Properties

Label 900.1.l.a
Level 900900
Weight 11
Character orbit 900.l
Analytic conductor 0.4490.449
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -3
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,1,Mod(757,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.757");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 900=223252 900 = 2^{2} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 900.l (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4491585113700.449158511370
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.450000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q7β3q13β2q19+q31+β3q43+2β2q49q61+β1q672β2q793q91+β1q97+O(q100) q - \beta_1 q^{7} - \beta_{3} q^{13} - \beta_{2} q^{19} + q^{31} + \beta_{3} q^{43} + 2 \beta_{2} q^{49} - q^{61} + \beta_1 q^{67} - 2 \beta_{2} q^{79} - 3 q^{91} + \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q314q6112q91+O(q100) 4 q + 4 q^{31} - 4 q^{61} - 12 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/900Z)×\left(\mathbb{Z}/900\mathbb{Z}\right)^\times.

nn 101101 451451 577577
χ(n)\chi(n) 11 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
757.1
1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
0 0 0 0 0 −1.22474 1.22474i 0 0 0
757.2 0 0 0 0 0 1.22474 + 1.22474i 0 0 0
793.1 0 0 0 0 0 −1.22474 + 1.22474i 0 0 0
793.2 0 0 0 0 0 1.22474 1.22474i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
5.b even 2 1 inner
5.c odd 4 2 inner
15.d odd 2 1 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.1.l.a 4
3.b odd 2 1 CM 900.1.l.a 4
4.b odd 2 1 3600.1.bh.b 4
5.b even 2 1 inner 900.1.l.a 4
5.c odd 4 2 inner 900.1.l.a 4
12.b even 2 1 3600.1.bh.b 4
15.d odd 2 1 inner 900.1.l.a 4
15.e even 4 2 inner 900.1.l.a 4
20.d odd 2 1 3600.1.bh.b 4
20.e even 4 2 3600.1.bh.b 4
60.h even 2 1 3600.1.bh.b 4
60.l odd 4 2 3600.1.bh.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
900.1.l.a 4 1.a even 1 1 trivial
900.1.l.a 4 3.b odd 2 1 CM
900.1.l.a 4 5.b even 2 1 inner
900.1.l.a 4 5.c odd 4 2 inner
900.1.l.a 4 15.d odd 2 1 inner
900.1.l.a 4 15.e even 4 2 inner
3600.1.bh.b 4 4.b odd 2 1
3600.1.bh.b 4 12.b even 2 1
3600.1.bh.b 4 20.d odd 2 1
3600.1.bh.b 4 20.e even 4 2
3600.1.bh.b 4 60.h even 2 1
3600.1.bh.b 4 60.l odd 4 2

Hecke kernels

This newform subspace is the entire newspace S1new(900,[χ])S_{1}^{\mathrm{new}}(900, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+9 T^{4} + 9 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4+9 T^{4} + 9 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T1)4 (T - 1)^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4+9 T^{4} + 9 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
6767 T4+9 T^{4} + 9 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4+9 T^{4} + 9 Copy content Toggle raw display
show more
show less