10.3745 | + | 0.608091i | 29.8452 | + | 7.99699i | 5.65685 | − | 5.65685i | −21.6454 | + | 16.1393i | −7.98497 | + | 20.8864i |
23.7 | −0.517638 | + | 1.93185i | 2.43231 | − | 4.59172i | −3.46410 | − | 2.00000i | −11.0786 | + | 1.50487i | 7.61146 | + | 7.07571i | −10.0583 | − | 2.69511i | 5.65685 | − | 5.65685i | −15.1677 | − | 22.3370i | 2.82751 | − | 22.1812i |
23.8 | −0.517638 | + | 1.93185i | 3.25274 | − | 4.05212i | −3.46410 | − | 2.00000i | 10.9773 | + | 2.12101i | 6.14435 | + | 8.38134i | −5.89626 | − | 1.57990i | 5.65685 | − | 5.65685i | −5.83936 | − | 26.3610i | −9.77975 | + | 20.1086i |
23.9 | −0.517638 | + | 1.93185i | 5.18822 | − | 0.287005i | −3.46410 | − | 2.00000i | −2.82156 | − | 10.8184i | −2.13117 | + | 10.1714i | 20.0285 | + | 5.36661i | 5.65685 | − | 5.65685i | 26.8353 | − | 2.97809i | 22.3602 | + | 0.149197i |
23.10 | 0.517638 | − | 1.93185i | −5.19613 | − | 0.0142387i | −3.46410 | − | 2.00000i | 1.85147 | + | 11.0260i | −2.71722 | + | 10.0308i | 17.5853 | + | 4.71196i | −5.65685 | + | 5.65685i | 26.9996 | + | 0.147972i | 22.2589 | + | 2.13070i |
23.11 | 0.517638 | − | 1.93185i | −4.13988 | − | 3.14028i | −3.46410 | − | 2.00000i | −6.18941 | − | 9.31081i | −8.20952 | + | 6.37210i | 11.2370 | + | 3.01094i | −5.65685 | + | 5.65685i | 7.27723 | + | 26.0008i | −21.1910 | + | 7.13740i |
23.12 | 0.517638 | − | 1.93185i | −4.11577 | + | 3.17182i | −3.46410 | − | 2.00000i | 11.0644 | − | 1.60590i | 3.99702 | + | 9.59291i | −31.7299 | − | 8.50201i | −5.65685 | + | 5.65685i | 6.87905 | − | 26.1090i | 2.62500 | − | 22.2061i |
23.13 | 0.517638 | − | 1.93185i | −1.42405 | + | 4.99721i | −3.46410 | − | 2.00000i | 1.51899 | − | 11.0767i | 8.91673 | + | 5.33779i | 23.9804 | + | 6.42552i | −5.65685 | + | 5.65685i | −22.9442 | − | 14.2325i | −20.6122 | − | 8.66817i |
23.14 | 0.517638 | − | 1.93185i | −0.495164 | − | 5.17251i | −3.46410 | − | 2.00000i | −7.31344 | + | 8.45657i | −10.2488 | − | 1.72090i | −17.1411 | − | 4.59296i | −5.65685 | + | 5.65685i | −26.5096 | + | 5.12247i | 12.5511 | + | 18.5059i |
23.15 | 0.517638 | − | 1.93185i | 0.759735 | + | 5.14031i | −3.46410 | − | 2.00000i | −9.83011 | + | 5.32626i | 10.3236 | + | 1.19313i | −8.51682 | − | 2.28208i | −5.65685 | + | 5.65685i | −25.8456 | + | 7.81055i | 5.20110 | + | 21.7474i |
23.16 | 0.517638 | − | 1.93185i | 2.43185 | − | 4.59196i | −3.46410 | − | 2.00000i | 9.28847 | − | 6.22288i | −7.61218 | − | 7.07494i | 14.2017 | + | 3.80534i | −5.65685 | + | 5.65685i | −15.1723 | − | 22.3339i | −7.21361 | − | 21.1652i |
23.17 | 0.517638 | − | 1.93185i | 4.62106 | + | 2.37609i | −3.46410 | − | 2.00000i | 8.62775 | + | 7.11070i | 6.98229 | − | 7.69725i | 3.96829 | + | 1.06330i | −5.65685 | + | 5.65685i | 15.7084 | + | 21.9601i | 18.2029 | − | 12.9868i |
23.18 | 0.517638 | − | 1.93185i | 5.08511 | − | 1.06846i | −3.46410 | − | 2.00000i | −5.55402 | − | 9.70324i | 0.568135 | − | 10.3768i | −31.9881 | − | 8.57118i | −5.65685 | + | 5.65685i | 24.7168 | − | 10.8665i | −21.6202 | + | 5.70678i |
47.1 | −0.517638 | − | 1.93185i | −4.93707 | − | 1.62028i | −3.46410 | + | 2.00000i | 5.77745 | + | 9.57189i | −0.574521 | + | 10.3764i | −1.66858 | + | 0.447095i | 5.65685 | + | 5.65685i | 21.7494 | + | 15.9989i | 15.5008 | − | 16.1159i |
47.2 | −0.517638 | − | 1.93185i | −4.22825 | + | 3.02025i | −3.46410 | + | 2.00000i | −11.1170 | − | 1.18817i | 8.02337 | + | 6.60496i | 23.8855 | − | 6.40009i | 5.65685 | + | 5.65685i | 8.75622 | − | 25.5407i | 3.45924 | + | 22.0915i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.d | odd | 6 | 1 | inner |
45.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 90.4.l.a | ✓ | 72 |
3.b | odd | 2 | 1 | 270.4.m.a | 72 | ||
5.c | odd | 4 | 1 | inner | 90.4.l.a | ✓ | 72 |
9.c | even | 3 | 1 | 270.4.m.a | 72 | ||
9.d | odd | 6 | 1 | inner | 90.4.l.a | ✓ | 72 |
15.e | even | 4 | 1 | 270.4.m.a | 72 | ||
45.k | odd | 12 | 1 | 270.4.m.a | 72 | ||
45.l | even | 12 | 1 | inner | 90.4.l.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
90.4.l.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
90.4.l.a | ✓ | 72 | 5.c | odd | 4 | 1 | inner |
90.4.l.a | ✓ | 72 | 9.d | odd | 6 | 1 | inner |
90.4.l.a | ✓ | 72 | 45.l | even | 12 | 1 | inner |
270.4.m.a | 72 | 3.b | odd | 2 | 1 | ||
270.4.m.a | 72 | 9.c | even | 3 | 1 | ||
270.4.m.a | 72 | 15.e | even | 4 | 1 | ||
270.4.m.a | 72 | 45.k | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(90, [\chi])\).