Properties

Label 900.2.bj.e.523.8
Level $900$
Weight $2$
Character 900.523
Analytic conductor $7.187$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.8
Character \(\chi\) \(=\) 900.523
Dual form 900.2.bj.e.487.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04515 - 0.952711i) q^{2} +(0.184684 + 1.99145i) q^{4} +(-1.38078 + 1.75882i) q^{5} +(3.44825 + 3.44825i) q^{7} +(1.70426 - 2.25732i) q^{8} +(3.11877 - 0.522748i) q^{10} +(0.665578 + 0.916089i) q^{11} +(-0.0598699 - 0.378004i) q^{13} +(-0.318759 - 6.88912i) q^{14} +(-3.93178 + 0.735579i) q^{16} +(0.869332 + 0.442947i) q^{17} +(0.904594 + 2.78406i) q^{19} +(-3.75762 - 2.42494i) q^{20} +(0.177138 - 1.59155i) q^{22} +(-0.211827 + 1.33742i) q^{23} +(-1.18689 - 4.85709i) q^{25} +(-0.297555 + 0.452110i) q^{26} +(-6.23019 + 7.50386i) q^{28} +(-6.57862 - 2.13752i) q^{29} +(5.91690 - 1.92252i) q^{31} +(4.81010 + 2.97706i) q^{32} +(-0.486584 - 1.29117i) q^{34} +(-10.8261 + 1.30357i) q^{35} +(-8.95424 + 1.41821i) q^{37} +(1.70696 - 3.77158i) q^{38} +(1.61702 + 6.11435i) q^{40} +(5.06982 + 3.68344i) q^{41} +(-4.02869 + 4.02869i) q^{43} +(-1.70143 + 1.49465i) q^{44} +(1.49557 - 1.19600i) q^{46} +(-9.68440 + 4.93445i) q^{47} +16.7808i q^{49} +(-3.38692 + 6.20716i) q^{50} +(0.741720 - 0.189039i) q^{52} +(8.69751 - 4.43160i) q^{53} +(-2.53025 - 0.0942872i) q^{55} +(13.6605 - 1.90710i) q^{56} +(4.83921 + 8.50156i) q^{58} +(3.65195 + 2.65330i) q^{59} +(6.58194 - 4.78206i) q^{61} +(-8.01566 - 3.62777i) q^{62} +(-2.19101 - 7.69412i) q^{64} +(0.747507 + 0.416640i) q^{65} +(-5.19430 + 10.1944i) q^{67} +(-0.721557 + 1.81304i) q^{68} +(12.5569 + 8.95173i) q^{70} +(-2.75549 - 0.895311i) q^{71} +(3.17780 + 0.503314i) q^{73} +(10.7097 + 7.04856i) q^{74} +(-5.37726 + 2.31563i) q^{76} +(-0.863825 + 5.45398i) q^{77} +(3.19543 - 9.83453i) q^{79} +(4.13518 - 7.93097i) q^{80} +(-1.78948 - 8.67982i) q^{82} +(-9.67363 - 4.92896i) q^{83} +(-1.97942 + 0.917386i) q^{85} +(8.04876 - 0.372415i) q^{86} +(3.20222 + 0.0588286i) q^{88} +(8.22988 + 11.3275i) q^{89} +(1.09700 - 1.50990i) q^{91} +(-2.70254 - 0.174844i) q^{92} +(14.8228 + 4.06919i) q^{94} +(-6.14570 - 2.25315i) q^{95} +(-4.93021 - 9.67608i) q^{97} +(15.9873 - 17.5385i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 4 q^{10} + 16 q^{13} - 16 q^{16} + 28 q^{22} - 32 q^{25} + 28 q^{28} - 100 q^{34} - 104 q^{37} + 60 q^{40} + 156 q^{52} + 144 q^{58} - 48 q^{61} + 60 q^{64} + 28 q^{70} + 40 q^{73} + 64 q^{82} + 136 q^{85}+ \cdots - 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04515 0.952711i −0.739034 0.673668i
\(3\) 0 0
\(4\) 0.184684 + 1.99145i 0.0923419 + 0.995727i
\(5\) −1.38078 + 1.75882i −0.617504 + 0.786568i
\(6\) 0 0
\(7\) 3.44825 + 3.44825i 1.30332 + 1.30332i 0.926143 + 0.377172i \(0.123103\pi\)
0.377172 + 0.926143i \(0.376897\pi\)
\(8\) 1.70426 2.25732i 0.602546 0.798084i
\(9\) 0 0
\(10\) 3.11877 0.522748i 0.986242 0.165307i
\(11\) 0.665578 + 0.916089i 0.200679 + 0.276211i 0.897482 0.441052i \(-0.145395\pi\)
−0.696802 + 0.717263i \(0.745395\pi\)
\(12\) 0 0
\(13\) −0.0598699 0.378004i −0.0166049 0.104839i 0.977994 0.208634i \(-0.0669016\pi\)
−0.994599 + 0.103794i \(0.966902\pi\)
\(14\) −0.318759 6.88912i −0.0851918 1.84120i
\(15\) 0 0
\(16\) −3.93178 + 0.735579i −0.982946 + 0.183895i
\(17\) 0.869332 + 0.442947i 0.210844 + 0.107430i 0.556224 0.831033i \(-0.312250\pi\)
−0.345380 + 0.938463i \(0.612250\pi\)
\(18\) 0 0
\(19\) 0.904594 + 2.78406i 0.207528 + 0.638706i 0.999600 + 0.0282783i \(0.00900246\pi\)
−0.792072 + 0.610428i \(0.790998\pi\)
\(20\) −3.75762 2.42494i −0.840229 0.542232i
\(21\) 0 0
\(22\) 0.177138 1.59155i 0.0377660 0.339321i
\(23\) −0.211827 + 1.33742i −0.0441690 + 0.278872i −0.999881 0.0154316i \(-0.995088\pi\)
0.955712 + 0.294304i \(0.0950878\pi\)
\(24\) 0 0
\(25\) −1.18689 4.85709i −0.237378 0.971417i
\(26\) −0.297555 + 0.452110i −0.0583554 + 0.0886660i
\(27\) 0 0
\(28\) −6.23019 + 7.50386i −1.17740 + 1.41810i
\(29\) −6.57862 2.13752i −1.22162 0.396928i −0.373948 0.927450i \(-0.621996\pi\)
−0.847671 + 0.530522i \(0.821996\pi\)
\(30\) 0 0
\(31\) 5.91690 1.92252i 1.06271 0.345294i 0.275064 0.961426i \(-0.411301\pi\)
0.787643 + 0.616132i \(0.211301\pi\)
\(32\) 4.81010 + 2.97706i 0.850314 + 0.526275i
\(33\) 0 0
\(34\) −0.486584 1.29117i −0.0834484 0.221434i
\(35\) −10.8261 + 1.30357i −1.82995 + 0.220344i
\(36\) 0 0
\(37\) −8.95424 + 1.41821i −1.47207 + 0.233153i −0.840350 0.542045i \(-0.817650\pi\)
−0.631719 + 0.775198i \(0.717650\pi\)
\(38\) 1.70696 3.77158i 0.276906 0.611831i
\(39\) 0 0
\(40\) 1.61702 + 6.11435i 0.255673 + 0.966763i
\(41\) 5.06982 + 3.68344i 0.791772 + 0.575256i 0.908489 0.417909i \(-0.137237\pi\)
−0.116717 + 0.993165i \(0.537237\pi\)
\(42\) 0 0
\(43\) −4.02869 + 4.02869i −0.614369 + 0.614369i −0.944081 0.329713i \(-0.893048\pi\)
0.329713 + 0.944081i \(0.393048\pi\)
\(44\) −1.70143 + 1.49465i −0.256500 + 0.225328i
\(45\) 0 0
\(46\) 1.49557 1.19600i 0.220510 0.176341i
\(47\) −9.68440 + 4.93445i −1.41262 + 0.719763i −0.983061 0.183278i \(-0.941329\pi\)
−0.429554 + 0.903041i \(0.641329\pi\)
\(48\) 0 0
\(49\) 16.7808i 2.39726i
\(50\) −3.38692 + 6.20716i −0.478983 + 0.877824i
\(51\) 0 0
\(52\) 0.741720 0.189039i 0.102858 0.0262150i
\(53\) 8.69751 4.43160i 1.19469 0.608727i 0.260494 0.965475i \(-0.416114\pi\)
0.934201 + 0.356748i \(0.116114\pi\)
\(54\) 0 0
\(55\) −2.53025 0.0942872i −0.341179 0.0127137i
\(56\) 13.6605 1.90710i 1.82546 0.254847i
\(57\) 0 0
\(58\) 4.83921 + 8.50156i 0.635420 + 1.11631i
\(59\) 3.65195 + 2.65330i 0.475443 + 0.345430i 0.799559 0.600588i \(-0.205067\pi\)
−0.324116 + 0.946018i \(0.605067\pi\)
\(60\) 0 0
\(61\) 6.58194 4.78206i 0.842732 0.612280i −0.0804007 0.996763i \(-0.525620\pi\)
0.923132 + 0.384482i \(0.125620\pi\)
\(62\) −8.01566 3.62777i −1.01799 0.460728i
\(63\) 0 0
\(64\) −2.19101 7.69412i −0.273876 0.961765i
\(65\) 0.747507 + 0.416640i 0.0927169 + 0.0516778i
\(66\) 0 0
\(67\) −5.19430 + 10.1944i −0.634585 + 1.24544i 0.319976 + 0.947426i \(0.396325\pi\)
−0.954561 + 0.298017i \(0.903675\pi\)
\(68\) −0.721557 + 1.81304i −0.0875016 + 0.219863i
\(69\) 0 0
\(70\) 12.5569 + 8.95173i 1.50083 + 1.06994i
\(71\) −2.75549 0.895311i −0.327016 0.106254i 0.140908 0.990023i \(-0.454998\pi\)
−0.467924 + 0.883769i \(0.654998\pi\)
\(72\) 0 0
\(73\) 3.17780 + 0.503314i 0.371933 + 0.0589084i 0.339603 0.940569i \(-0.389707\pi\)
0.0323299 + 0.999477i \(0.489707\pi\)
\(74\) 10.7097 + 7.04856i 1.24498 + 0.819378i
\(75\) 0 0
\(76\) −5.37726 + 2.31563i −0.616814 + 0.265621i
\(77\) −0.863825 + 5.45398i −0.0984420 + 0.621539i
\(78\) 0 0
\(79\) 3.19543 9.83453i 0.359514 1.10647i −0.593831 0.804590i \(-0.702385\pi\)
0.953345 0.301881i \(-0.0976147\pi\)
\(80\) 4.13518 7.93097i 0.462327 0.886709i
\(81\) 0 0
\(82\) −1.78948 8.67982i −0.197615 0.958525i
\(83\) −9.67363 4.92896i −1.06182 0.541023i −0.166312 0.986073i \(-0.553186\pi\)
−0.895506 + 0.445050i \(0.853186\pi\)
\(84\) 0 0
\(85\) −1.97942 + 0.917386i −0.214698 + 0.0995044i
\(86\) 8.04876 0.372415i 0.867920 0.0401585i
\(87\) 0 0
\(88\) 3.20222 + 0.0588286i 0.341358 + 0.00627115i
\(89\) 8.22988 + 11.3275i 0.872366 + 1.20071i 0.978477 + 0.206354i \(0.0661599\pi\)
−0.106112 + 0.994354i \(0.533840\pi\)
\(90\) 0 0
\(91\) 1.09700 1.50990i 0.114997 0.158280i
\(92\) −2.70254 0.174844i −0.281759 0.0182287i
\(93\) 0 0
\(94\) 14.8228 + 4.06919i 1.52885 + 0.419705i
\(95\) −6.14570 2.25315i −0.630535 0.231168i
\(96\) 0 0
\(97\) −4.93021 9.67608i −0.500587 0.982457i −0.993655 0.112467i \(-0.964125\pi\)
0.493069 0.869990i \(-0.335875\pi\)
\(98\) 15.9873 17.5385i 1.61496 1.77166i
\(99\) 0 0
\(100\) 9.45347 3.26066i 0.945347 0.326066i
\(101\) 0.642043 0.0638857 0.0319429 0.999490i \(-0.489831\pi\)
0.0319429 + 0.999490i \(0.489831\pi\)
\(102\) 0 0
\(103\) −0.889862 1.74645i −0.0876807 0.172083i 0.843002 0.537910i \(-0.180786\pi\)
−0.930683 + 0.365827i \(0.880786\pi\)
\(104\) −0.955310 0.509070i −0.0936758 0.0499184i
\(105\) 0 0
\(106\) −13.3123 3.65452i −1.29300 0.354958i
\(107\) 2.25202 + 2.25202i 0.217711 + 0.217711i 0.807533 0.589822i \(-0.200802\pi\)
−0.589822 + 0.807533i \(0.700802\pi\)
\(108\) 0 0
\(109\) −5.68371 + 7.82296i −0.544401 + 0.749303i −0.989239 0.146307i \(-0.953261\pi\)
0.444838 + 0.895611i \(0.353261\pi\)
\(110\) 2.55467 + 2.50914i 0.243578 + 0.239237i
\(111\) 0 0
\(112\) −16.0942 11.0213i −1.52076 1.04142i
\(113\) 3.29273 + 20.7895i 0.309754 + 1.95571i 0.293912 + 0.955832i \(0.405043\pi\)
0.0158414 + 0.999875i \(0.494957\pi\)
\(114\) 0 0
\(115\) −2.05980 2.21926i −0.192077 0.206947i
\(116\) 3.04182 13.4958i 0.282425 1.25305i
\(117\) 0 0
\(118\) −1.28902 6.25235i −0.118664 0.575575i
\(119\) 1.47028 + 4.52506i 0.134781 + 0.414812i
\(120\) 0 0
\(121\) 3.00296 9.24217i 0.272996 0.840197i
\(122\) −11.4351 1.27271i −1.03528 0.115226i
\(123\) 0 0
\(124\) 4.92136 + 11.4282i 0.441952 + 1.02628i
\(125\) 10.1816 + 4.61905i 0.910668 + 0.413140i
\(126\) 0 0
\(127\) 6.98557 + 1.10641i 0.619869 + 0.0981777i 0.458468 0.888711i \(-0.348399\pi\)
0.161402 + 0.986889i \(0.448399\pi\)
\(128\) −5.04033 + 10.1289i −0.445507 + 0.895279i
\(129\) 0 0
\(130\) −0.384321 1.14761i −0.0337072 0.100652i
\(131\) 17.4296 5.66323i 1.52283 0.494798i 0.576254 0.817271i \(-0.304514\pi\)
0.946579 + 0.322473i \(0.104514\pi\)
\(132\) 0 0
\(133\) −6.48085 + 12.7194i −0.561961 + 1.10291i
\(134\) 15.1411 5.70601i 1.30799 0.492924i
\(135\) 0 0
\(136\) 2.48144 1.20747i 0.212782 0.103539i
\(137\) −12.3832 + 1.96131i −1.05797 + 0.167566i −0.661092 0.750305i \(-0.729907\pi\)
−0.396879 + 0.917871i \(0.629907\pi\)
\(138\) 0 0
\(139\) −2.48077 + 1.80238i −0.210416 + 0.152876i −0.688002 0.725709i \(-0.741512\pi\)
0.477586 + 0.878585i \(0.341512\pi\)
\(140\) −4.59541 21.3190i −0.388383 1.80178i
\(141\) 0 0
\(142\) 2.02693 + 3.56092i 0.170096 + 0.298825i
\(143\) 0.306437 0.306437i 0.0256255 0.0256255i
\(144\) 0 0
\(145\) 12.8431 8.61915i 1.06657 0.715782i
\(146\) −2.84177 3.55356i −0.235186 0.294095i
\(147\) 0 0
\(148\) −4.47801 17.5700i −0.368090 1.44425i
\(149\) 4.15928i 0.340741i 0.985380 + 0.170371i \(0.0544965\pi\)
−0.985380 + 0.170371i \(0.945504\pi\)
\(150\) 0 0
\(151\) 6.04909i 0.492268i −0.969236 0.246134i \(-0.920840\pi\)
0.969236 0.246134i \(-0.0791603\pi\)
\(152\) 7.82617 + 2.70279i 0.634786 + 0.219225i
\(153\) 0 0
\(154\) 6.09889 4.87726i 0.491463 0.393021i
\(155\) −4.78858 + 13.0613i −0.384628 + 1.04911i
\(156\) 0 0
\(157\) 7.27059 7.27059i 0.580256 0.580256i −0.354717 0.934974i \(-0.615423\pi\)
0.934974 + 0.354717i \(0.115423\pi\)
\(158\) −12.7092 + 7.23425i −1.01109 + 0.575526i
\(159\) 0 0
\(160\) −11.8778 + 4.34944i −0.939023 + 0.343853i
\(161\) −5.34221 + 3.88134i −0.421025 + 0.305892i
\(162\) 0 0
\(163\) −15.3694 + 2.43428i −1.20383 + 0.190667i −0.725942 0.687756i \(-0.758596\pi\)
−0.477883 + 0.878423i \(0.658596\pi\)
\(164\) −6.39908 + 10.7766i −0.499684 + 0.841509i
\(165\) 0 0
\(166\) 5.41453 + 14.3677i 0.420249 + 1.11515i
\(167\) −6.72665 + 13.2018i −0.520524 + 1.02159i 0.469795 + 0.882775i \(0.344328\pi\)
−0.990319 + 0.138810i \(0.955672\pi\)
\(168\) 0 0
\(169\) 12.2244 3.97196i 0.940341 0.305535i
\(170\) 2.94280 + 0.927008i 0.225702 + 0.0710983i
\(171\) 0 0
\(172\) −8.76698 7.27891i −0.668476 0.555012i
\(173\) −13.1116 2.07667i −0.996857 0.157887i −0.363374 0.931643i \(-0.618375\pi\)
−0.633483 + 0.773757i \(0.718375\pi\)
\(174\) 0 0
\(175\) 12.6557 20.8411i 0.956685 1.57544i
\(176\) −3.29076 3.11228i −0.248051 0.234597i
\(177\) 0 0
\(178\) 2.19032 19.6796i 0.164171 1.47505i
\(179\) −7.26523 + 22.3601i −0.543029 + 1.67127i 0.182602 + 0.983187i \(0.441548\pi\)
−0.725631 + 0.688084i \(0.758452\pi\)
\(180\) 0 0
\(181\) −5.35786 16.4898i −0.398247 1.22568i −0.926404 0.376531i \(-0.877117\pi\)
0.528157 0.849147i \(-0.322883\pi\)
\(182\) −2.58503 + 0.532943i −0.191615 + 0.0395044i
\(183\) 0 0
\(184\) 2.65799 + 2.75748i 0.195950 + 0.203284i
\(185\) 9.86946 17.7071i 0.725617 1.30185i
\(186\) 0 0
\(187\) 0.172829 + 1.09120i 0.0126385 + 0.0797965i
\(188\) −11.6153 18.3747i −0.847132 1.34012i
\(189\) 0 0
\(190\) 4.27658 + 8.20996i 0.310256 + 0.595613i
\(191\) 1.56971 2.16053i 0.113581 0.156330i −0.748442 0.663200i \(-0.769198\pi\)
0.862022 + 0.506870i \(0.169198\pi\)
\(192\) 0 0
\(193\) 5.46235 + 5.46235i 0.393188 + 0.393188i 0.875822 0.482634i \(-0.160320\pi\)
−0.482634 + 0.875822i \(0.660320\pi\)
\(194\) −4.06569 + 14.8100i −0.291900 + 1.06330i
\(195\) 0 0
\(196\) −33.4183 + 3.09915i −2.38702 + 0.221368i
\(197\) −7.08233 13.8998i −0.504595 0.990323i −0.993045 0.117732i \(-0.962438\pi\)
0.488451 0.872592i \(-0.337562\pi\)
\(198\) 0 0
\(199\) −16.7739 −1.18907 −0.594534 0.804070i \(-0.702663\pi\)
−0.594534 + 0.804070i \(0.702663\pi\)
\(200\) −12.9868 5.59854i −0.918304 0.395876i
\(201\) 0 0
\(202\) −0.671033 0.611682i −0.0472137 0.0430378i
\(203\) −15.3140 30.0554i −1.07483 2.10948i
\(204\) 0 0
\(205\) −13.4788 + 3.83087i −0.941400 + 0.267560i
\(206\) −0.733824 + 2.67309i −0.0511279 + 0.186243i
\(207\) 0 0
\(208\) 0.513447 + 1.44219i 0.0356012 + 0.0999979i
\(209\) −1.94836 + 2.68169i −0.134771 + 0.185497i
\(210\) 0 0
\(211\) 8.21221 + 11.3031i 0.565352 + 0.778140i 0.991995 0.126280i \(-0.0403038\pi\)
−0.426643 + 0.904420i \(0.640304\pi\)
\(212\) 10.4316 + 16.5023i 0.716447 + 1.13338i
\(213\) 0 0
\(214\) −0.208179 4.49923i −0.0142308 0.307561i
\(215\) −1.52300 12.6485i −0.103868 0.862618i
\(216\) 0 0
\(217\) 27.0323 + 13.7736i 1.83507 + 0.935015i
\(218\) 13.3934 2.76124i 0.907113 0.187015i
\(219\) 0 0
\(220\) −0.279528 5.05629i −0.0188458 0.340895i
\(221\) 0.115389 0.355130i 0.00776188 0.0238886i
\(222\) 0 0
\(223\) −1.10929 + 7.00378i −0.0742836 + 0.469008i 0.922304 + 0.386465i \(0.126304\pi\)
−0.996588 + 0.0825427i \(0.973696\pi\)
\(224\) 6.32079 + 26.8521i 0.422325 + 1.79413i
\(225\) 0 0
\(226\) 16.3649 24.8651i 1.08858 1.65400i
\(227\) −2.15510 0.341335i −0.143039 0.0226552i 0.0845042 0.996423i \(-0.473069\pi\)
−0.227543 + 0.973768i \(0.573069\pi\)
\(228\) 0 0
\(229\) −7.26018 2.35897i −0.479766 0.155885i 0.0591428 0.998250i \(-0.481163\pi\)
−0.538909 + 0.842364i \(0.681163\pi\)
\(230\) 0.0384954 + 4.28185i 0.00253831 + 0.282337i
\(231\) 0 0
\(232\) −16.0367 + 11.2072i −1.05286 + 0.735787i
\(233\) 12.0468 23.6432i 0.789214 1.54892i −0.0459655 0.998943i \(-0.514636\pi\)
0.835180 0.549977i \(-0.185364\pi\)
\(234\) 0 0
\(235\) 4.69323 23.8465i 0.306153 1.55557i
\(236\) −4.60946 + 7.76271i −0.300051 + 0.505310i
\(237\) 0 0
\(238\) 2.77441 6.13013i 0.179838 0.397357i
\(239\) 18.9812 13.7906i 1.22779 0.892042i 0.231068 0.972938i \(-0.425778\pi\)
0.996723 + 0.0808951i \(0.0257779\pi\)
\(240\) 0 0
\(241\) −4.98282 3.62023i −0.320972 0.233199i 0.415618 0.909539i \(-0.363565\pi\)
−0.736590 + 0.676340i \(0.763565\pi\)
\(242\) −11.9437 + 6.79851i −0.767768 + 0.437025i
\(243\) 0 0
\(244\) 10.7388 + 12.2245i 0.687484 + 0.782592i
\(245\) −29.5144 23.1706i −1.88561 1.48032i
\(246\) 0 0
\(247\) 0.998225 0.508621i 0.0635155 0.0323628i
\(248\) 5.74418 16.6328i 0.364756 1.05619i
\(249\) 0 0
\(250\) −6.24067 14.5277i −0.394695 0.918812i
\(251\) 2.57211i 0.162350i −0.996700 0.0811750i \(-0.974133\pi\)
0.996700 0.0811750i \(-0.0258673\pi\)
\(252\) 0 0
\(253\) −1.36619 + 0.696107i −0.0858915 + 0.0437639i
\(254\) −6.24690 7.81159i −0.391965 0.490143i
\(255\) 0 0
\(256\) 14.9178 5.78428i 0.932365 0.361517i
\(257\) 11.1652 11.1652i 0.696464 0.696464i −0.267182 0.963646i \(-0.586093\pi\)
0.963646 + 0.267182i \(0.0860926\pi\)
\(258\) 0 0
\(259\) −35.7668 25.9861i −2.22244 1.61470i
\(260\) −0.691667 + 1.56557i −0.0428953 + 0.0970928i
\(261\) 0 0
\(262\) −23.6120 10.6865i −1.45875 0.660211i
\(263\) 25.4425 4.02970i 1.56885 0.248482i 0.689368 0.724411i \(-0.257888\pi\)
0.879484 + 0.475929i \(0.157888\pi\)
\(264\) 0 0
\(265\) −4.21496 + 21.4164i −0.258923 + 1.31560i
\(266\) 18.8914 7.11931i 1.15830 0.436513i
\(267\) 0 0
\(268\) −21.2610 8.46147i −1.29872 0.516867i
\(269\) 16.5916 5.39093i 1.01161 0.328691i 0.244112 0.969747i \(-0.421504\pi\)
0.767494 + 0.641057i \(0.221504\pi\)
\(270\) 0 0
\(271\) 11.1341 + 3.61770i 0.676351 + 0.219760i 0.626997 0.779021i \(-0.284284\pi\)
0.0493541 + 0.998781i \(0.484284\pi\)
\(272\) −3.74385 1.10211i −0.227004 0.0668251i
\(273\) 0 0
\(274\) 14.8109 + 9.74777i 0.894760 + 0.588884i
\(275\) 3.65956 4.32007i 0.220680 0.260510i
\(276\) 0 0
\(277\) 3.29508 20.8043i 0.197982 1.25001i −0.665795 0.746135i \(-0.731907\pi\)
0.863777 0.503875i \(-0.168093\pi\)
\(278\) 4.30992 + 0.479690i 0.258492 + 0.0287699i
\(279\) 0 0
\(280\) −15.5079 + 26.6597i −0.926775 + 1.59322i
\(281\) 4.13211 + 12.7173i 0.246501 + 0.758653i 0.995386 + 0.0959525i \(0.0305897\pi\)
−0.748885 + 0.662700i \(0.769410\pi\)
\(282\) 0 0
\(283\) 18.3418 + 9.34561i 1.09031 + 0.555539i 0.904251 0.427000i \(-0.140430\pi\)
0.186055 + 0.982539i \(0.440430\pi\)
\(284\) 1.27408 5.65277i 0.0756026 0.335430i
\(285\) 0 0
\(286\) −0.612219 + 0.0283273i −0.0362013 + 0.00167503i
\(287\) 4.78058 + 30.1834i 0.282189 + 1.78167i
\(288\) 0 0
\(289\) −9.43281 12.9832i −0.554871 0.763715i
\(290\) −21.6346 3.22748i −1.27043 0.189524i
\(291\) 0 0
\(292\) −0.415438 + 6.42139i −0.0243117 + 0.375784i
\(293\) −11.5164 11.5164i −0.672794 0.672794i 0.285565 0.958359i \(-0.407819\pi\)
−0.958359 + 0.285565i \(0.907819\pi\)
\(294\) 0 0
\(295\) −9.70921 + 2.75950i −0.565292 + 0.160664i
\(296\) −12.0590 + 22.6296i −0.700914 + 1.31532i
\(297\) 0 0
\(298\) 3.96259 4.34708i 0.229547 0.251819i
\(299\) 0.518234 0.0299702
\(300\) 0 0
\(301\) −27.7838 −1.60143
\(302\) −5.76303 + 6.32222i −0.331625 + 0.363803i
\(303\) 0 0
\(304\) −5.60456 10.2809i −0.321444 0.589650i
\(305\) −0.677437 + 18.1794i −0.0387900 + 1.04095i
\(306\) 0 0
\(307\) 2.86400 + 2.86400i 0.163457 + 0.163457i 0.784096 0.620639i \(-0.213127\pi\)
−0.620639 + 0.784096i \(0.713127\pi\)
\(308\) −11.0209 0.713007i −0.627973 0.0406273i
\(309\) 0 0
\(310\) 17.4485 9.08894i 0.991007 0.516217i
\(311\) −17.2238 23.7066i −0.976674 1.34428i −0.938602 0.345002i \(-0.887878\pi\)
−0.0380720 0.999275i \(-0.512122\pi\)
\(312\) 0 0
\(313\) 3.25048 + 20.5227i 0.183728 + 1.16001i 0.891314 + 0.453387i \(0.149784\pi\)
−0.707586 + 0.706627i \(0.750216\pi\)
\(314\) −14.5256 + 0.672099i −0.819729 + 0.0379287i
\(315\) 0 0
\(316\) 20.1752 + 4.54728i 1.13494 + 0.255804i
\(317\) 12.4309 + 6.33384i 0.698187 + 0.355744i 0.766788 0.641900i \(-0.221854\pi\)
−0.0686013 + 0.997644i \(0.521854\pi\)
\(318\) 0 0
\(319\) −2.42042 7.44929i −0.135518 0.417080i
\(320\) 16.5579 + 6.77030i 0.925613 + 0.378471i
\(321\) 0 0
\(322\) 9.28121 + 1.03299i 0.517222 + 0.0575662i
\(323\) −0.446796 + 2.82096i −0.0248604 + 0.156962i
\(324\) 0 0
\(325\) −1.76494 + 0.739442i −0.0979011 + 0.0410169i
\(326\) 18.3825 + 12.0984i 1.01811 + 0.670069i
\(327\) 0 0
\(328\) 16.9550 5.16668i 0.936182 0.285282i
\(329\) −50.4094 16.3790i −2.77916 0.903004i
\(330\) 0 0
\(331\) 26.4957 8.60896i 1.45633 0.473191i 0.529386 0.848381i \(-0.322423\pi\)
0.926948 + 0.375190i \(0.122423\pi\)
\(332\) 8.02923 20.1749i 0.440661 1.10724i
\(333\) 0 0
\(334\) 19.6079 7.38932i 1.07289 0.404326i
\(335\) −10.7579 23.2120i −0.587766 1.26821i
\(336\) 0 0
\(337\) 23.7132 3.75580i 1.29174 0.204591i 0.527517 0.849545i \(-0.323123\pi\)
0.764222 + 0.644953i \(0.223123\pi\)
\(338\) −16.5605 7.49505i −0.900773 0.407677i
\(339\) 0 0
\(340\) −2.19250 3.77250i −0.118905 0.204593i
\(341\) 5.69936 + 4.14082i 0.308637 + 0.224238i
\(342\) 0 0
\(343\) −33.7267 + 33.7267i −1.82107 + 1.82107i
\(344\) 2.22812 + 15.9600i 0.120132 + 0.860504i
\(345\) 0 0
\(346\) 11.7251 + 14.6620i 0.630348 + 0.788234i
\(347\) 17.5573 8.94587i 0.942523 0.480239i 0.0859695 0.996298i \(-0.472601\pi\)
0.856553 + 0.516058i \(0.172601\pi\)
\(348\) 0 0
\(349\) 5.15255i 0.275810i −0.990445 0.137905i \(-0.955963\pi\)
0.990445 0.137905i \(-0.0440368\pi\)
\(350\) −33.0827 + 9.72487i −1.76835 + 0.519816i
\(351\) 0 0
\(352\) 0.474245 + 6.38795i 0.0252773 + 0.340479i
\(353\) 12.0507 6.14012i 0.641392 0.326806i −0.102869 0.994695i \(-0.532802\pi\)
0.744261 + 0.667889i \(0.232802\pi\)
\(354\) 0 0
\(355\) 5.37941 3.61017i 0.285509 0.191608i
\(356\) −21.0382 + 18.4814i −1.11502 + 0.979514i
\(357\) 0 0
\(358\) 28.8960 16.4480i 1.52720 0.869304i
\(359\) 26.0169 + 18.9024i 1.37312 + 0.997632i 0.997486 + 0.0708643i \(0.0225757\pi\)
0.375636 + 0.926767i \(0.377424\pi\)
\(360\) 0 0
\(361\) 8.43865 6.13104i 0.444139 0.322686i
\(362\) −10.1102 + 22.3388i −0.531382 + 1.17410i
\(363\) 0 0
\(364\) 3.20949 + 1.90578i 0.168223 + 0.0998900i
\(365\) −5.27308 + 4.89420i −0.276005 + 0.256174i
\(366\) 0 0
\(367\) −9.01595 + 17.6948i −0.470629 + 0.923661i 0.526660 + 0.850076i \(0.323444\pi\)
−0.997289 + 0.0735850i \(0.976556\pi\)
\(368\) −0.150923 5.41428i −0.00786739 0.282239i
\(369\) 0 0
\(370\) −27.1849 + 9.10389i −1.41327 + 0.473289i
\(371\) 45.2724 + 14.7099i 2.35043 + 0.763700i
\(372\) 0 0
\(373\) 12.5823 + 1.99284i 0.651487 + 0.103185i 0.473425 0.880834i \(-0.343017\pi\)
0.178061 + 0.984019i \(0.443017\pi\)
\(374\) 0.858966 1.30513i 0.0444161 0.0674865i
\(375\) 0 0
\(376\) −5.36608 + 30.2704i −0.276734 + 1.56108i
\(377\) −0.414130 + 2.61472i −0.0213288 + 0.134665i
\(378\) 0 0
\(379\) −1.14962 + 3.53817i −0.0590521 + 0.181744i −0.976231 0.216731i \(-0.930460\pi\)
0.917179 + 0.398475i \(0.130460\pi\)
\(380\) 3.35204 12.6550i 0.171956 0.649188i
\(381\) 0 0
\(382\) −3.69895 + 0.762594i −0.189255 + 0.0390177i
\(383\) 9.64571 + 4.91473i 0.492873 + 0.251131i 0.682717 0.730683i \(-0.260798\pi\)
−0.189844 + 0.981814i \(0.560798\pi\)
\(384\) 0 0
\(385\) −8.39981 9.05006i −0.428094 0.461234i
\(386\) −0.504943 10.9130i −0.0257009 0.555458i
\(387\) 0 0
\(388\) 18.3589 11.6053i 0.932034 0.589170i
\(389\) 10.4403 + 14.3698i 0.529342 + 0.728577i 0.987030 0.160536i \(-0.0513223\pi\)
−0.457688 + 0.889113i \(0.651322\pi\)
\(390\) 0 0
\(391\) −0.776556 + 1.06884i −0.0392721 + 0.0540535i
\(392\) 37.8797 + 28.5989i 1.91322 + 1.44446i
\(393\) 0 0
\(394\) −5.84043 + 21.2749i −0.294237 + 1.07181i
\(395\) 12.8850 + 19.1995i 0.648313 + 0.966033i
\(396\) 0 0
\(397\) 13.9286 + 27.3364i 0.699057 + 1.37198i 0.918134 + 0.396269i \(0.129695\pi\)
−0.219077 + 0.975708i \(0.570305\pi\)
\(398\) 17.5312 + 15.9806i 0.878762 + 0.801038i
\(399\) 0 0
\(400\) 8.23937 + 18.2240i 0.411968 + 0.911198i
\(401\) −5.94140 −0.296699 −0.148350 0.988935i \(-0.547396\pi\)
−0.148350 + 0.988935i \(0.547396\pi\)
\(402\) 0 0
\(403\) −1.08096 2.12151i −0.0538466 0.105680i
\(404\) 0.118575 + 1.27860i 0.00589933 + 0.0636128i
\(405\) 0 0
\(406\) −12.6287 + 46.0023i −0.626750 + 2.28305i
\(407\) −7.25895 7.25895i −0.359813 0.359813i
\(408\) 0 0
\(409\) 1.52169 2.09443i 0.0752427 0.103563i −0.769737 0.638361i \(-0.779613\pi\)
0.844979 + 0.534799i \(0.179613\pi\)
\(410\) 17.7371 + 8.83756i 0.875973 + 0.436456i
\(411\) 0 0
\(412\) 3.31364 2.09466i 0.163251 0.103197i
\(413\) 3.44360 + 21.7421i 0.169449 + 1.06986i
\(414\) 0 0
\(415\) 22.0263 10.2083i 1.08123 0.501108i
\(416\) 0.837360 1.99647i 0.0410549 0.0978852i
\(417\) 0 0
\(418\) 4.59122 0.946549i 0.224564 0.0462972i
\(419\) −4.92657 15.1624i −0.240679 0.740733i −0.996317 0.0857438i \(-0.972673\pi\)
0.755639 0.654989i \(-0.227327\pi\)
\(420\) 0 0
\(421\) −3.87186 + 11.9164i −0.188703 + 0.580768i −0.999992 0.00387660i \(-0.998766\pi\)
0.811290 + 0.584645i \(0.198766\pi\)
\(422\) 2.18562 19.6374i 0.106394 0.955932i
\(423\) 0 0
\(424\) 4.81924 27.1857i 0.234043 1.32025i
\(425\) 1.11963 4.74815i 0.0543100 0.230319i
\(426\) 0 0
\(427\) 39.1859 + 6.20644i 1.89634 + 0.300351i
\(428\) −4.06889 + 4.90071i −0.196677 + 0.236885i
\(429\) 0 0
\(430\) −10.4586 + 14.6705i −0.504357 + 0.707476i
\(431\) −0.172476 + 0.0560408i −0.00830786 + 0.00269939i −0.313168 0.949698i \(-0.601390\pi\)
0.304860 + 0.952397i \(0.401390\pi\)
\(432\) 0 0
\(433\) −0.946710 + 1.85802i −0.0454960 + 0.0892909i −0.912635 0.408775i \(-0.865956\pi\)
0.867139 + 0.498066i \(0.165956\pi\)
\(434\) −15.1305 40.1495i −0.726289 1.92724i
\(435\) 0 0
\(436\) −16.6288 9.87408i −0.796373 0.472883i
\(437\) −3.91508 + 0.620088i −0.187284 + 0.0296628i
\(438\) 0 0
\(439\) −25.8490 + 18.7804i −1.23371 + 0.896340i −0.997162 0.0752806i \(-0.976015\pi\)
−0.236544 + 0.971621i \(0.576015\pi\)
\(440\) −4.52504 + 5.55090i −0.215723 + 0.264629i
\(441\) 0 0
\(442\) −0.458935 + 0.261233i −0.0218293 + 0.0124256i
\(443\) 15.5829 15.5829i 0.740368 0.740368i −0.232281 0.972649i \(-0.574619\pi\)
0.972649 + 0.232281i \(0.0746188\pi\)
\(444\) 0 0
\(445\) −31.2866 1.16586i −1.48313 0.0552672i
\(446\) 7.83196 6.26318i 0.370854 0.296570i
\(447\) 0 0
\(448\) 18.9761 34.0864i 0.896536 1.61043i
\(449\) 4.93653i 0.232969i 0.993192 + 0.116485i \(0.0371626\pi\)
−0.993192 + 0.116485i \(0.962837\pi\)
\(450\) 0 0
\(451\) 7.09601i 0.334138i
\(452\) −40.7931 + 10.3968i −1.91875 + 0.489024i
\(453\) 0 0
\(454\) 1.92722 + 2.40994i 0.0904487 + 0.113104i
\(455\) 1.14091 + 4.01427i 0.0534868 + 0.188192i
\(456\) 0 0
\(457\) 6.22919 6.22919i 0.291389 0.291389i −0.546240 0.837629i \(-0.683941\pi\)
0.837629 + 0.546240i \(0.183941\pi\)
\(458\) 5.34057 + 9.38234i 0.249548 + 0.438408i
\(459\) 0 0
\(460\) 4.03914 4.51186i 0.188326 0.210367i
\(461\) 0.269250 0.195622i 0.0125402 0.00911102i −0.581497 0.813548i \(-0.697533\pi\)
0.594038 + 0.804437i \(0.297533\pi\)
\(462\) 0 0
\(463\) −10.3280 + 1.63579i −0.479982 + 0.0760217i −0.391737 0.920077i \(-0.628126\pi\)
−0.0882447 + 0.996099i \(0.528126\pi\)
\(464\) 27.4380 + 3.56518i 1.27378 + 0.165509i
\(465\) 0 0
\(466\) −35.1159 + 13.2336i −1.62671 + 0.613036i
\(467\) 9.29525 18.2429i 0.430133 0.844183i −0.569619 0.821909i \(-0.692909\pi\)
0.999752 0.0222742i \(-0.00709069\pi\)
\(468\) 0 0
\(469\) −53.0640 + 17.2415i −2.45027 + 0.796140i
\(470\) −27.6240 + 20.4519i −1.27420 + 0.943377i
\(471\) 0 0
\(472\) 12.2132 3.72173i 0.562159 0.171306i
\(473\) −6.37204 1.00923i −0.292987 0.0464045i
\(474\) 0 0
\(475\) 12.4487 7.69806i 0.571188 0.353211i
\(476\) −8.73992 + 3.76371i −0.400594 + 0.172509i
\(477\) 0 0
\(478\) −32.9767 3.67027i −1.50832 0.167874i
\(479\) 6.48175 19.9488i 0.296159 0.911482i −0.686671 0.726968i \(-0.740929\pi\)
0.982830 0.184514i \(-0.0590712\pi\)
\(480\) 0 0
\(481\) 1.07218 + 3.29983i 0.0488872 + 0.150459i
\(482\) 1.75877 + 8.53087i 0.0801097 + 0.388571i
\(483\) 0 0
\(484\) 18.9600 + 4.27338i 0.861816 + 0.194245i
\(485\) 23.8260 + 4.68920i 1.08188 + 0.212925i
\(486\) 0 0
\(487\) 3.28173 + 20.7200i 0.148709 + 0.938914i 0.943342 + 0.331823i \(0.107664\pi\)
−0.794632 + 0.607091i \(0.792336\pi\)
\(488\) 0.422674 23.0074i 0.0191335 1.04150i
\(489\) 0 0
\(490\) 8.77214 + 52.3356i 0.396285 + 2.36428i
\(491\) −7.62203 + 10.4908i −0.343977 + 0.473444i −0.945598 0.325338i \(-0.894522\pi\)
0.601620 + 0.798782i \(0.294522\pi\)
\(492\) 0 0
\(493\) −4.77220 4.77220i −0.214929 0.214929i
\(494\) −1.52787 0.419434i −0.0687419 0.0188712i
\(495\) 0 0
\(496\) −21.8498 + 11.9113i −0.981086 + 0.534832i
\(497\) −6.41434 12.5889i −0.287722 0.564687i
\(498\) 0 0
\(499\) 30.5022 1.36547 0.682733 0.730668i \(-0.260791\pi\)
0.682733 + 0.730668i \(0.260791\pi\)
\(500\) −7.31825 + 21.1292i −0.327282 + 0.944927i
\(501\) 0 0
\(502\) −2.45047 + 2.68824i −0.109370 + 0.119982i
\(503\) −4.26886 8.37810i −0.190339 0.373561i 0.776040 0.630684i \(-0.217226\pi\)
−0.966379 + 0.257123i \(0.917226\pi\)
\(504\) 0 0
\(505\) −0.886521 + 1.12924i −0.0394497 + 0.0502504i
\(506\) 2.09106 + 0.574044i 0.0929591 + 0.0255194i
\(507\) 0 0
\(508\) −0.913235 + 14.1158i −0.0405182 + 0.626287i
\(509\) 12.1536 16.7281i 0.538701 0.741458i −0.449724 0.893167i \(-0.648478\pi\)
0.988425 + 0.151709i \(0.0484778\pi\)
\(510\) 0 0
\(511\) 9.22228 + 12.6934i 0.407970 + 0.561522i
\(512\) −21.1022 8.16695i −0.932592 0.360932i
\(513\) 0 0
\(514\) −22.3065 + 1.03212i −0.983896 + 0.0455247i
\(515\) 4.30040 + 0.846361i 0.189498 + 0.0372951i
\(516\) 0 0
\(517\) −10.9661 5.58752i −0.482289 0.245739i
\(518\) 12.6245 + 61.2348i 0.554688 + 2.69050i
\(519\) 0 0
\(520\) 2.21444 0.977303i 0.0971094 0.0428576i
\(521\) 7.34822 22.6155i 0.321931 0.990803i −0.650875 0.759185i \(-0.725598\pi\)
0.972807 0.231618i \(-0.0744020\pi\)
\(522\) 0 0
\(523\) 3.90499 24.6551i 0.170753 1.07809i −0.742245 0.670129i \(-0.766239\pi\)
0.912998 0.407964i \(-0.133761\pi\)
\(524\) 14.4970 + 33.6644i 0.633305 + 1.47064i
\(525\) 0 0
\(526\) −30.4304 20.0277i −1.32683 0.873249i
\(527\) 5.99533 + 0.949566i 0.261161 + 0.0413638i
\(528\) 0 0
\(529\) 20.1305 + 6.54078i 0.875238 + 0.284382i
\(530\) 24.8089 18.3678i 1.07763 0.797845i
\(531\) 0 0
\(532\) −26.5270 10.5572i −1.15009 0.457715i
\(533\) 1.08882 2.13694i 0.0471622 0.0925610i
\(534\) 0 0
\(535\) −7.07045 + 0.851352i −0.305682 + 0.0368071i
\(536\) 14.1596 + 29.0991i 0.611601 + 1.25689i
\(537\) 0 0
\(538\) −22.4767 10.1726i −0.969039 0.438573i
\(539\) −15.3727 + 11.1689i −0.662150 + 0.481080i
\(540\) 0 0
\(541\) 1.77850 + 1.29215i 0.0764635 + 0.0555540i 0.625360 0.780336i \(-0.284952\pi\)
−0.548897 + 0.835890i \(0.684952\pi\)
\(542\) −8.19025 14.3887i −0.351801 0.618047i
\(543\) 0 0
\(544\) 2.86290 + 4.71868i 0.122746 + 0.202312i
\(545\) −5.91121 20.7984i −0.253208 0.890906i
\(546\) 0 0
\(547\) −21.9911 + 11.2050i −0.940272 + 0.479092i −0.855785 0.517332i \(-0.826925\pi\)
−0.0844870 + 0.996425i \(0.526925\pi\)
\(548\) −6.19284 24.2984i −0.264545 1.03798i
\(549\) 0 0
\(550\) −7.94056 + 1.02862i −0.338587 + 0.0438607i
\(551\) 20.2488i 0.862629i
\(552\) 0 0
\(553\) 44.9305 22.8933i 1.91064 0.973520i
\(554\) −23.2644 + 18.6044i −0.988408 + 0.790425i
\(555\) 0 0
\(556\) −4.04752 4.60746i −0.171653 0.195400i
\(557\) −9.15739 + 9.15739i −0.388011 + 0.388011i −0.873978 0.485966i \(-0.838468\pi\)
0.485966 + 0.873978i \(0.338468\pi\)
\(558\) 0 0
\(559\) 1.76406 + 1.28166i 0.0746116 + 0.0542085i
\(560\) 41.6071 13.0888i 1.75822 0.553104i
\(561\) 0 0
\(562\) 7.79726 17.2283i 0.328908 0.726730i
\(563\) −28.6678 + 4.54054i −1.20820 + 0.191361i −0.727864 0.685721i \(-0.759487\pi\)
−0.480340 + 0.877082i \(0.659487\pi\)
\(564\) 0 0
\(565\) −41.1114 22.9144i −1.72957 0.964014i
\(566\) −10.2663 27.2420i −0.431524 1.14507i
\(567\) 0 0
\(568\) −6.71706 + 4.69418i −0.281842 + 0.196963i
\(569\) 14.1150 4.58626i 0.591734 0.192266i 0.00218334 0.999998i \(-0.499305\pi\)
0.589550 + 0.807732i \(0.299305\pi\)
\(570\) 0 0
\(571\) 15.9952 + 5.19714i 0.669376 + 0.217494i 0.623938 0.781474i \(-0.285532\pi\)
0.0454380 + 0.998967i \(0.485532\pi\)
\(572\) 0.666849 + 0.553661i 0.0278824 + 0.0231497i
\(573\) 0 0
\(574\) 23.7596 36.1007i 0.991707 1.50681i
\(575\) 6.74740 0.558513i 0.281386 0.0232916i
\(576\) 0 0
\(577\) −0.474490 + 2.99581i −0.0197533 + 0.124717i −0.995594 0.0937637i \(-0.970110\pi\)
0.975841 + 0.218481i \(0.0701102\pi\)
\(578\) −2.51047 + 22.5561i −0.104422 + 0.938210i
\(579\) 0 0
\(580\) 19.5366 + 23.9847i 0.811212 + 0.995911i
\(581\) −16.3608 50.3533i −0.678760 2.08901i
\(582\) 0 0
\(583\) 9.84861 + 5.01812i 0.407888 + 0.207829i
\(584\) 6.55193 6.31554i 0.271121 0.261339i
\(585\) 0 0
\(586\) 1.06458 + 23.0081i 0.0439775 + 0.950458i
\(587\) −5.91133 37.3227i −0.243987 1.54047i −0.740269 0.672311i \(-0.765302\pi\)
0.496282 0.868161i \(-0.334698\pi\)
\(588\) 0 0
\(589\) 10.7048 + 14.7339i 0.441083 + 0.607099i
\(590\) 12.7766 + 6.36598i 0.526004 + 0.262083i
\(591\) 0 0
\(592\) 34.1629 12.1627i 1.40409 0.499882i
\(593\) 3.22677 + 3.22677i 0.132507 + 0.132507i 0.770250 0.637742i \(-0.220132\pi\)
−0.637742 + 0.770250i \(0.720132\pi\)
\(594\) 0 0
\(595\) −9.98890 3.66216i −0.409505 0.150134i
\(596\) −8.28301 + 0.768151i −0.339285 + 0.0314647i
\(597\) 0 0
\(598\) −0.541633 0.493727i −0.0221490 0.0201900i
\(599\) 17.2089 0.703136 0.351568 0.936162i \(-0.385649\pi\)
0.351568 + 0.936162i \(0.385649\pi\)
\(600\) 0 0
\(601\) 38.1195 1.55493 0.777463 0.628929i \(-0.216506\pi\)
0.777463 + 0.628929i \(0.216506\pi\)
\(602\) 29.0383 + 26.4699i 1.18351 + 1.07883i
\(603\) 0 0
\(604\) 12.0465 1.11717i 0.490165 0.0454570i
\(605\) 12.1089 + 18.0431i 0.492295 + 0.733555i
\(606\) 0 0
\(607\) 20.3631 + 20.3631i 0.826511 + 0.826511i 0.987032 0.160521i \(-0.0513174\pi\)
−0.160521 + 0.987032i \(0.551317\pi\)
\(608\) −3.93711 + 16.0846i −0.159671 + 0.652318i
\(609\) 0 0
\(610\) 18.0278 18.3549i 0.729923 0.743167i
\(611\) 2.44504 + 3.36531i 0.0989159 + 0.136146i
\(612\) 0 0
\(613\) −3.33954 21.0850i −0.134883 0.851616i −0.958629 0.284658i \(-0.908120\pi\)
0.823746 0.566958i \(-0.191880\pi\)
\(614\) −0.264750 5.72188i −0.0106844 0.230916i
\(615\) 0 0
\(616\) 10.8392 + 11.2449i 0.436724 + 0.453071i
\(617\) −20.9180 10.6583i −0.842127 0.429085i −0.0209650 0.999780i \(-0.506674\pi\)
−0.821162 + 0.570695i \(0.806674\pi\)
\(618\) 0 0
\(619\) −0.134035 0.412516i −0.00538731 0.0165804i 0.948327 0.317295i \(-0.102775\pi\)
−0.953714 + 0.300715i \(0.902775\pi\)
\(620\) −26.8954 7.12403i −1.08015 0.286108i
\(621\) 0 0
\(622\) −4.58399 + 41.1863i −0.183801 + 1.65142i
\(623\) −10.6812 + 67.4386i −0.427934 + 2.70187i
\(624\) 0 0
\(625\) −22.1826 + 11.5297i −0.887303 + 0.461186i
\(626\) 16.1550 24.5461i 0.645683 0.981061i
\(627\) 0 0
\(628\) 15.8218 + 13.1363i 0.631359 + 0.524195i
\(629\) −8.41240 2.73336i −0.335424 0.108986i
\(630\) 0 0
\(631\) 16.2307 5.27366i 0.646132 0.209941i 0.0324242 0.999474i \(-0.489677\pi\)
0.613708 + 0.789533i \(0.289677\pi\)
\(632\) −16.7539 23.9737i −0.666433 0.953623i
\(633\) 0 0
\(634\) −6.95782 18.4628i −0.276330 0.733253i
\(635\) −11.5915 + 10.7587i −0.459995 + 0.426944i
\(636\) 0 0
\(637\) 6.34321 1.00467i 0.251327 0.0398063i
\(638\) −4.56731 + 10.0916i −0.180822 + 0.399530i
\(639\) 0 0
\(640\) −10.8553 22.8509i −0.429095 0.903259i
\(641\) 12.5185 + 9.09522i 0.494451 + 0.359240i 0.806893 0.590697i \(-0.201147\pi\)
−0.312442 + 0.949937i \(0.601147\pi\)
\(642\) 0 0
\(643\) −28.3880 + 28.3880i −1.11951 + 1.11951i −0.127702 + 0.991813i \(0.540760\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(644\) −8.71613 9.92194i −0.343464 0.390979i
\(645\) 0 0
\(646\) 3.15452 2.52266i 0.124113 0.0992527i
\(647\) −18.4230 + 9.38699i −0.724283 + 0.369041i −0.776942 0.629572i \(-0.783230\pi\)
0.0526593 + 0.998613i \(0.483230\pi\)
\(648\) 0 0
\(649\) 5.11149i 0.200643i
\(650\) 2.54910 + 0.908646i 0.0999840 + 0.0356400i
\(651\) 0 0
\(652\) −7.68623 30.1579i −0.301016 1.18108i
\(653\) −8.91662 + 4.54324i −0.348934 + 0.177791i −0.619669 0.784863i \(-0.712733\pi\)
0.270735 + 0.962654i \(0.412733\pi\)
\(654\) 0 0
\(655\) −14.1059 + 38.4752i −0.551163 + 1.50335i
\(656\) −22.6429 10.7532i −0.884056 0.419843i
\(657\) 0 0
\(658\) 37.0810 + 65.1442i 1.44557 + 2.53958i
\(659\) −33.4079 24.2722i −1.30139 0.945512i −0.301418 0.953492i \(-0.597460\pi\)
−0.999968 + 0.00798023i \(0.997460\pi\)
\(660\) 0 0
\(661\) −14.7870 + 10.7434i −0.575150 + 0.417871i −0.836972 0.547245i \(-0.815676\pi\)
0.261823 + 0.965116i \(0.415676\pi\)
\(662\) −35.8938 16.2450i −1.39505 0.631381i
\(663\) 0 0
\(664\) −27.6126 + 13.4363i −1.07158 + 0.521429i
\(665\) −13.4225 28.9613i −0.520501 1.12307i
\(666\) 0 0
\(667\) 4.25231 8.34562i 0.164650 0.323144i
\(668\) −27.5331 10.9577i −1.06529 0.423964i
\(669\) 0 0
\(670\) −10.8707 + 34.5093i −0.419973 + 1.33321i
\(671\) 8.76159 + 2.84681i 0.338237 + 0.109900i
\(672\) 0 0
\(673\) 48.1900 + 7.63255i 1.85759 + 0.294213i 0.982005 0.188853i \(-0.0604769\pi\)
0.875584 + 0.483066i \(0.160477\pi\)
\(674\) −28.3621 18.6664i −1.09247 0.719004i
\(675\) 0 0
\(676\) 10.1676 + 23.6108i 0.391063 + 0.908109i
\(677\) −3.79889 + 23.9853i −0.146003 + 0.921829i 0.800546 + 0.599271i \(0.204543\pi\)
−0.946550 + 0.322558i \(0.895457\pi\)
\(678\) 0 0
\(679\) 16.3649 50.3661i 0.628029 1.93287i
\(680\) −1.30261 + 6.03165i −0.0499527 + 0.231303i
\(681\) 0 0
\(682\) −2.01168 9.75763i −0.0770313 0.373639i
\(683\) 22.8040 + 11.6192i 0.872573 + 0.444598i 0.832128 0.554584i \(-0.187123\pi\)
0.0404447 + 0.999182i \(0.487123\pi\)
\(684\) 0 0
\(685\) 13.6489 24.4880i 0.521499 0.935638i
\(686\) 67.3813 3.11772i 2.57263 0.119035i
\(687\) 0 0
\(688\) 12.8765 18.8033i 0.490912 0.716871i
\(689\) −2.19588 3.02237i −0.0836564 0.115143i
\(690\) 0 0
\(691\) 25.8483 35.5771i 0.983315 1.35342i 0.0482902 0.998833i \(-0.484623\pi\)
0.935024 0.354583i \(-0.115377\pi\)
\(692\) 1.71410 26.4947i 0.0651603 1.00718i
\(693\) 0 0
\(694\) −26.8728 7.37720i −1.02008 0.280035i
\(695\) 0.255329 6.85191i 0.00968519 0.259908i
\(696\) 0 0
\(697\) 2.77579 + 5.44779i 0.105140 + 0.206350i
\(698\) −4.90889 + 5.38520i −0.185804 + 0.203833i
\(699\) 0 0
\(700\) 43.8415 + 21.3543i 1.65705 + 0.807118i
\(701\) 3.03450 0.114612 0.0573058 0.998357i \(-0.481749\pi\)
0.0573058 + 0.998357i \(0.481749\pi\)
\(702\) 0 0
\(703\) −12.0483 23.6462i −0.454412 0.891833i
\(704\) 5.59021 7.12819i 0.210689 0.268654i
\(705\) 0 0
\(706\) −18.4445 5.06344i −0.694169 0.190565i
\(707\) 2.21392 + 2.21392i 0.0832632 + 0.0832632i
\(708\) 0 0
\(709\) 2.95107 4.06180i 0.110830 0.152544i −0.749999 0.661439i \(-0.769946\pi\)
0.860829 + 0.508895i \(0.169946\pi\)
\(710\) −9.06175 1.35185i −0.340081 0.0507339i
\(711\) 0 0
\(712\) 39.5956 + 0.727418i 1.48391 + 0.0272611i
\(713\) 1.31786 + 8.32065i 0.0493543 + 0.311611i
\(714\) 0 0
\(715\) 0.115845 + 0.962089i 0.00433236 + 0.0359801i
\(716\) −45.8709 10.3388i −1.71427 0.386380i
\(717\) 0 0
\(718\) −9.18312 44.5425i −0.342711 1.66231i
\(719\) −2.16330 6.65796i −0.0806776 0.248300i 0.902580 0.430523i \(-0.141671\pi\)
−0.983257 + 0.182223i \(0.941671\pi\)
\(720\) 0 0
\(721\) 2.95374 9.09067i 0.110003 0.338554i
\(722\) −14.6608 1.63173i −0.545618 0.0607267i
\(723\) 0 0
\(724\) 31.8492 13.7153i 1.18367 0.509727i
\(725\) −2.57404 + 34.4899i −0.0955973 + 1.28092i
\(726\) 0 0
\(727\) −32.4515 5.13982i −1.20356 0.190625i −0.477735 0.878504i \(-0.658542\pi\)
−0.725826 + 0.687878i \(0.758542\pi\)
\(728\) −1.53875 5.04955i −0.0570297 0.187149i
\(729\) 0 0
\(730\) 10.1739 0.0914673i 0.376554 0.00338536i
\(731\) −5.28676 + 1.71777i −0.195538 + 0.0635341i
\(732\) 0 0
\(733\) −1.41894 + 2.78484i −0.0524099 + 0.102860i −0.915726 0.401803i \(-0.868384\pi\)
0.863316 + 0.504664i \(0.168384\pi\)
\(734\) 26.2811 9.90415i 0.970052 0.365569i
\(735\) 0 0
\(736\) −5.00051 + 5.80253i −0.184321 + 0.213884i
\(737\) −12.7962 + 2.02671i −0.471353 + 0.0746550i
\(738\) 0 0
\(739\) −20.2292 + 14.6973i −0.744142 + 0.540651i −0.894005 0.448056i \(-0.852116\pi\)
0.149864 + 0.988707i \(0.452116\pi\)
\(740\) 37.0857 + 16.3844i 1.36330 + 0.602301i
\(741\) 0 0
\(742\) −33.3023 58.5056i −1.22256 2.14781i
\(743\) 14.2547 14.2547i 0.522956 0.522956i −0.395507 0.918463i \(-0.629431\pi\)
0.918463 + 0.395507i \(0.129431\pi\)
\(744\) 0 0
\(745\) −7.31542 5.74305i −0.268016 0.210409i
\(746\) −11.2518 14.0701i −0.411958 0.515143i
\(747\) 0 0
\(748\) −2.14116 + 0.545709i −0.0782885 + 0.0199531i
\(749\) 15.5311i 0.567493i
\(750\) 0 0
\(751\) 19.9242i 0.727043i −0.931586 0.363522i \(-0.881574\pi\)
0.931586 0.363522i \(-0.118426\pi\)
\(752\) 34.4473 26.5248i 1.25616 0.967261i
\(753\) 0 0
\(754\) 2.92390 2.33823i 0.106482 0.0851532i
\(755\) 10.6393 + 8.35247i 0.387202 + 0.303977i
\(756\) 0 0
\(757\) −22.1849 + 22.1849i −0.806324 + 0.806324i −0.984075 0.177752i \(-0.943118\pi\)
0.177752 + 0.984075i \(0.443118\pi\)
\(758\) 4.57239 2.60267i 0.166077 0.0945332i
\(759\) 0 0
\(760\) −15.5599 + 10.0329i −0.564418 + 0.363930i
\(761\) −41.1545 + 29.9005i −1.49185 + 1.08389i −0.518361 + 0.855162i \(0.673458\pi\)
−0.973490 + 0.228732i \(0.926542\pi\)
\(762\) 0 0
\(763\) −46.5743 + 7.37665i −1.68610 + 0.267053i
\(764\) 4.59249 + 2.72700i 0.166151 + 0.0986594i
\(765\) 0 0
\(766\) −5.39891 14.3262i −0.195070 0.517627i
\(767\) 0.784314 1.53930i 0.0283199 0.0555810i
\(768\) 0 0
\(769\) −32.6790 + 10.6180i −1.17843 + 0.382896i −0.831785 0.555099i \(-0.812681\pi\)
−0.346649 + 0.937995i \(0.612681\pi\)
\(770\) 0.156983 + 17.4613i 0.00565728 + 0.629261i
\(771\) 0 0
\(772\) −9.86921 + 11.8868i −0.355201 + 0.427816i
\(773\) 11.0837 + 1.75548i 0.398652 + 0.0631403i 0.352542 0.935796i \(-0.385317\pi\)
0.0461104 + 0.998936i \(0.485317\pi\)
\(774\) 0 0
\(775\) −16.3606 26.4571i −0.587688 0.950367i
\(776\) −30.2444 5.36147i −1.08571 0.192465i
\(777\) 0 0
\(778\) 2.77860 24.9651i 0.0996175 0.895044i
\(779\) −5.66876 + 17.4467i −0.203105 + 0.625092i
\(780\) 0 0
\(781\) −1.01380 3.12017i −0.0362768 0.111648i
\(782\) 1.82991 0.377264i 0.0654376 0.0134909i
\(783\) 0 0
\(784\) −12.3436 65.9786i −0.440844 2.35638i
\(785\) 2.74856 + 22.8267i 0.0981004 + 0.814721i
\(786\) 0 0
\(787\) 4.95187 + 31.2648i 0.176515 + 1.11447i 0.903743 + 0.428076i \(0.140808\pi\)
−0.727228 + 0.686396i \(0.759192\pi\)
\(788\) 26.3729 16.6712i 0.939497 0.593887i
\(789\) 0 0
\(790\) 4.82484 32.3421i 0.171660 1.15068i
\(791\) −60.3330 + 83.0413i −2.14520 + 2.95261i
\(792\) 0 0
\(793\) −2.20170 2.20170i −0.0781846 0.0781846i
\(794\) 11.4862 41.8407i 0.407631 1.48487i
\(795\) 0 0
\(796\) −3.09786 33.4044i −0.109801 1.18399i
\(797\) 8.73067 + 17.1349i 0.309256 + 0.606949i 0.992361 0.123371i \(-0.0393707\pi\)
−0.683104 + 0.730321i \(0.739371\pi\)
\(798\) 0 0
\(799\) −10.6047 −0.375166
\(800\) 8.75078 26.8965i 0.309387 0.950936i
\(801\) 0 0
\(802\) 6.20966 + 5.66043i 0.219271 + 0.199877i
\(803\) 1.65399 + 3.24614i 0.0583681 + 0.114554i
\(804\) 0 0
\(805\) 0.549839 14.7553i 0.0193793 0.520054i
\(806\) −0.891415 + 3.24715i −0.0313988 + 0.114376i
\(807\) 0 0
\(808\) 1.09421 1.44930i 0.0384941 0.0509862i
\(809\) 7.61410 10.4799i 0.267698 0.368454i −0.653913 0.756570i \(-0.726874\pi\)
0.921611 + 0.388116i \(0.126874\pi\)
\(810\) 0 0
\(811\) −12.7466 17.5442i −0.447595 0.616061i 0.524284 0.851544i \(-0.324333\pi\)
−0.971879 + 0.235482i \(0.924333\pi\)
\(812\) 57.0257 36.0479i 2.00121 1.26503i
\(813\) 0 0
\(814\) 0.671023 + 14.5024i 0.0235193 + 0.508308i
\(815\) 16.9403 30.3932i 0.593394 1.06463i
\(816\) 0 0
\(817\) −14.8604 7.57176i −0.519900 0.264902i
\(818\) −3.58578 + 0.739262i −0.125374 + 0.0258477i
\(819\) 0 0
\(820\) −10.1183 26.1349i −0.353347 0.912671i
\(821\) 4.44219 13.6717i 0.155033 0.477144i −0.843131 0.537709i \(-0.819290\pi\)
0.998164 + 0.0605645i \(0.0192901\pi\)
\(822\) 0 0
\(823\) 4.81502 30.4008i 0.167841 1.05971i −0.749616 0.661873i \(-0.769762\pi\)
0.917457 0.397834i \(-0.130238\pi\)
\(824\) −5.45886 0.967700i −0.190168 0.0337114i
\(825\) 0 0
\(826\) 17.1148 26.0045i 0.595500 0.904812i
\(827\) 9.24250 + 1.46387i 0.321393 + 0.0509037i 0.315047 0.949076i \(-0.397980\pi\)
0.00634652 + 0.999980i \(0.497980\pi\)
\(828\) 0 0
\(829\) 3.27588 + 1.06440i 0.113776 + 0.0369681i 0.365352 0.930870i \(-0.380949\pi\)
−0.251576 + 0.967838i \(0.580949\pi\)
\(830\) −32.7464 10.3154i −1.13665 0.358054i
\(831\) 0 0
\(832\) −2.77723 + 1.28886i −0.0962831 + 0.0446830i
\(833\) −7.43301 + 14.5881i −0.257539 + 0.505448i
\(834\) 0 0
\(835\) −13.9315 30.0597i −0.482121 1.04026i
\(836\) −5.70030 3.38481i −0.197149 0.117066i
\(837\) 0 0
\(838\) −9.29639 + 20.5406i −0.321138 + 0.709564i
\(839\) 1.69383 1.23064i 0.0584776 0.0424864i −0.558162 0.829732i \(-0.688493\pi\)
0.616640 + 0.787245i \(0.288493\pi\)
\(840\) 0 0
\(841\) 15.2477 + 11.0781i 0.525784 + 0.382004i
\(842\) 15.3995 8.76564i 0.530703 0.302084i
\(843\) 0 0
\(844\) −20.9930 + 18.4418i −0.722610 + 0.634792i
\(845\) −9.89330 + 26.9850i −0.340340 + 0.928311i
\(846\) 0 0
\(847\) 42.2242 21.5143i 1.45084 0.739241i
\(848\) −30.9369 + 23.8218i −1.06238 + 0.818044i
\(849\) 0 0
\(850\) −5.69380 + 3.89585i −0.195296 + 0.133627i
\(851\) 12.2760i 0.420817i
\(852\) 0 0
\(853\) −33.8979 + 17.2718i −1.16064 + 0.591376i −0.924814 0.380419i \(-0.875780\pi\)
−0.235827 + 0.971795i \(0.575780\pi\)
\(854\) −35.0423 43.8195i −1.19912 1.49947i
\(855\) 0 0
\(856\) 8.92157 1.24551i 0.304933 0.0425708i
\(857\) 32.6730 32.6730i 1.11609 1.11609i 0.123779 0.992310i \(-0.460499\pi\)
0.992310 0.123779i \(-0.0395013\pi\)
\(858\) 0 0
\(859\) −30.2637 21.9879i −1.03258 0.750217i −0.0637605 0.997965i \(-0.520309\pi\)
−0.968824 + 0.247748i \(0.920309\pi\)
\(860\) 24.9076 5.36895i 0.849341 0.183080i
\(861\) 0 0
\(862\) 0.233654 + 0.105748i 0.00795829 + 0.00360181i
\(863\) −52.4831 + 8.31251i −1.78655 + 0.282961i −0.960019 0.279936i \(-0.909687\pi\)
−0.826527 + 0.562897i \(0.809687\pi\)
\(864\) 0 0
\(865\) 21.7567 20.1935i 0.739752 0.686600i
\(866\) 2.75961 1.03998i 0.0937755 0.0353398i
\(867\) 0 0
\(868\) −22.4371 + 56.3773i −0.761566 + 1.91357i
\(869\) 11.1361 3.61834i 0.377767 0.122744i
\(870\) 0 0
\(871\) 4.16450 + 1.35313i 0.141109 + 0.0458490i
\(872\) 7.97243 + 26.1623i 0.269980 + 0.885968i
\(873\) 0 0
\(874\) 4.68262 + 3.08186i 0.158392 + 0.104245i
\(875\) 19.1810 + 51.0362i 0.648435 + 1.72534i
\(876\) 0 0
\(877\) 0.559164 3.53042i 0.0188816 0.119214i −0.976447 0.215756i \(-0.930778\pi\)
0.995329 + 0.0965424i \(0.0307783\pi\)
\(878\) 44.9084 + 4.99826i 1.51559 + 0.168683i
\(879\) 0 0
\(880\) 10.0178 1.49048i 0.337699 0.0502442i
\(881\) 7.33129 + 22.5634i 0.246997 + 0.760180i 0.995302 + 0.0968241i \(0.0308684\pi\)
−0.748304 + 0.663356i \(0.769132\pi\)
\(882\) 0 0
\(883\) 34.4658 + 17.5612i 1.15987 + 0.590982i 0.924596 0.380948i \(-0.124402\pi\)
0.235271 + 0.971930i \(0.424402\pi\)
\(884\) 0.728536 + 0.164205i 0.0245033 + 0.00552280i
\(885\) 0 0
\(886\) −31.1326 + 1.44050i −1.04592 + 0.0483945i
\(887\) −5.52267 34.8688i −0.185433 1.17078i −0.888233 0.459392i \(-0.848067\pi\)
0.702800 0.711387i \(-0.251933\pi\)
\(888\) 0 0
\(889\) 20.2728 + 27.9031i 0.679929 + 0.935842i
\(890\) 31.5885 + 31.0256i 1.05885 + 1.03998i
\(891\) 0 0
\(892\) −14.1526 0.915615i −0.473863 0.0306571i
\(893\) −22.4982 22.4982i −0.752875 0.752875i
\(894\) 0 0
\(895\) −29.2957 43.6526i −0.979246 1.45915i
\(896\) −52.3073 + 17.5467i −1.74747 + 0.586194i
\(897\) 0 0
\(898\) 4.70309 5.15942i 0.156944 0.172172i
\(899\) −43.0345 −1.43528
\(900\) 0 0
\(901\) 9.52399 0.317290
\(902\) 6.76045 7.41641i 0.225098 0.246939i
\(903\) 0 0
\(904\) 52.5401 + 27.9978i 1.74746 + 0.931194i
\(905\) 36.4006 + 13.3453i 1.21000 + 0.443612i
\(906\) 0 0
\(907\) −12.7734 12.7734i −0.424135 0.424135i 0.462489 0.886625i \(-0.346956\pi\)
−0.886625 + 0.462489i \(0.846956\pi\)
\(908\) 0.281740 4.35483i 0.00934987 0.144520i
\(909\) 0 0
\(910\) 2.63201 5.28248i 0.0872503 0.175112i
\(911\) −21.0752 29.0075i −0.698253 0.961062i −0.999971 0.00766504i \(-0.997560\pi\)
0.301718 0.953397i \(-0.402440\pi\)
\(912\) 0 0
\(913\) −1.92318 12.1425i −0.0636481 0.401858i
\(914\) −12.4451 + 0.575831i −0.411646 + 0.0190468i
\(915\) 0 0
\(916\) 3.35695 14.8940i 0.110917 0.492111i
\(917\) 79.6298 + 40.5734i 2.62961 + 1.33985i
\(918\) 0 0
\(919\) 4.91425 + 15.1245i 0.162106 + 0.498912i 0.998811 0.0487419i \(-0.0155212\pi\)
−0.836705 + 0.547654i \(0.815521\pi\)
\(920\) −8.52001 + 0.867451i −0.280896 + 0.0285990i
\(921\) 0 0
\(922\) −0.467779 0.0520633i −0.0154055 0.00171461i
\(923\) −0.173460 + 1.09519i −0.00570952 + 0.0360485i
\(924\) 0 0
\(925\) 17.5161 + 41.8083i 0.575925 + 1.37465i
\(926\) 12.3527 + 8.12993i 0.405936 + 0.267166i
\(927\) 0 0
\(928\) −25.2803 29.8667i −0.829867 0.980421i
\(929\) 13.9497 + 4.53255i 0.457676 + 0.148708i 0.528776 0.848761i \(-0.322651\pi\)
−0.0711001 + 0.997469i \(0.522651\pi\)
\(930\) 0 0
\(931\) −46.7187 + 15.1798i −1.53115 + 0.497499i
\(932\) 49.3093 + 19.6242i 1.61518 + 0.642812i
\(933\) 0 0
\(934\) −27.0952 + 10.2110i −0.886582 + 0.334113i
\(935\) −2.15786 1.20273i −0.0705697 0.0393336i
\(936\) 0 0
\(937\) 17.6258 2.79165i 0.575809 0.0911992i 0.138264 0.990395i \(-0.455848\pi\)
0.437545 + 0.899196i \(0.355848\pi\)
\(938\) 71.8861 + 32.5346i 2.34716 + 1.06229i
\(939\) 0 0
\(940\) 48.3560 + 4.94229i 1.57720 + 0.161200i
\(941\) 32.8555 + 23.8709i 1.07106 + 0.778169i 0.976102 0.217312i \(-0.0697290\pi\)
0.0949560 + 0.995481i \(0.469729\pi\)
\(942\) 0 0
\(943\) −6.00024 + 6.00024i −0.195395 + 0.195395i
\(944\) −16.3104 7.74589i −0.530858 0.252107i
\(945\) 0 0
\(946\) 5.69824 + 7.12551i 0.185266 + 0.231670i
\(947\) −6.28337 + 3.20154i −0.204182 + 0.104036i −0.553092 0.833120i \(-0.686552\pi\)
0.348909 + 0.937156i \(0.386552\pi\)
\(948\) 0 0
\(949\) 1.23135i 0.0399714i
\(950\) −20.3449 3.81441i −0.660074 0.123756i
\(951\) 0 0
\(952\) 12.7203 + 4.39297i 0.412266 + 0.142377i
\(953\) −32.3125 + 16.4640i −1.04671 + 0.533323i −0.890775 0.454445i \(-0.849838\pi\)
−0.155930 + 0.987768i \(0.549838\pi\)
\(954\) 0 0
\(955\) 1.63254 + 5.74406i 0.0528279 + 0.185873i
\(956\) 30.9690 + 35.2533i 1.00161 + 1.14017i
\(957\) 0 0
\(958\) −25.7798 + 14.6743i −0.832908 + 0.474104i
\(959\) −49.4635 35.9373i −1.59726 1.16048i
\(960\) 0 0
\(961\) 6.23413 4.52936i 0.201101 0.146108i
\(962\) 2.02319 4.47030i 0.0652303 0.144128i
\(963\) 0 0
\(964\) 6.28928 10.5917i 0.202564 0.341134i
\(965\) −17.1496 + 2.06498i −0.552065 + 0.0664740i
\(966\) 0 0
\(967\) −1.56312 + 3.06780i −0.0502667 + 0.0986539i −0.914773 0.403967i \(-0.867631\pi\)
0.864507 + 0.502621i \(0.167631\pi\)
\(968\) −15.7447 22.5297i −0.506055 0.724132i
\(969\) 0 0
\(970\) −20.4343 27.6002i −0.656107 0.886190i
\(971\) −27.4780 8.92814i −0.881810 0.286517i −0.167101 0.985940i \(-0.553441\pi\)
−0.714709 + 0.699422i \(0.753441\pi\)
\(972\) 0 0
\(973\) −14.7693 2.33924i −0.473484 0.0749924i
\(974\) 16.3103 24.7821i 0.522615 0.794070i
\(975\) 0 0
\(976\) −22.3612 + 23.6436i −0.715764 + 0.756812i
\(977\) −0.124456 + 0.785785i −0.00398170 + 0.0251395i −0.989599 0.143852i \(-0.954051\pi\)
0.985618 + 0.168992i \(0.0540511\pi\)
\(978\) 0 0
\(979\) −4.89934 + 15.0786i −0.156583 + 0.481914i
\(980\) 40.6924 63.0559i 1.29987 2.01425i
\(981\) 0 0
\(982\) 17.9609 3.70291i 0.573155 0.118165i
\(983\) 42.2667 + 21.5360i 1.34810 + 0.686891i 0.970955 0.239263i \(-0.0769059\pi\)
0.377145 + 0.926154i \(0.376906\pi\)
\(984\) 0 0
\(985\) 34.2265 + 6.73611i 1.09055 + 0.214630i
\(986\) 0.441145 + 9.53419i 0.0140489 + 0.303630i
\(987\) 0 0
\(988\) 1.19725 + 1.89399i 0.0380897 + 0.0602557i
\(989\) −4.53468 6.24145i −0.144194 0.198467i
\(990\) 0 0
\(991\) −9.79781 + 13.4855i −0.311238 + 0.428382i −0.935767 0.352620i \(-0.885291\pi\)
0.624529 + 0.781002i \(0.285291\pi\)
\(992\) 34.1844 + 8.36747i 1.08535 + 0.265667i
\(993\) 0 0
\(994\) −5.28958 + 19.2683i −0.167775 + 0.611152i
\(995\) 23.1610 29.5022i 0.734254 0.935283i
\(996\) 0 0
\(997\) −16.4461 32.2773i −0.520853 1.02223i −0.990257 0.139249i \(-0.955531\pi\)
0.469404 0.882983i \(-0.344469\pi\)
\(998\) −31.8794 29.0598i −1.00913 0.919871i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.e.523.8 yes 224
3.2 odd 2 inner 900.2.bj.e.523.21 yes 224
4.3 odd 2 inner 900.2.bj.e.523.24 yes 224
12.11 even 2 inner 900.2.bj.e.523.5 yes 224
25.12 odd 20 inner 900.2.bj.e.487.24 yes 224
75.62 even 20 inner 900.2.bj.e.487.5 224
100.87 even 20 inner 900.2.bj.e.487.8 yes 224
300.287 odd 20 inner 900.2.bj.e.487.21 yes 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.bj.e.487.5 224 75.62 even 20 inner
900.2.bj.e.487.8 yes 224 100.87 even 20 inner
900.2.bj.e.487.21 yes 224 300.287 odd 20 inner
900.2.bj.e.487.24 yes 224 25.12 odd 20 inner
900.2.bj.e.523.5 yes 224 12.11 even 2 inner
900.2.bj.e.523.8 yes 224 1.1 even 1 trivial
900.2.bj.e.523.21 yes 224 3.2 odd 2 inner
900.2.bj.e.523.24 yes 224 4.3 odd 2 inner