Properties

Label 900.2.bj.f.487.12
Level $900$
Weight $2$
Character 900.487
Analytic conductor $7.187$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 487.12
Character \(\chi\) \(=\) 900.487
Dual form 900.2.bj.f.523.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.448691 - 1.34115i) q^{2} +(-1.59735 + 1.20352i) q^{4} +(-2.23534 - 0.0568795i) q^{5} +(2.47703 - 2.47703i) q^{7} +(2.33082 + 1.60227i) q^{8} +(0.926696 + 3.02345i) q^{10} +(-2.07978 + 2.86258i) q^{11} +(-0.541843 + 3.42106i) q^{13} +(-4.43349 - 2.21064i) q^{14} +(1.10307 - 3.84490i) q^{16} +(3.90086 - 1.98759i) q^{17} +(-1.81409 + 5.58320i) q^{19} +(3.63909 - 2.59943i) q^{20} +(4.77232 + 1.50488i) q^{22} +(-0.0122038 - 0.0770517i) q^{23} +(4.99353 + 0.254291i) q^{25} +(4.83127 - 0.808310i) q^{26} +(-0.975529 + 6.93786i) q^{28} +(0.807803 - 0.262471i) q^{29} +(-0.000123334 - 4.00736e-5i) q^{31} +(-5.65151 + 0.245797i) q^{32} +(-4.41593 - 4.33981i) q^{34} +(-5.67791 + 5.39613i) q^{35} +(5.10375 + 0.808354i) q^{37} +(8.30186 - 0.0721695i) q^{38} +(-5.11905 - 3.71421i) q^{40} +(4.23098 - 3.07399i) q^{41} +(-4.57632 - 4.57632i) q^{43} +(-0.123028 - 7.07561i) q^{44} +(-0.0978619 + 0.0509395i) q^{46} +(11.5502 + 5.88510i) q^{47} -5.27138i q^{49} +(-1.89951 - 6.81116i) q^{50} +(-3.25181 - 6.11676i) q^{52} +(9.59125 + 4.88699i) q^{53} +(4.81186 - 6.28055i) q^{55} +(9.74240 - 1.80463i) q^{56} +(-0.714467 - 0.965614i) q^{58} +(7.12122 - 5.17387i) q^{59} +(8.17083 + 5.93646i) q^{61} +(1.59424e-6 + 0.000183390i) q^{62} +(2.86543 + 7.46922i) q^{64} +(1.40579 - 7.61643i) q^{65} +(-4.18342 - 8.21042i) q^{67} +(-3.83894 + 7.86965i) q^{68} +(9.78463 + 5.19372i) q^{70} +(1.99288 - 0.647527i) q^{71} +(12.5935 - 1.99462i) q^{73} +(-1.20589 - 7.20758i) q^{74} +(-3.82176 - 11.1016i) q^{76} +(1.93900 + 12.2424i) q^{77} +(0.609102 + 1.87462i) q^{79} +(-2.68443 + 8.53193i) q^{80} +(-6.02107 - 4.29510i) q^{82} +(-14.4825 + 7.37922i) q^{83} +(-8.83282 + 4.22106i) q^{85} +(-4.08417 + 8.19088i) q^{86} +(-9.43424 + 3.33977i) q^{88} +(3.49423 - 4.80940i) q^{89} +(7.13192 + 9.81624i) q^{91} +(0.112227 + 0.108391i) q^{92} +(2.71033 - 18.1311i) q^{94} +(4.37269 - 12.3772i) q^{95} +(-1.72335 + 3.38227i) q^{97} +(-7.06970 + 2.36522i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{8} + 8 q^{10} + 4 q^{13} - 20 q^{17} + 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 76 q^{38} - 92 q^{40} + 140 q^{44} + 164 q^{50} - 172 q^{52} + 4 q^{53} - 120 q^{58}+ \cdots - 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.448691 1.34115i −0.317273 0.948334i
\(3\) 0 0
\(4\) −1.59735 + 1.20352i −0.798676 + 0.601761i
\(5\) −2.23534 0.0568795i −0.999676 0.0254373i
\(6\) 0 0
\(7\) 2.47703 2.47703i 0.936230 0.936230i −0.0618548 0.998085i \(-0.519702\pi\)
0.998085 + 0.0618548i \(0.0197016\pi\)
\(8\) 2.33082 + 1.60227i 0.824069 + 0.566490i
\(9\) 0 0
\(10\) 0.926696 + 3.02345i 0.293047 + 0.956098i
\(11\) −2.07978 + 2.86258i −0.627079 + 0.863100i −0.997844 0.0656267i \(-0.979095\pi\)
0.370766 + 0.928726i \(0.379095\pi\)
\(12\) 0 0
\(13\) −0.541843 + 3.42106i −0.150280 + 0.948832i 0.791150 + 0.611623i \(0.209483\pi\)
−0.941430 + 0.337209i \(0.890517\pi\)
\(14\) −4.43349 2.21064i −1.18490 0.590819i
\(15\) 0 0
\(16\) 1.10307 3.84490i 0.275767 0.961225i
\(17\) 3.90086 1.98759i 0.946097 0.482061i 0.0883256 0.996092i \(-0.471848\pi\)
0.857772 + 0.514031i \(0.171848\pi\)
\(18\) 0 0
\(19\) −1.81409 + 5.58320i −0.416181 + 1.28087i 0.495009 + 0.868888i \(0.335165\pi\)
−0.911190 + 0.411986i \(0.864835\pi\)
\(20\) 3.63909 2.59943i 0.813725 0.581250i
\(21\) 0 0
\(22\) 4.77232 + 1.50488i 1.01746 + 0.320842i
\(23\) −0.0122038 0.0770517i −0.00254466 0.0160664i 0.986383 0.164462i \(-0.0525889\pi\)
−0.988928 + 0.148396i \(0.952589\pi\)
\(24\) 0 0
\(25\) 4.99353 + 0.254291i 0.998706 + 0.0508581i
\(26\) 4.83127 0.808310i 0.947489 0.158523i
\(27\) 0 0
\(28\) −0.975529 + 6.93786i −0.184358 + 1.31113i
\(29\) 0.807803 0.262471i 0.150005 0.0487397i −0.233052 0.972464i \(-0.574871\pi\)
0.383057 + 0.923725i \(0.374871\pi\)
\(30\) 0 0
\(31\) −0.000123334 0 4.00736e-5i −2.21514e−5 0 7.19743e-6i 0.309006 0.951060i \(-0.400004\pi\)
−0.309028 + 0.951053i \(0.600004\pi\)
\(32\) −5.65151 + 0.245797i −0.999056 + 0.0434511i
\(33\) 0 0
\(34\) −4.41593 4.33981i −0.757325 0.744272i
\(35\) −5.67791 + 5.39613i −0.959743 + 0.912112i
\(36\) 0 0
\(37\) 5.10375 + 0.808354i 0.839051 + 0.132893i 0.561147 0.827716i \(-0.310360\pi\)
0.277904 + 0.960609i \(0.410360\pi\)
\(38\) 8.30186 0.0721695i 1.34674 0.0117074i
\(39\) 0 0
\(40\) −5.11905 3.71421i −0.809392 0.587268i
\(41\) 4.23098 3.07399i 0.660768 0.480076i −0.206154 0.978520i \(-0.566095\pi\)
0.866922 + 0.498443i \(0.166095\pi\)
\(42\) 0 0
\(43\) −4.57632 4.57632i −0.697883 0.697883i 0.266071 0.963954i \(-0.414275\pi\)
−0.963954 + 0.266071i \(0.914275\pi\)
\(44\) −0.123028 7.07561i −0.0185472 1.06669i
\(45\) 0 0
\(46\) −0.0978619 + 0.0509395i −0.0144289 + 0.00751062i
\(47\) 11.5502 + 5.88510i 1.68476 + 0.858430i 0.990307 + 0.138896i \(0.0443555\pi\)
0.694457 + 0.719534i \(0.255644\pi\)
\(48\) 0 0
\(49\) 5.27138i 0.753054i
\(50\) −1.89951 6.81116i −0.268632 0.963243i
\(51\) 0 0
\(52\) −3.25181 6.11676i −0.450945 0.848242i
\(53\) 9.59125 + 4.88699i 1.31746 + 0.671279i 0.964431 0.264333i \(-0.0851519\pi\)
0.353029 + 0.935613i \(0.385152\pi\)
\(54\) 0 0
\(55\) 4.81186 6.28055i 0.648831 0.846869i
\(56\) 9.74240 1.80463i 1.30188 0.241154i
\(57\) 0 0
\(58\) −0.714467 0.965614i −0.0938141 0.126791i
\(59\) 7.12122 5.17387i 0.927104 0.673580i −0.0181782 0.999835i \(-0.505787\pi\)
0.945282 + 0.326254i \(0.105787\pi\)
\(60\) 0 0
\(61\) 8.17083 + 5.93646i 1.04617 + 0.760085i 0.971480 0.237122i \(-0.0762040\pi\)
0.0746877 + 0.997207i \(0.476204\pi\)
\(62\) 1.59424e−6 0 0.000183390i 2.02468e−7 0 2.32905e-5i
\(63\) 0 0
\(64\) 2.86543 + 7.46922i 0.358179 + 0.933653i
\(65\) 1.40579 7.61643i 0.174367 0.944702i
\(66\) 0 0
\(67\) −4.18342 8.21042i −0.511086 1.00306i −0.991993 0.126291i \(-0.959693\pi\)
0.480907 0.876771i \(-0.340307\pi\)
\(68\) −3.83894 + 7.86965i −0.465540 + 0.954335i
\(69\) 0 0
\(70\) 9.78463 + 5.19372i 1.16949 + 0.620769i
\(71\) 1.99288 0.647527i 0.236512 0.0768473i −0.188363 0.982099i \(-0.560318\pi\)
0.424875 + 0.905252i \(0.360318\pi\)
\(72\) 0 0
\(73\) 12.5935 1.99462i 1.47396 0.233453i 0.632834 0.774288i \(-0.281892\pi\)
0.841129 + 0.540835i \(0.181892\pi\)
\(74\) −1.20589 7.20758i −0.140181 0.837864i
\(75\) 0 0
\(76\) −3.82176 11.1016i −0.438386 1.27344i
\(77\) 1.93900 + 12.2424i 0.220970 + 1.39515i
\(78\) 0 0
\(79\) 0.609102 + 1.87462i 0.0685293 + 0.210911i 0.979456 0.201656i \(-0.0646322\pi\)
−0.910927 + 0.412567i \(0.864632\pi\)
\(80\) −2.68443 + 8.53193i −0.300129 + 0.953899i
\(81\) 0 0
\(82\) −6.02107 4.29510i −0.664916 0.474314i
\(83\) −14.4825 + 7.37922i −1.58966 + 0.809974i −0.589667 + 0.807647i \(0.700741\pi\)
−0.999997 + 0.00232773i \(0.999259\pi\)
\(84\) 0 0
\(85\) −8.83282 + 4.22106i −0.958053 + 0.457838i
\(86\) −4.08417 + 8.19088i −0.440407 + 0.883245i
\(87\) 0 0
\(88\) −9.43424 + 3.33977i −1.00569 + 0.356020i
\(89\) 3.49423 4.80940i 0.370388 0.509795i −0.582618 0.812746i \(-0.697972\pi\)
0.953006 + 0.302951i \(0.0979718\pi\)
\(90\) 0 0
\(91\) 7.13192 + 9.81624i 0.747628 + 1.02902i
\(92\) 0.112227 + 0.108391i 0.0117005 + 0.0113006i
\(93\) 0 0
\(94\) 2.71033 18.1311i 0.279549 1.87008i
\(95\) 4.37269 12.3772i 0.448628 1.26987i
\(96\) 0 0
\(97\) −1.72335 + 3.38227i −0.174980 + 0.343417i −0.961795 0.273772i \(-0.911729\pi\)
0.786815 + 0.617189i \(0.211729\pi\)
\(98\) −7.06970 + 2.36522i −0.714147 + 0.238924i
\(99\) 0 0
\(100\) −8.28247 + 5.60363i −0.828247 + 0.560363i
\(101\) −5.57248 −0.554482 −0.277241 0.960800i \(-0.589420\pi\)
−0.277241 + 0.960800i \(0.589420\pi\)
\(102\) 0 0
\(103\) −7.38093 + 14.4859i −0.727265 + 1.42734i 0.169818 + 0.985475i \(0.445682\pi\)
−0.897083 + 0.441862i \(0.854318\pi\)
\(104\) −6.74442 + 7.10569i −0.661344 + 0.696771i
\(105\) 0 0
\(106\) 2.25066 15.0560i 0.218603 1.46237i
\(107\) 0.755111 0.755111i 0.0729993 0.0729993i −0.669664 0.742664i \(-0.733562\pi\)
0.742664 + 0.669664i \(0.233562\pi\)
\(108\) 0 0
\(109\) −4.88498 6.72359i −0.467896 0.644003i 0.508227 0.861223i \(-0.330301\pi\)
−0.976123 + 0.217220i \(0.930301\pi\)
\(110\) −10.5822 3.63538i −1.00897 0.346620i
\(111\) 0 0
\(112\) −6.79160 12.2563i −0.641746 1.15811i
\(113\) −2.07827 + 13.1217i −0.195508 + 1.23439i 0.673350 + 0.739324i \(0.264855\pi\)
−0.868858 + 0.495062i \(0.835145\pi\)
\(114\) 0 0
\(115\) 0.0228970 + 0.172931i 0.00213516 + 0.0161259i
\(116\) −0.974456 + 1.39147i −0.0904760 + 0.129195i
\(117\) 0 0
\(118\) −10.1342 7.22913i −0.932924 0.665496i
\(119\) 4.73924 14.5859i 0.434445 1.33708i
\(120\) 0 0
\(121\) −0.469662 1.44547i −0.0426965 0.131406i
\(122\) 4.29548 13.6219i 0.388895 1.23327i
\(123\) 0 0
\(124\) 0.000245237 0 8.44235e-5i 2.20230e−5 0 7.58145e-6i
\(125\) −11.1478 0.852457i −0.997089 0.0762460i
\(126\) 0 0
\(127\) −13.9231 + 2.20521i −1.23548 + 0.195680i −0.739800 0.672827i \(-0.765080\pi\)
−0.495677 + 0.868507i \(0.665080\pi\)
\(128\) 8.73163 7.19434i 0.771775 0.635896i
\(129\) 0 0
\(130\) −10.8455 + 1.53205i −0.951215 + 0.134370i
\(131\) −9.73405 3.16278i −0.850468 0.276334i −0.148826 0.988863i \(-0.547549\pi\)
−0.701642 + 0.712530i \(0.747549\pi\)
\(132\) 0 0
\(133\) 9.33620 + 18.3233i 0.809551 + 1.58883i
\(134\) −9.13432 + 9.29453i −0.789085 + 0.802925i
\(135\) 0 0
\(136\) 12.2769 + 1.61754i 1.05273 + 0.138703i
\(137\) −2.60954 0.413311i −0.222948 0.0353115i 0.0439608 0.999033i \(-0.486002\pi\)
−0.266909 + 0.963722i \(0.586002\pi\)
\(138\) 0 0
\(139\) 5.28116 + 3.83699i 0.447942 + 0.325449i 0.788783 0.614672i \(-0.210712\pi\)
−0.340841 + 0.940121i \(0.610712\pi\)
\(140\) 2.57527 15.4530i 0.217650 1.30602i
\(141\) 0 0
\(142\) −1.76262 2.38221i −0.147916 0.199911i
\(143\) −8.66614 8.66614i −0.724699 0.724699i
\(144\) 0 0
\(145\) −1.82065 + 0.540766i −0.151197 + 0.0449082i
\(146\) −8.32569 15.9948i −0.689039 1.32374i
\(147\) 0 0
\(148\) −9.12536 + 4.85125i −0.750100 + 0.398770i
\(149\) 1.66225i 0.136177i −0.997679 0.0680885i \(-0.978310\pi\)
0.997679 0.0680885i \(-0.0216900\pi\)
\(150\) 0 0
\(151\) 14.2155i 1.15684i 0.815738 + 0.578422i \(0.196331\pi\)
−0.815738 + 0.578422i \(0.803669\pi\)
\(152\) −13.1741 + 10.1068i −1.06856 + 0.819766i
\(153\) 0 0
\(154\) 15.5488 8.09355i 1.25296 0.652197i
\(155\) 0.000273414 0 9.65935e-5i 2.19612e−5 0 7.75858e-6i
\(156\) 0 0
\(157\) −10.3354 10.3354i −0.824857 0.824857i 0.161943 0.986800i \(-0.448224\pi\)
−0.986800 + 0.161943i \(0.948224\pi\)
\(158\) 2.24085 1.65802i 0.178272 0.131905i
\(159\) 0 0
\(160\) 12.6471 0.227985i 0.999838 0.0180238i
\(161\) −0.221089 0.160630i −0.0174242 0.0126594i
\(162\) 0 0
\(163\) 23.5826 + 3.73511i 1.84713 + 0.292556i 0.979012 0.203804i \(-0.0653305\pi\)
0.868117 + 0.496360i \(0.165331\pi\)
\(164\) −3.05875 + 10.0023i −0.238848 + 0.781050i
\(165\) 0 0
\(166\) 16.3948 + 16.1122i 1.27248 + 1.25055i
\(167\) 3.90289 + 7.65985i 0.302015 + 0.592737i 0.991280 0.131772i \(-0.0420667\pi\)
−0.689266 + 0.724509i \(0.742067\pi\)
\(168\) 0 0
\(169\) 0.953668 + 0.309865i 0.0733591 + 0.0238358i
\(170\) 9.62427 + 9.95215i 0.738148 + 0.763295i
\(171\) 0 0
\(172\) 12.8177 + 1.80229i 0.977341 + 0.137423i
\(173\) 24.3562 3.85764i 1.85176 0.293291i 0.871413 0.490551i \(-0.163204\pi\)
0.980351 + 0.197260i \(0.0632043\pi\)
\(174\) 0 0
\(175\) 12.9990 11.7392i 0.982634 0.887404i
\(176\) 8.71218 + 11.1542i 0.656705 + 0.840778i
\(177\) 0 0
\(178\) −8.01794 2.52834i −0.600970 0.189507i
\(179\) 2.88996 + 8.89439i 0.216006 + 0.664798i 0.999081 + 0.0428703i \(0.0136502\pi\)
−0.783075 + 0.621928i \(0.786350\pi\)
\(180\) 0 0
\(181\) −1.13761 + 3.50121i −0.0845580 + 0.260243i −0.984392 0.175990i \(-0.943687\pi\)
0.899834 + 0.436233i \(0.143687\pi\)
\(182\) 9.96500 13.9694i 0.738655 1.03548i
\(183\) 0 0
\(184\) 0.0950131 0.199147i 0.00700446 0.0146813i
\(185\) −11.3627 2.09725i −0.835399 0.154193i
\(186\) 0 0
\(187\) −2.42332 + 15.3003i −0.177211 + 1.11887i
\(188\) −25.5325 + 4.50030i −1.86215 + 0.328218i
\(189\) 0 0
\(190\) −18.5616 0.310882i −1.34660 0.0225538i
\(191\) −0.778612 1.07167i −0.0563384 0.0775431i 0.779918 0.625881i \(-0.215261\pi\)
−0.836257 + 0.548338i \(0.815261\pi\)
\(192\) 0 0
\(193\) −8.28171 + 8.28171i −0.596131 + 0.596131i −0.939281 0.343150i \(-0.888506\pi\)
0.343150 + 0.939281i \(0.388506\pi\)
\(194\) 5.30937 + 0.793674i 0.381191 + 0.0569824i
\(195\) 0 0
\(196\) 6.34423 + 8.42025i 0.453159 + 0.601447i
\(197\) −7.57112 + 14.8592i −0.539420 + 1.05867i 0.447016 + 0.894526i \(0.352487\pi\)
−0.986436 + 0.164146i \(0.947513\pi\)
\(198\) 0 0
\(199\) −18.7284 −1.32762 −0.663811 0.747900i \(-0.731062\pi\)
−0.663811 + 0.747900i \(0.731062\pi\)
\(200\) 11.2316 + 8.59371i 0.794192 + 0.607667i
\(201\) 0 0
\(202\) 2.50032 + 7.47351i 0.175922 + 0.525835i
\(203\) 1.35080 2.65110i 0.0948079 0.186071i
\(204\) 0 0
\(205\) −9.63254 + 6.63076i −0.672766 + 0.463113i
\(206\) 22.7395 + 3.39922i 1.58433 + 0.236835i
\(207\) 0 0
\(208\) 12.5559 + 5.85699i 0.870598 + 0.406109i
\(209\) −12.2094 16.8048i −0.844544 1.16241i
\(210\) 0 0
\(211\) 9.53944 13.1299i 0.656722 0.903901i −0.342645 0.939465i \(-0.611323\pi\)
0.999367 + 0.0355641i \(0.0113228\pi\)
\(212\) −21.2022 + 3.73705i −1.45617 + 0.256662i
\(213\) 0 0
\(214\) −1.35153 0.673903i −0.0923884 0.0460671i
\(215\) 9.96936 + 10.4900i 0.679905 + 0.715409i
\(216\) 0 0
\(217\) −0.000404766 0 0.000206238i −2.74773e−5 0 1.40004e-5i
\(218\) −6.82548 + 9.56829i −0.462280 + 0.648046i
\(219\) 0 0
\(220\) −0.127447 + 15.8234i −0.00859245 + 1.06682i
\(221\) 4.68600 + 14.4220i 0.315215 + 0.970131i
\(222\) 0 0
\(223\) −2.09027 13.1975i −0.139975 0.883768i −0.953315 0.301979i \(-0.902353\pi\)
0.813340 0.581789i \(-0.197647\pi\)
\(224\) −13.3901 + 14.6078i −0.894666 + 0.976026i
\(225\) 0 0
\(226\) 18.5306 3.10032i 1.23264 0.206230i
\(227\) −21.8851 + 3.46626i −1.45256 + 0.230064i −0.832298 0.554328i \(-0.812975\pi\)
−0.620266 + 0.784392i \(0.712975\pi\)
\(228\) 0 0
\(229\) 21.0179 6.82911i 1.38890 0.451281i 0.483314 0.875447i \(-0.339433\pi\)
0.905584 + 0.424166i \(0.139433\pi\)
\(230\) 0.221652 0.108301i 0.0146153 0.00714115i
\(231\) 0 0
\(232\) 2.30339 + 0.682549i 0.151225 + 0.0448116i
\(233\) −6.93889 13.6183i −0.454582 0.892167i −0.998590 0.0530874i \(-0.983094\pi\)
0.544008 0.839080i \(-0.316906\pi\)
\(234\) 0 0
\(235\) −25.4838 13.8122i −1.66238 0.901008i
\(236\) −5.14823 + 16.8350i −0.335121 + 1.09587i
\(237\) 0 0
\(238\) −21.6883 + 0.188540i −1.40584 + 0.0122212i
\(239\) 1.66547 + 1.21003i 0.107730 + 0.0782704i 0.640346 0.768087i \(-0.278791\pi\)
−0.532616 + 0.846357i \(0.678791\pi\)
\(240\) 0 0
\(241\) 16.0774 11.6809i 1.03564 0.752434i 0.0662080 0.997806i \(-0.478910\pi\)
0.969429 + 0.245371i \(0.0789099\pi\)
\(242\) −1.72786 + 1.27846i −0.111071 + 0.0821823i
\(243\) 0 0
\(244\) −20.1964 + 0.351167i −1.29294 + 0.0224812i
\(245\) −0.299834 + 11.7834i −0.0191557 + 0.752811i
\(246\) 0 0
\(247\) −18.1175 9.23133i −1.15279 0.587376i
\(248\) −0.000223260 0 0.000291019i −1.41770e−5 0 1.84797e-5i
\(249\) 0 0
\(250\) 3.85865 + 15.3333i 0.244042 + 0.969765i
\(251\) 25.9642i 1.63885i −0.573188 0.819424i \(-0.694293\pi\)
0.573188 0.819424i \(-0.305707\pi\)
\(252\) 0 0
\(253\) 0.245948 + 0.125317i 0.0154626 + 0.00787859i
\(254\) 9.20469 + 17.6835i 0.577554 + 1.10956i
\(255\) 0 0
\(256\) −13.5665 8.48237i −0.847905 0.530148i
\(257\) 5.28943 + 5.28943i 0.329946 + 0.329946i 0.852566 0.522620i \(-0.175045\pi\)
−0.522620 + 0.852566i \(0.675045\pi\)
\(258\) 0 0
\(259\) 14.6445 10.6398i 0.909963 0.661127i
\(260\) 6.92100 + 13.8580i 0.429222 + 0.859438i
\(261\) 0 0
\(262\) 0.125824 + 14.4739i 0.00777345 + 0.894201i
\(263\) 13.9709 + 2.21277i 0.861481 + 0.136445i 0.571515 0.820592i \(-0.306356\pi\)
0.289966 + 0.957037i \(0.406356\pi\)
\(264\) 0 0
\(265\) −21.1618 11.4696i −1.29996 0.704575i
\(266\) 20.3852 20.7427i 1.24990 1.27182i
\(267\) 0 0
\(268\) 16.5638 + 8.08010i 1.01180 + 0.493570i
\(269\) −9.22474 2.99730i −0.562443 0.182749i 0.0139774 0.999902i \(-0.495551\pi\)
−0.576420 + 0.817154i \(0.695551\pi\)
\(270\) 0 0
\(271\) −11.2200 + 3.64559i −0.681564 + 0.221454i −0.629280 0.777179i \(-0.716650\pi\)
−0.0522842 + 0.998632i \(0.516650\pi\)
\(272\) −3.33916 17.1908i −0.202466 1.04235i
\(273\) 0 0
\(274\) 0.616568 + 3.68523i 0.0372483 + 0.222633i
\(275\) −11.1134 + 13.7655i −0.670163 + 0.830091i
\(276\) 0 0
\(277\) 3.91891 + 24.7430i 0.235464 + 1.48666i 0.768106 + 0.640322i \(0.221199\pi\)
−0.532642 + 0.846341i \(0.678801\pi\)
\(278\) 2.77635 8.80444i 0.166515 0.528055i
\(279\) 0 0
\(280\) −21.8803 + 3.47982i −1.30760 + 0.207959i
\(281\) −4.75790 + 14.6433i −0.283832 + 0.873546i 0.702914 + 0.711275i \(0.251882\pi\)
−0.986746 + 0.162271i \(0.948118\pi\)
\(282\) 0 0
\(283\) 13.9254 7.09534i 0.827778 0.421774i 0.0118519 0.999930i \(-0.496227\pi\)
0.815927 + 0.578156i \(0.196227\pi\)
\(284\) −2.40402 + 3.43281i −0.142652 + 0.203700i
\(285\) 0 0
\(286\) −7.73415 + 15.5110i −0.457330 + 0.917184i
\(287\) 2.86591 18.0946i 0.169169 1.06809i
\(288\) 0 0
\(289\) 1.27385 1.75330i 0.0749323 0.103135i
\(290\) 1.54216 + 2.19912i 0.0905585 + 0.129137i
\(291\) 0 0
\(292\) −17.7157 + 18.3427i −1.03674 + 1.07343i
\(293\) −12.3367 + 12.3367i −0.720717 + 0.720717i −0.968751 0.248035i \(-0.920215\pi\)
0.248035 + 0.968751i \(0.420215\pi\)
\(294\) 0 0
\(295\) −16.2127 + 11.1603i −0.943938 + 0.649779i
\(296\) 10.6007 + 10.0617i 0.616154 + 0.584826i
\(297\) 0 0
\(298\) −2.22933 + 0.745839i −0.129141 + 0.0432053i
\(299\) 0.270211 0.0156267
\(300\) 0 0
\(301\) −22.6714 −1.30676
\(302\) 19.0651 6.37838i 1.09707 0.367035i
\(303\) 0 0
\(304\) 19.4658 + 13.1336i 1.11644 + 0.753266i
\(305\) −17.9270 13.7348i −1.02649 0.786451i
\(306\) 0 0
\(307\) 21.4864 21.4864i 1.22629 1.22629i 0.260937 0.965356i \(-0.415969\pi\)
0.965356 0.260937i \(-0.0840315\pi\)
\(308\) −17.8313 17.2218i −1.01603 0.981302i
\(309\) 0 0
\(310\) 6.86744e−6 0 0.000410030i 3.90044e−7 0 2.32881e-5i
\(311\) −7.60468 + 10.4670i −0.431222 + 0.593526i −0.968233 0.250049i \(-0.919553\pi\)
0.537011 + 0.843575i \(0.319553\pi\)
\(312\) 0 0
\(313\) 0.282072 1.78093i 0.0159436 0.100664i −0.978433 0.206563i \(-0.933772\pi\)
0.994377 + 0.105899i \(0.0337721\pi\)
\(314\) −9.22392 + 18.4988i −0.520536 + 1.04395i
\(315\) 0 0
\(316\) −3.22910 2.26136i −0.181651 0.127212i
\(317\) −0.555856 + 0.283223i −0.0312200 + 0.0159074i −0.469531 0.882916i \(-0.655577\pi\)
0.438311 + 0.898823i \(0.355577\pi\)
\(318\) 0 0
\(319\) −0.928712 + 2.85828i −0.0519979 + 0.160033i
\(320\) −5.98039 16.8593i −0.334314 0.942462i
\(321\) 0 0
\(322\) −0.116228 + 0.368586i −0.00647715 + 0.0205405i
\(323\) 4.02058 + 25.3849i 0.223711 + 1.41246i
\(324\) 0 0
\(325\) −3.57565 + 16.9454i −0.198341 + 0.939961i
\(326\) −5.57196 33.3036i −0.308602 1.84452i
\(327\) 0 0
\(328\) 14.7870 0.385716i 0.816477 0.0212976i
\(329\) 43.1877 14.0325i 2.38102 0.773639i
\(330\) 0 0
\(331\) −10.1209 3.28849i −0.556297 0.180752i 0.0173575 0.999849i \(-0.494475\pi\)
−0.573654 + 0.819098i \(0.694475\pi\)
\(332\) 14.2526 29.2173i 0.782216 1.60351i
\(333\) 0 0
\(334\) 8.52179 8.67126i 0.466292 0.474470i
\(335\) 8.88438 + 18.5911i 0.485405 + 1.01574i
\(336\) 0 0
\(337\) −16.9393 2.68292i −0.922741 0.146148i −0.323052 0.946381i \(-0.604709\pi\)
−0.599689 + 0.800233i \(0.704709\pi\)
\(338\) −0.0123273 1.41804i −0.000670516 0.0771314i
\(339\) 0 0
\(340\) 9.02897 17.3730i 0.489665 0.942184i
\(341\) 0.000371222 0 0.000269708i 2.01028e−5 0 1.46055e-5i
\(342\) 0 0
\(343\) 4.28185 + 4.28185i 0.231198 + 0.231198i
\(344\) −3.33406 17.9991i −0.179760 0.970447i
\(345\) 0 0
\(346\) −16.1021 30.9343i −0.865652 1.66304i
\(347\) 4.15803 + 2.11862i 0.223215 + 0.113734i 0.562022 0.827122i \(-0.310023\pi\)
−0.338807 + 0.940856i \(0.610023\pi\)
\(348\) 0 0
\(349\) 27.0365i 1.44723i −0.690203 0.723616i \(-0.742479\pi\)
0.690203 0.723616i \(-0.257521\pi\)
\(350\) −21.5766 12.1663i −1.15332 0.650316i
\(351\) 0 0
\(352\) 11.0503 16.6891i 0.588984 0.889532i
\(353\) 10.5828 + 5.39221i 0.563266 + 0.286998i 0.712348 0.701826i \(-0.247632\pi\)
−0.149082 + 0.988825i \(0.547632\pi\)
\(354\) 0 0
\(355\) −4.49161 + 1.33409i −0.238390 + 0.0708062i
\(356\) 0.206699 + 11.8877i 0.0109550 + 0.630046i
\(357\) 0 0
\(358\) 10.6320 7.86670i 0.561918 0.415768i
\(359\) −12.3154 + 8.94766i −0.649981 + 0.472239i −0.863265 0.504751i \(-0.831584\pi\)
0.213283 + 0.976990i \(0.431584\pi\)
\(360\) 0 0
\(361\) −12.5099 9.08895i −0.658414 0.478366i
\(362\) 5.20608 0.0452573i 0.273625 0.00237867i
\(363\) 0 0
\(364\) −23.2063 7.09657i −1.21634 0.371962i
\(365\) −28.2643 + 3.74235i −1.47942 + 0.195884i
\(366\) 0 0
\(367\) 10.8842 + 21.3614i 0.568149 + 1.11505i 0.979097 + 0.203396i \(0.0651977\pi\)
−0.410948 + 0.911659i \(0.634802\pi\)
\(368\) −0.309717 0.0380709i −0.0161451 0.00198458i
\(369\) 0 0
\(370\) 2.28561 + 16.1800i 0.118823 + 0.841159i
\(371\) 35.8631 11.6526i 1.86192 0.604974i
\(372\) 0 0
\(373\) 21.4232 3.39311i 1.10925 0.175689i 0.425185 0.905106i \(-0.360209\pi\)
0.684068 + 0.729418i \(0.260209\pi\)
\(374\) 21.6072 3.61506i 1.11728 0.186930i
\(375\) 0 0
\(376\) 17.4918 + 32.2236i 0.902070 + 1.66181i
\(377\) 0.460227 + 2.90576i 0.0237029 + 0.149654i
\(378\) 0 0
\(379\) −1.83578 5.64994i −0.0942976 0.290218i 0.892772 0.450508i \(-0.148757\pi\)
−0.987070 + 0.160290i \(0.948757\pi\)
\(380\) 7.91150 + 25.0334i 0.405851 + 1.28418i
\(381\) 0 0
\(382\) −1.08791 + 1.52508i −0.0556622 + 0.0780299i
\(383\) −4.12547 + 2.10203i −0.210802 + 0.107409i −0.556204 0.831046i \(-0.687743\pi\)
0.345402 + 0.938455i \(0.387743\pi\)
\(384\) 0 0
\(385\) −3.63800 27.4763i −0.185410 1.40032i
\(386\) 14.8229 + 7.39106i 0.754467 + 0.376195i
\(387\) 0 0
\(388\) −1.31784 7.47676i −0.0669030 0.379575i
\(389\) 5.61572 7.72937i 0.284728 0.391895i −0.642565 0.766231i \(-0.722130\pi\)
0.927293 + 0.374337i \(0.122130\pi\)
\(390\) 0 0
\(391\) −0.200752 0.276312i −0.0101525 0.0139737i
\(392\) 8.44620 12.2866i 0.426597 0.620569i
\(393\) 0 0
\(394\) 23.3254 + 3.48681i 1.17512 + 0.175663i
\(395\) −1.25492 4.22507i −0.0631421 0.212586i
\(396\) 0 0
\(397\) 9.59631 18.8338i 0.481625 0.945242i −0.514517 0.857480i \(-0.672029\pi\)
0.996142 0.0877616i \(-0.0279714\pi\)
\(398\) 8.40328 + 25.1176i 0.421218 + 1.25903i
\(399\) 0 0
\(400\) 6.48592 18.9191i 0.324296 0.945956i
\(401\) −16.7730 −0.837604 −0.418802 0.908078i \(-0.637550\pi\)
−0.418802 + 0.908078i \(0.637550\pi\)
\(402\) 0 0
\(403\) 0.000203922 0 0.000400219i 1.01581e−5 0 1.99363e-5i
\(404\) 8.90121 6.70660i 0.442852 0.333666i
\(405\) 0 0
\(406\) −4.16162 0.622101i −0.206537 0.0308743i
\(407\) −12.9287 + 12.9287i −0.640851 + 0.640851i
\(408\) 0 0
\(409\) −6.44004 8.86395i −0.318439 0.438294i 0.619551 0.784957i \(-0.287315\pi\)
−0.937990 + 0.346663i \(0.887315\pi\)
\(410\) 13.2149 + 9.94349i 0.652636 + 0.491074i
\(411\) 0 0
\(412\) −5.64415 32.0222i −0.278067 1.57762i
\(413\) 4.82365 30.4553i 0.237356 1.49861i
\(414\) 0 0
\(415\) 32.7932 15.6713i 1.60975 0.769275i
\(416\) 2.22135 19.4674i 0.108910 0.954465i
\(417\) 0 0
\(418\) −17.0595 + 23.9148i −0.834407 + 1.16971i
\(419\) −5.83515 + 17.9587i −0.285066 + 0.877342i 0.701313 + 0.712853i \(0.252597\pi\)
−0.986379 + 0.164489i \(0.947403\pi\)
\(420\) 0 0
\(421\) 4.18623 + 12.8839i 0.204024 + 0.627922i 0.999752 + 0.0222675i \(0.00708854\pi\)
−0.795728 + 0.605654i \(0.792911\pi\)
\(422\) −21.8894 6.90252i −1.06556 0.336009i
\(423\) 0 0
\(424\) 14.5252 + 26.7585i 0.705405 + 1.29951i
\(425\) 19.9845 8.93312i 0.969390 0.433320i
\(426\) 0 0
\(427\) 34.9442 5.53462i 1.69107 0.267839i
\(428\) −0.297385 + 2.11497i −0.0143746 + 0.102231i
\(429\) 0 0
\(430\) 9.59541 18.0771i 0.462732 0.871757i
\(431\) 8.92558 + 2.90010i 0.429930 + 0.139693i 0.515985 0.856598i \(-0.327426\pi\)
−0.0860549 + 0.996290i \(0.527426\pi\)
\(432\) 0 0
\(433\) −13.2636 26.0312i −0.637406 1.25098i −0.953254 0.302170i \(-0.902289\pi\)
0.315848 0.948810i \(-0.397711\pi\)
\(434\) 0.000458211 0 0.000450313i 2.19948e−5 0 2.16157e-5i
\(435\) 0 0
\(436\) 15.8950 + 4.86077i 0.761233 + 0.232788i
\(437\) 0.452334 + 0.0716426i 0.0216380 + 0.00342713i
\(438\) 0 0
\(439\) 8.37262 + 6.08307i 0.399603 + 0.290329i 0.769379 0.638792i \(-0.220566\pi\)
−0.369776 + 0.929121i \(0.620566\pi\)
\(440\) 21.2787 6.92891i 1.01442 0.330323i
\(441\) 0 0
\(442\) 17.2395 12.7557i 0.820000 0.606725i
\(443\) 1.22412 + 1.22412i 0.0581596 + 0.0581596i 0.735588 0.677429i \(-0.236906\pi\)
−0.677429 + 0.735588i \(0.736906\pi\)
\(444\) 0 0
\(445\) −8.08437 + 10.5519i −0.383236 + 0.500208i
\(446\) −16.7619 + 8.72495i −0.793697 + 0.413138i
\(447\) 0 0
\(448\) 25.5993 + 11.4037i 1.20945 + 0.538776i
\(449\) 36.0614i 1.70184i −0.525292 0.850922i \(-0.676044\pi\)
0.525292 0.850922i \(-0.323956\pi\)
\(450\) 0 0
\(451\) 18.5047i 0.871354i
\(452\) −12.4725 23.4612i −0.586658 1.10352i
\(453\) 0 0
\(454\) 14.4684 + 27.7958i 0.679036 + 1.30452i
\(455\) −15.3840 22.3483i −0.721211 1.04771i
\(456\) 0 0
\(457\) −2.22184 2.22184i −0.103933 0.103933i 0.653228 0.757161i \(-0.273414\pi\)
−0.757161 + 0.653228i \(0.773414\pi\)
\(458\) −18.5894 25.1239i −0.868624 1.17396i
\(459\) 0 0
\(460\) −0.244701 0.248675i −0.0114092 0.0115945i
\(461\) −21.0778 15.3139i −0.981692 0.713241i −0.0236057 0.999721i \(-0.507515\pi\)
−0.958086 + 0.286481i \(0.907515\pi\)
\(462\) 0 0
\(463\) −25.1759 3.98747i −1.17002 0.185314i −0.458970 0.888452i \(-0.651782\pi\)
−0.711053 + 0.703138i \(0.751782\pi\)
\(464\) −0.118113 3.39544i −0.00548328 0.157630i
\(465\) 0 0
\(466\) −15.1508 + 15.4165i −0.701847 + 0.714156i
\(467\) −17.3078 33.9686i −0.800911 1.57188i −0.820209 0.572063i \(-0.806143\pi\)
0.0192980 0.999814i \(-0.493857\pi\)
\(468\) 0 0
\(469\) −30.6999 9.97502i −1.41759 0.460603i
\(470\) −7.08981 + 40.3750i −0.327028 + 1.86236i
\(471\) 0 0
\(472\) 24.8882 0.649204i 1.14557 0.0298820i
\(473\) 22.6179 3.58232i 1.03997 0.164715i
\(474\) 0 0
\(475\) −10.4785 + 27.4186i −0.480785 + 1.25805i
\(476\) 9.98419 + 29.0026i 0.457625 + 1.32933i
\(477\) 0 0
\(478\) 0.875550 2.77656i 0.0400467 0.126997i
\(479\) −2.02143 6.22131i −0.0923613 0.284259i 0.894196 0.447676i \(-0.147748\pi\)
−0.986557 + 0.163417i \(0.947748\pi\)
\(480\) 0 0
\(481\) −5.53086 + 17.0222i −0.252186 + 0.776147i
\(482\) −22.8796 16.3210i −1.04214 0.743403i
\(483\) 0 0
\(484\) 2.48987 + 1.74368i 0.113176 + 0.0792580i
\(485\) 4.04466 7.46251i 0.183659 0.338855i
\(486\) 0 0
\(487\) −1.93534 + 12.2192i −0.0876986 + 0.553707i 0.904244 + 0.427017i \(0.140435\pi\)
−0.991942 + 0.126690i \(0.959565\pi\)
\(488\) 9.53290 + 26.9287i 0.431534 + 1.21901i
\(489\) 0 0
\(490\) 15.9377 4.88497i 0.719994 0.220680i
\(491\) −1.51867 2.09027i −0.0685365 0.0943323i 0.773373 0.633952i \(-0.218568\pi\)
−0.841909 + 0.539619i \(0.818568\pi\)
\(492\) 0 0
\(493\) 2.62944 2.62944i 0.118424 0.118424i
\(494\) −4.25141 + 28.4403i −0.191280 + 1.27959i
\(495\) 0 0
\(496\) −0.000290125 0 0.000430002i −1.30270e−5 0 1.93077e-5i
\(497\) 3.33249 6.54038i 0.149483 0.293376i
\(498\) 0 0
\(499\) −1.41851 −0.0635014 −0.0317507 0.999496i \(-0.510108\pi\)
−0.0317507 + 0.999496i \(0.510108\pi\)
\(500\) 18.8329 12.0549i 0.842233 0.539114i
\(501\) 0 0
\(502\) −34.8219 + 11.6499i −1.55418 + 0.519962i
\(503\) 5.08096 9.97194i 0.226549 0.444627i −0.749552 0.661945i \(-0.769731\pi\)
0.976101 + 0.217319i \(0.0697310\pi\)
\(504\) 0 0
\(505\) 12.4564 + 0.316960i 0.554303 + 0.0141045i
\(506\) 0.0577134 0.386080i 0.00256567 0.0171634i
\(507\) 0 0
\(508\) 19.5861 20.2793i 0.868993 0.899747i
\(509\) 6.17501 + 8.49917i 0.273702 + 0.376719i 0.923635 0.383273i \(-0.125203\pi\)
−0.649933 + 0.759992i \(0.725203\pi\)
\(510\) 0 0
\(511\) 26.2539 36.1353i 1.16140 1.59853i
\(512\) −5.28894 + 22.0006i −0.233740 + 0.972299i
\(513\) 0 0
\(514\) 4.72059 9.46723i 0.208216 0.417582i
\(515\) 17.3229 31.9611i 0.763337 1.40838i
\(516\) 0 0
\(517\) −40.8684 + 20.8235i −1.79739 + 0.915816i
\(518\) −20.8404 14.8664i −0.915676 0.653192i
\(519\) 0 0
\(520\) 15.4803 15.5001i 0.678854 0.679722i
\(521\) −5.86783 18.0593i −0.257074 0.791193i −0.993414 0.114581i \(-0.963447\pi\)
0.736340 0.676612i \(-0.236553\pi\)
\(522\) 0 0
\(523\) −0.798016 5.03848i −0.0348948 0.220317i 0.964079 0.265617i \(-0.0855757\pi\)
−0.998973 + 0.0452999i \(0.985576\pi\)
\(524\) 19.3552 6.66307i 0.845535 0.291077i
\(525\) 0 0
\(526\) −3.30096 19.7298i −0.143929 0.860262i
\(527\) −0.000560758 0 8.88153e-5i −2.44270e−5 0 3.86886e-6i
\(528\) 0 0
\(529\) 21.8685 7.10551i 0.950805 0.308935i
\(530\) −5.88737 + 33.5274i −0.255731 + 1.45634i
\(531\) 0 0
\(532\) −36.9657 18.0325i −1.60267 0.781807i
\(533\) 8.22377 + 16.1401i 0.356211 + 0.699104i
\(534\) 0 0
\(535\) −1.73088 + 1.64498i −0.0748326 + 0.0711188i
\(536\) 3.40456 25.8400i 0.147054 1.11612i
\(537\) 0 0
\(538\) 0.119241 + 13.7166i 0.00514084 + 0.591365i
\(539\) 15.0897 + 10.9633i 0.649961 + 0.472224i
\(540\) 0 0
\(541\) 3.67152 2.66752i 0.157851 0.114685i −0.506056 0.862501i \(-0.668897\pi\)
0.663907 + 0.747815i \(0.268897\pi\)
\(542\) 9.92357 + 13.4119i 0.426254 + 0.576090i
\(543\) 0 0
\(544\) −21.5572 + 12.1917i −0.924258 + 0.522714i
\(545\) 10.5372 + 15.3074i 0.451363 + 0.655697i
\(546\) 0 0
\(547\) −10.6451 5.42393i −0.455150 0.231910i 0.211358 0.977409i \(-0.432212\pi\)
−0.666507 + 0.745498i \(0.732212\pi\)
\(548\) 4.66579 2.48044i 0.199313 0.105959i
\(549\) 0 0
\(550\) 23.4480 + 8.72824i 0.999828 + 0.372173i
\(551\) 4.98627i 0.212422i
\(552\) 0 0
\(553\) 6.15226 + 3.13474i 0.261621 + 0.133302i
\(554\) 31.4256 16.3578i 1.33515 0.694976i
\(555\) 0 0
\(556\) −13.0538 + 0.226975i −0.553603 + 0.00962587i
\(557\) −10.4828 10.4828i −0.444172 0.444172i 0.449239 0.893412i \(-0.351695\pi\)
−0.893412 + 0.449239i \(0.851695\pi\)
\(558\) 0 0
\(559\) 18.1355 13.1762i 0.767051 0.557295i
\(560\) 14.4844 + 27.7833i 0.612079 + 1.17406i
\(561\) 0 0
\(562\) 21.7737 0.189282i 0.918466 0.00798439i
\(563\) 8.04485 + 1.27418i 0.339050 + 0.0537002i 0.323638 0.946181i \(-0.395094\pi\)
0.0154120 + 0.999881i \(0.495094\pi\)
\(564\) 0 0
\(565\) 5.39201 29.2133i 0.226844 1.22901i
\(566\) −15.7641 15.4924i −0.662614 0.651193i
\(567\) 0 0
\(568\) 5.68256 + 1.68388i 0.238435 + 0.0706539i
\(569\) −25.0837 8.15020i −1.05157 0.341674i −0.268283 0.963340i \(-0.586456\pi\)
−0.783283 + 0.621666i \(0.786456\pi\)
\(570\) 0 0
\(571\) −32.3724 + 10.5184i −1.35474 + 0.440182i −0.894284 0.447500i \(-0.852314\pi\)
−0.460457 + 0.887682i \(0.652314\pi\)
\(572\) 24.2728 + 3.41298i 1.01490 + 0.142704i
\(573\) 0 0
\(574\) −25.5535 + 4.27530i −1.06658 + 0.178448i
\(575\) −0.0413464 0.387863i −0.00172427 0.0161750i
\(576\) 0 0
\(577\) 1.79773 + 11.3504i 0.0748405 + 0.472524i 0.996435 + 0.0843691i \(0.0268875\pi\)
−0.921594 + 0.388155i \(0.873113\pi\)
\(578\) −2.92300 0.921727i −0.121581 0.0383388i
\(579\) 0 0
\(580\) 2.25739 3.05498i 0.0937330 0.126851i
\(581\) −17.5951 + 54.1523i −0.729969 + 2.24661i
\(582\) 0 0
\(583\) −33.9371 + 17.2918i −1.40553 + 0.716154i
\(584\) 32.5492 + 15.5292i 1.34689 + 0.642603i
\(585\) 0 0
\(586\) 22.0807 + 11.0099i 0.912144 + 0.454817i
\(587\) 4.04749 25.5549i 0.167058 1.05476i −0.751574 0.659649i \(-0.770705\pi\)
0.918632 0.395114i \(-0.129295\pi\)
\(588\) 0 0
\(589\) 0.000447478 0 0.000615901i 1.84380e−5 0 2.53777e-5i
\(590\) 22.2421 + 16.7360i 0.915694 + 0.689011i
\(591\) 0 0
\(592\) 8.73782 18.7317i 0.359122 0.769869i
\(593\) 20.9734 20.9734i 0.861274 0.861274i −0.130212 0.991486i \(-0.541566\pi\)
0.991486 + 0.130212i \(0.0415658\pi\)
\(594\) 0 0
\(595\) −11.4235 + 32.3349i −0.468316 + 1.32560i
\(596\) 2.00056 + 2.65520i 0.0819461 + 0.108761i
\(597\) 0 0
\(598\) −0.121241 0.362393i −0.00495793 0.0148193i
\(599\) −3.33851 −0.136408 −0.0682039 0.997671i \(-0.521727\pi\)
−0.0682039 + 0.997671i \(0.521727\pi\)
\(600\) 0 0
\(601\) −10.9587 −0.447013 −0.223506 0.974702i \(-0.571750\pi\)
−0.223506 + 0.974702i \(0.571750\pi\)
\(602\) 10.1725 + 30.4057i 0.414599 + 1.23924i
\(603\) 0 0
\(604\) −17.1087 22.7072i −0.696143 0.923943i
\(605\) 0.967638 + 3.25784i 0.0393401 + 0.132450i
\(606\) 0 0
\(607\) −5.16417 + 5.16417i −0.209607 + 0.209607i −0.804101 0.594493i \(-0.797353\pi\)
0.594493 + 0.804101i \(0.297353\pi\)
\(608\) 8.88003 31.9994i 0.360133 1.29775i
\(609\) 0 0
\(610\) −10.3767 + 30.2054i −0.420140 + 1.22298i
\(611\) −26.3917 + 36.3250i −1.06769 + 1.46955i
\(612\) 0 0
\(613\) 2.23054 14.0831i 0.0900905 0.568809i −0.900810 0.434213i \(-0.857026\pi\)
0.990901 0.134596i \(-0.0429736\pi\)
\(614\) −38.4572 19.1757i −1.55200 0.773866i
\(615\) 0 0
\(616\) −15.0962 + 31.6416i −0.608243 + 1.27488i
\(617\) −5.96590 + 3.03978i −0.240178 + 0.122377i −0.569937 0.821688i \(-0.693032\pi\)
0.329759 + 0.944065i \(0.393032\pi\)
\(618\) 0 0
\(619\) 3.98349 12.2599i 0.160110 0.492768i −0.838533 0.544851i \(-0.816586\pi\)
0.998643 + 0.0520830i \(0.0165860\pi\)
\(620\) −0.000552992 0 0.000174767i −2.22087e−5 0 7.01879e-6i
\(621\) 0 0
\(622\) 17.4499 + 5.50257i 0.699676 + 0.220633i
\(623\) −3.25771 20.5684i −0.130517 0.824054i
\(624\) 0 0
\(625\) 24.8707 + 2.53962i 0.994827 + 0.101585i
\(626\) −2.51506 + 0.420789i −0.100522 + 0.0168181i
\(627\) 0 0
\(628\) 28.9483 + 4.07040i 1.15516 + 0.162427i
\(629\) 21.5157 6.99087i 0.857886 0.278744i
\(630\) 0 0
\(631\) −6.89142 2.23916i −0.274343 0.0891394i 0.168614 0.985682i \(-0.446071\pi\)
−0.442957 + 0.896543i \(0.646071\pi\)
\(632\) −1.58395 + 5.34535i −0.0630063 + 0.212627i
\(633\) 0 0
\(634\) 0.629251 + 0.618405i 0.0249908 + 0.0245600i
\(635\) 31.2484 4.13745i 1.24005 0.164190i
\(636\) 0 0
\(637\) 18.0337 + 2.85626i 0.714522 + 0.113169i
\(638\) 4.25008 0.0369467i 0.168262 0.00146273i
\(639\) 0 0
\(640\) −19.9274 + 15.5852i −0.787700 + 0.616059i
\(641\) −32.0344 + 23.2743i −1.26528 + 0.919281i −0.999004 0.0446150i \(-0.985794\pi\)
−0.266278 + 0.963896i \(0.585794\pi\)
\(642\) 0 0
\(643\) 8.11866 + 8.11866i 0.320169 + 0.320169i 0.848832 0.528663i \(-0.177306\pi\)
−0.528663 + 0.848832i \(0.677306\pi\)
\(644\) 0.546479 0.00950198i 0.0215343 0.000374431i
\(645\) 0 0
\(646\) 32.2409 16.7822i 1.26850 0.660286i
\(647\) 27.6446 + 14.0856i 1.08682 + 0.553763i 0.903194 0.429233i \(-0.141216\pi\)
0.183628 + 0.982996i \(0.441216\pi\)
\(648\) 0 0
\(649\) 31.1456i 1.22257i
\(650\) 24.3306 2.80777i 0.954325 0.110130i
\(651\) 0 0
\(652\) −42.1649 + 22.4158i −1.65131 + 0.877872i
\(653\) 14.2708 + 7.27133i 0.558459 + 0.284549i 0.710351 0.703848i \(-0.248536\pi\)
−0.151891 + 0.988397i \(0.548536\pi\)
\(654\) 0 0
\(655\) 21.5791 + 7.62358i 0.843164 + 0.297878i
\(656\) −7.15211 19.6585i −0.279243 0.767536i
\(657\) 0 0
\(658\) −38.1977 51.6248i −1.48910 2.01254i
\(659\) 11.4410 8.31238i 0.445679 0.323804i −0.342209 0.939624i \(-0.611175\pi\)
0.787887 + 0.615820i \(0.211175\pi\)
\(660\) 0 0
\(661\) −30.5608 22.2037i −1.18868 0.863623i −0.195552 0.980693i \(-0.562650\pi\)
−0.993124 + 0.117070i \(0.962650\pi\)
\(662\) 0.130825 + 15.0492i 0.00508466 + 0.584903i
\(663\) 0 0
\(664\) −45.5797 6.00537i −1.76883 0.233053i
\(665\) −19.8274 41.4900i −0.768874 1.60891i
\(666\) 0 0
\(667\) −0.0300821 0.0590394i −0.00116478 0.00228602i
\(668\) −15.4531 7.53826i −0.597898 0.291664i
\(669\) 0 0
\(670\) 20.9470 20.2569i 0.809254 0.782593i
\(671\) −33.9871 + 11.0431i −1.31206 + 0.426314i
\(672\) 0 0
\(673\) 6.11086 0.967866i 0.235556 0.0373085i −0.0375400 0.999295i \(-0.511952\pi\)
0.273096 + 0.961987i \(0.411952\pi\)
\(674\) 4.00232 + 23.9219i 0.154163 + 0.921435i
\(675\) 0 0
\(676\) −1.89627 + 0.652796i −0.0729336 + 0.0251075i
\(677\) 4.28502 + 27.0545i 0.164687 + 1.03979i 0.922127 + 0.386886i \(0.126449\pi\)
−0.757441 + 0.652904i \(0.773551\pi\)
\(678\) 0 0
\(679\) 4.10919 + 12.6468i 0.157696 + 0.485339i
\(680\) −27.3510 4.31406i −1.04886 0.165437i
\(681\) 0 0
\(682\) −0.000528283 0 0.000376847i −2.02290e−5 0 1.44302e-5i
\(683\) 38.8244 19.7820i 1.48558 0.756939i 0.492052 0.870566i \(-0.336247\pi\)
0.993523 + 0.113627i \(0.0362469\pi\)
\(684\) 0 0
\(685\) 5.80972 + 1.07232i 0.221978 + 0.0409713i
\(686\) 3.82136 7.66381i 0.145900 0.292606i
\(687\) 0 0
\(688\) −22.6435 + 12.5475i −0.863275 + 0.478369i
\(689\) −21.9156 + 30.1643i −0.834919 + 1.14917i
\(690\) 0 0
\(691\) −24.1230 33.2025i −0.917682 1.26308i −0.964474 0.264176i \(-0.914900\pi\)
0.0467925 0.998905i \(-0.485100\pi\)
\(692\) −34.2626 + 35.4752i −1.30247 + 1.34856i
\(693\) 0 0
\(694\) 0.975713 6.52715i 0.0370376 0.247767i
\(695\) −11.5870 8.87738i −0.439519 0.336738i
\(696\) 0 0
\(697\) 10.3946 20.4006i 0.393725 0.772729i
\(698\) −36.2600 + 12.1311i −1.37246 + 0.459167i
\(699\) 0 0
\(700\) −6.63556 + 34.3963i −0.250801 + 1.30006i
\(701\) 17.6319 0.665949 0.332974 0.942936i \(-0.391948\pi\)
0.332974 + 0.942936i \(0.391948\pi\)
\(702\) 0 0
\(703\) −13.7719 + 27.0288i −0.519416 + 1.01941i
\(704\) −27.3407 7.33185i −1.03044 0.276329i
\(705\) 0 0
\(706\) 2.48333 16.6125i 0.0934615 0.625222i
\(707\) −13.8032 + 13.8032i −0.519123 + 0.519123i
\(708\) 0 0
\(709\) 4.19370 + 5.77214i 0.157498 + 0.216777i 0.880472 0.474098i \(-0.157226\pi\)
−0.722974 + 0.690875i \(0.757226\pi\)
\(710\) 3.80456 + 5.42531i 0.142783 + 0.203608i
\(711\) 0 0
\(712\) 15.8504 5.61112i 0.594019 0.210285i
\(713\) −1.58260e−6 0 9.99213e-6i −5.92688e−8 0 3.74208e-7i
\(714\) 0 0
\(715\) 18.8789 + 19.8647i 0.706030 + 0.742899i
\(716\) −15.3209 10.7293i −0.572568 0.400974i
\(717\) 0 0
\(718\) 17.5259 + 12.5020i 0.654062 + 0.466571i
\(719\) −4.73921 + 14.5858i −0.176743 + 0.543958i −0.999709 0.0241324i \(-0.992318\pi\)
0.822966 + 0.568091i \(0.192318\pi\)
\(720\) 0 0
\(721\) 17.5992 + 54.1648i 0.655429 + 2.01720i
\(722\) −6.57655 + 20.8557i −0.244754 + 0.776169i
\(723\) 0 0
\(724\) −2.39662 6.96181i −0.0890696 0.258734i
\(725\) 4.10053 1.10524i 0.152290 0.0410476i
\(726\) 0 0
\(727\) 2.15735 0.341691i 0.0800117 0.0126726i −0.116300 0.993214i \(-0.537103\pi\)
0.196312 + 0.980541i \(0.437103\pi\)
\(728\) 0.894895 + 34.3072i 0.0331670 + 1.27151i
\(729\) 0 0
\(730\) 17.7010 + 36.2275i 0.655144 + 1.34084i
\(731\) −26.9474 8.75575i −0.996687 0.323843i
\(732\) 0 0
\(733\) 6.40810 + 12.5766i 0.236689 + 0.464528i 0.978546 0.206031i \(-0.0660546\pi\)
−0.741857 + 0.670558i \(0.766055\pi\)
\(734\) 23.7651 24.1819i 0.877186 0.892571i
\(735\) 0 0
\(736\) 0.0879088 + 0.432459i 0.00324036 + 0.0159406i
\(737\) 32.2036 + 5.10055i 1.18623 + 0.187881i
\(738\) 0 0
\(739\) −14.6312 10.6302i −0.538218 0.391039i 0.285205 0.958467i \(-0.407938\pi\)
−0.823423 + 0.567428i \(0.807938\pi\)
\(740\) 20.6743 10.3252i 0.760001 0.379561i
\(741\) 0 0
\(742\) −31.7193 42.8692i −1.16445 1.57378i
\(743\) −9.25021 9.25021i −0.339357 0.339357i 0.516768 0.856125i \(-0.327135\pi\)
−0.856125 + 0.516768i \(0.827135\pi\)
\(744\) 0 0
\(745\) −0.0945482 + 3.71571i −0.00346398 + 0.136133i
\(746\) −14.1631 27.2093i −0.518547 0.996202i
\(747\) 0 0
\(748\) −14.5433 27.3564i −0.531756 1.00025i
\(749\) 3.74087i 0.136688i
\(750\) 0 0
\(751\) 25.6382i 0.935550i −0.883848 0.467775i \(-0.845056\pi\)
0.883848 0.467775i \(-0.154944\pi\)
\(752\) 35.3682 37.9175i 1.28975 1.38271i
\(753\) 0 0
\(754\) 3.69055 1.92102i 0.134402 0.0699595i
\(755\) 0.808572 31.7766i 0.0294270 1.15647i
\(756\) 0 0
\(757\) 24.1240 + 24.1240i 0.876803 + 0.876803i 0.993202 0.116400i \(-0.0371353\pi\)
−0.116400 + 0.993202i \(0.537135\pi\)
\(758\) −6.75371 + 4.99713i −0.245306 + 0.181504i
\(759\) 0 0
\(760\) 30.0236 21.8427i 1.08907 0.792319i
\(761\) −10.8763 7.90212i −0.394267 0.286452i 0.372935 0.927858i \(-0.378352\pi\)
−0.767202 + 0.641406i \(0.778352\pi\)
\(762\) 0 0
\(763\) −28.7548 4.55431i −1.04099 0.164877i
\(764\) 2.53349 + 0.774753i 0.0916586 + 0.0280296i
\(765\) 0 0
\(766\) 4.67020 + 4.58970i 0.168741 + 0.165833i
\(767\) 13.8415 + 27.1656i 0.499789 + 0.980891i
\(768\) 0 0
\(769\) 37.1381 + 12.0669i 1.33924 + 0.435144i 0.889058 0.457795i \(-0.151361\pi\)
0.450178 + 0.892939i \(0.351361\pi\)
\(770\) −35.2174 + 17.2075i −1.26915 + 0.620114i
\(771\) 0 0
\(772\) 3.26158 23.1960i 0.117387 0.834844i
\(773\) 19.5920 3.10306i 0.704674 0.111609i 0.206195 0.978511i \(-0.433892\pi\)
0.498479 + 0.866902i \(0.333892\pi\)
\(774\) 0 0
\(775\) −0.000605681 0 0.000231471i −2.17567e−5 0 8.31470e-6i
\(776\) −9.43614 + 5.12217i −0.338738 + 0.183875i
\(777\) 0 0
\(778\) −12.8860 4.06340i −0.461984 0.145680i
\(779\) 9.48730 + 29.1989i 0.339918 + 1.04616i
\(780\) 0 0
\(781\) −2.29117 + 7.05150i −0.0819845 + 0.252322i
\(782\) −0.280499 + 0.393217i −0.0100306 + 0.0140614i
\(783\) 0 0
\(784\) −20.2679 5.81469i −0.723854 0.207667i
\(785\) 22.5154 + 23.6911i 0.803608 + 0.845573i
\(786\) 0 0
\(787\) −2.45311 + 15.4883i −0.0874439 + 0.552099i 0.904606 + 0.426250i \(0.140166\pi\)
−0.992049 + 0.125849i \(0.959834\pi\)
\(788\) −5.78959 32.8473i −0.206246 1.17014i
\(789\) 0 0
\(790\) −5.10337 + 3.57879i −0.181570 + 0.127328i
\(791\) 27.3549 + 37.6508i 0.972629 + 1.33871i
\(792\) 0 0
\(793\) −24.7363 + 24.7363i −0.878411 + 0.878411i
\(794\) −29.5647 4.41949i −1.04921 0.156842i
\(795\) 0 0
\(796\) 29.9159 22.5401i 1.06034 0.798912i
\(797\) −8.18837 + 16.0706i −0.290047 + 0.569249i −0.989347 0.145580i \(-0.953495\pi\)
0.699300 + 0.714829i \(0.253495\pi\)
\(798\) 0 0
\(799\) 56.7527 2.00777
\(800\) −28.2835 0.209734i −0.999973 0.00741522i
\(801\) 0 0
\(802\) 7.52590 + 22.4951i 0.265749 + 0.794328i
\(803\) −20.4821 + 40.1984i −0.722797 + 1.41857i
\(804\) 0 0
\(805\) 0.485073 + 0.371639i 0.0170966 + 0.0130986i
\(806\) −0.000628251 0 9.39144e-5i −2.21292e−5 0 3.30799e-6i
\(807\) 0 0
\(808\) −12.9884 8.92864i −0.456932 0.314108i
\(809\) 19.5336 + 26.8857i 0.686765 + 0.945251i 0.999990 0.00442775i \(-0.00140940\pi\)
−0.313225 + 0.949679i \(0.601409\pi\)
\(810\) 0 0
\(811\) −6.93113 + 9.53989i −0.243385 + 0.334991i −0.913181 0.407555i \(-0.866382\pi\)
0.669796 + 0.742545i \(0.266382\pi\)
\(812\) 1.03295 + 5.86047i 0.0362495 + 0.205662i
\(813\) 0 0
\(814\) 23.1402 + 11.5383i 0.811065 + 0.404416i
\(815\) −52.5027 9.69062i −1.83909 0.339448i
\(816\) 0 0
\(817\) 33.8524 17.2487i 1.18435 0.603454i
\(818\) −8.99827 + 12.6142i −0.314617 + 0.441046i
\(819\) 0 0
\(820\) 7.40629 22.1846i 0.258639 0.774721i
\(821\) 10.4922 + 32.2916i 0.366180 + 1.12699i 0.949239 + 0.314556i \(0.101856\pi\)
−0.583059 + 0.812430i \(0.698144\pi\)
\(822\) 0 0
\(823\) −1.35624 8.56297i −0.0472756 0.298486i 0.952710 0.303881i \(-0.0982827\pi\)
−0.999985 + 0.00539505i \(0.998283\pi\)
\(824\) −40.4140 + 21.9377i −1.40789 + 0.764237i
\(825\) 0 0
\(826\) −43.0094 + 7.19582i −1.49649 + 0.250375i
\(827\) −6.75206 + 1.06942i −0.234792 + 0.0371874i −0.272722 0.962093i \(-0.587924\pi\)
0.0379294 + 0.999280i \(0.487924\pi\)
\(828\) 0 0
\(829\) −1.59946 + 0.519697i −0.0555516 + 0.0180498i −0.336661 0.941626i \(-0.609298\pi\)
0.281109 + 0.959676i \(0.409298\pi\)
\(830\) −35.7316 36.9489i −1.24026 1.28251i
\(831\) 0 0
\(832\) −27.1053 + 5.75568i −0.939707 + 0.199542i
\(833\) −10.4773 20.5629i −0.363018 0.712463i
\(834\) 0 0
\(835\) −8.28861 17.3444i −0.286839 0.600228i
\(836\) 39.7277 + 12.1489i 1.37401 + 0.420179i
\(837\) 0 0
\(838\) 26.7035 0.232138i 0.922457 0.00801908i
\(839\) −32.2588 23.4374i −1.11370 0.809148i −0.130455 0.991454i \(-0.541644\pi\)
−0.983242 + 0.182307i \(0.941644\pi\)
\(840\) 0 0
\(841\) −22.8778 + 16.6217i −0.788891 + 0.573163i
\(842\) 15.4009 11.3952i 0.530748 0.392706i
\(843\) 0 0
\(844\) 0.564300 + 32.4540i 0.0194240 + 1.11711i
\(845\) −2.11415 0.746900i −0.0727290 0.0256941i
\(846\) 0 0
\(847\) −4.74385 2.41711i −0.163000 0.0830529i
\(848\) 29.3698 31.4867i 1.00856 1.08126i
\(849\) 0 0
\(850\) −20.9475 22.7939i −0.718493 0.781825i
\(851\) 0.403117i 0.0138187i
\(852\) 0 0
\(853\) −11.5438 5.88186i −0.395252 0.201391i 0.245056 0.969509i \(-0.421194\pi\)
−0.640309 + 0.768118i \(0.721194\pi\)
\(854\) −23.1019 44.3820i −0.790531 1.51872i
\(855\) 0 0
\(856\) 2.96992 0.550132i 0.101510 0.0188031i
\(857\) 11.9042 + 11.9042i 0.406640 + 0.406640i 0.880565 0.473925i \(-0.157163\pi\)
−0.473925 + 0.880565i \(0.657163\pi\)
\(858\) 0 0
\(859\) −28.2976 + 20.5594i −0.965502 + 0.701478i −0.954422 0.298460i \(-0.903527\pi\)
−0.0110802 + 0.999939i \(0.503527\pi\)
\(860\) −28.5495 4.75781i −0.973529 0.162240i
\(861\) 0 0
\(862\) −0.115374 13.2718i −0.00392965 0.452038i
\(863\) 27.6579 + 4.38058i 0.941485 + 0.149117i 0.608266 0.793733i \(-0.291865\pi\)
0.333219 + 0.942850i \(0.391865\pi\)
\(864\) 0 0
\(865\) −54.6638 + 7.23778i −1.85863 + 0.246092i
\(866\) −28.9604 + 29.4684i −0.984116 + 1.00138i
\(867\) 0 0
\(868\) 0.000398341 0 0.000816580i 1.35206e−5 0 2.77165e-5i
\(869\) −6.63305 2.15521i −0.225011 0.0731105i
\(870\) 0 0
\(871\) 30.3551 9.86297i 1.02854 0.334194i
\(872\) −0.612954 23.4985i −0.0207573 0.795761i
\(873\) 0 0
\(874\) −0.106875 0.638791i −0.00361510 0.0216074i
\(875\) −29.7250 + 25.5019i −1.00489 + 0.862121i
\(876\) 0 0
\(877\) −0.453223 2.86154i −0.0153043 0.0966273i 0.978854 0.204561i \(-0.0655766\pi\)
−0.994158 + 0.107934i \(0.965577\pi\)
\(878\) 4.40156 13.9583i 0.148546 0.471071i
\(879\) 0 0
\(880\) −18.8403 25.4290i −0.635106 0.857211i
\(881\) 13.8508 42.6283i 0.466645 1.43619i −0.390257 0.920706i \(-0.627614\pi\)
0.856902 0.515479i \(-0.172386\pi\)
\(882\) 0 0
\(883\) 24.6083 12.5385i 0.828134 0.421955i 0.0120772 0.999927i \(-0.496156\pi\)
0.816057 + 0.577972i \(0.196156\pi\)
\(884\) −24.8424 17.3974i −0.835542 0.585137i
\(885\) 0 0
\(886\) 1.09247 2.19097i 0.0367023 0.0736072i
\(887\) 5.07182 32.0222i 0.170295 1.07520i −0.743414 0.668831i \(-0.766795\pi\)
0.913709 0.406369i \(-0.133205\pi\)
\(888\) 0 0
\(889\) −29.0257 + 39.9504i −0.973489 + 1.33989i
\(890\) 17.7790 + 6.10778i 0.595955 + 0.204733i
\(891\) 0 0
\(892\) 19.2223 + 18.5653i 0.643612 + 0.621612i
\(893\) −53.8107 + 53.8107i −1.80071 + 1.80071i
\(894\) 0 0
\(895\) −5.95415 20.0464i −0.199025 0.670077i
\(896\) 3.80791 39.4492i 0.127213 1.31790i
\(897\) 0 0
\(898\) −48.3637 + 16.1805i −1.61392 + 0.539949i
\(899\) −0.000110148 0 −3.67363e−6 0
\(900\) 0 0
\(901\) 47.1274 1.57004
\(902\) 24.8176 8.30292i 0.826335 0.276457i
\(903\) 0 0
\(904\) −25.8686 + 27.2543i −0.860378 + 0.906466i
\(905\) 2.74210 7.76170i 0.0911506 0.258008i
\(906\) 0 0
\(907\) 11.7557 11.7557i 0.390343 0.390343i −0.484467 0.874810i \(-0.660986\pi\)
0.874810 + 0.484467i \(0.160986\pi\)
\(908\) 30.7865 31.8760i 1.02169 1.05784i
\(909\) 0 0
\(910\) −23.0698 + 30.6597i −0.764756 + 1.01636i
\(911\) −9.75815 + 13.4309i −0.323302 + 0.444987i −0.939472 0.342626i \(-0.888684\pi\)
0.616170 + 0.787613i \(0.288684\pi\)
\(912\) 0 0
\(913\) 8.99696 56.8046i 0.297756 1.87996i
\(914\) −1.98290 + 3.97674i −0.0655884 + 0.131539i
\(915\) 0 0
\(916\) −25.3539 + 36.2040i −0.837717 + 1.19621i
\(917\) −31.9459 + 16.2772i −1.05495 + 0.537522i
\(918\) 0 0
\(919\) 6.92595 21.3159i 0.228466 0.703146i −0.769455 0.638701i \(-0.779472\pi\)
0.997921 0.0644452i \(-0.0205278\pi\)
\(920\) −0.223714 + 0.439758i −0.00737564 + 0.0144984i
\(921\) 0 0
\(922\) −11.0808 + 35.1397i −0.364927 + 1.15726i
\(923\) 1.13540 + 7.16863i 0.0373721 + 0.235958i
\(924\) 0 0
\(925\) 25.2802 + 5.33438i 0.831207 + 0.175393i
\(926\) 5.94842 + 35.5537i 0.195477 + 1.16837i
\(927\) 0 0
\(928\) −4.50079 + 1.68191i −0.147746 + 0.0552115i
\(929\) −8.61163 + 2.79809i −0.282539 + 0.0918023i −0.446858 0.894605i \(-0.647457\pi\)
0.164320 + 0.986407i \(0.447457\pi\)
\(930\) 0 0
\(931\) 29.4312 + 9.56277i 0.964568 + 0.313407i
\(932\) 27.4738 + 13.4022i 0.899936 + 0.439003i
\(933\) 0 0
\(934\) −37.7910 + 38.4538i −1.23656 + 1.25825i
\(935\) 6.28724 34.0635i 0.205615 1.11400i
\(936\) 0 0
\(937\) 50.3586 + 7.97602i 1.64514 + 0.260565i 0.909164 0.416438i \(-0.136722\pi\)
0.735980 + 0.677004i \(0.236722\pi\)
\(938\) 0.396833 + 45.6489i 0.0129571 + 1.49049i
\(939\) 0 0
\(940\) 57.3300 8.60744i 1.86990 0.280744i
\(941\) 25.8577 18.7867i 0.842937 0.612429i −0.0802527 0.996775i \(-0.525573\pi\)
0.923189 + 0.384345i \(0.125573\pi\)
\(942\) 0 0
\(943\) −0.288490 0.288490i −0.00939452 0.00939452i
\(944\) −12.0378 33.0875i −0.391797 1.07691i
\(945\) 0 0
\(946\) −14.9528 28.7265i −0.486159 0.933980i
\(947\) −2.86881 1.46173i −0.0932239 0.0474999i 0.406757 0.913536i \(-0.366660\pi\)
−0.499981 + 0.866036i \(0.666660\pi\)
\(948\) 0 0
\(949\) 44.1640i 1.43363i
\(950\) 41.4739 + 1.75070i 1.34559 + 0.0568003i
\(951\) 0 0
\(952\) 34.4169 26.4035i 1.11546 0.855741i
\(953\) −28.9987 14.7756i −0.939360 0.478628i −0.0838869 0.996475i \(-0.526733\pi\)
−0.855473 + 0.517848i \(0.826733\pi\)
\(954\) 0 0
\(955\) 1.67951 + 2.43983i 0.0543477 + 0.0789511i
\(956\) −4.11663 + 0.0715787i −0.133141 + 0.00231502i
\(957\) 0 0
\(958\) −7.43670 + 5.50248i −0.240269 + 0.177777i
\(959\) −7.48771 + 5.44014i −0.241791 + 0.175671i
\(960\) 0 0
\(961\) −25.0795 18.2213i −0.809017 0.587785i
\(962\) 25.3110 0.220033i 0.816059 0.00709414i
\(963\) 0 0
\(964\) −11.6230 + 38.0081i −0.374353 + 1.22416i
\(965\) 18.9835 18.0414i 0.611102 0.580774i
\(966\) 0 0
\(967\) −6.18287 12.1346i −0.198828 0.390221i 0.769968 0.638083i \(-0.220272\pi\)
−0.968796 + 0.247861i \(0.920272\pi\)
\(968\) 1.22134 4.12166i 0.0392555 0.132475i
\(969\) 0 0
\(970\) −11.8231 2.07613i −0.379618 0.0666605i
\(971\) 21.7239 7.05851i 0.697152 0.226518i 0.0610628 0.998134i \(-0.480551\pi\)
0.636089 + 0.771616i \(0.280551\pi\)
\(972\) 0 0
\(973\) 22.5859 3.57726i 0.724072 0.114682i
\(974\) 17.2562 2.88710i 0.552924 0.0925085i
\(975\) 0 0
\(976\) 31.8380 24.8677i 1.01911 0.795996i
\(977\) −1.60253 10.1180i −0.0512695 0.323703i −0.999972 0.00753150i \(-0.997603\pi\)
0.948702 0.316171i \(-0.102397\pi\)
\(978\) 0 0
\(979\) 6.50003 + 20.0050i 0.207742 + 0.639363i
\(980\) −13.7026 19.1830i −0.437713 0.612779i
\(981\) 0 0
\(982\) −2.12194 + 2.97464i −0.0677139 + 0.0949246i
\(983\) 31.8803 16.2438i 1.01682 0.518097i 0.135583 0.990766i \(-0.456709\pi\)
0.881240 + 0.472669i \(0.156709\pi\)
\(984\) 0 0
\(985\) 17.7692 32.7847i 0.566175 1.04461i
\(986\) −4.70628 2.34666i −0.149878 0.0747329i
\(987\) 0 0
\(988\) 40.0502 7.05914i 1.27417 0.224581i
\(989\) −0.296765 + 0.408462i −0.00943657 + 0.0129883i
\(990\) 0 0
\(991\) −17.5929 24.2146i −0.558858 0.769202i 0.432323 0.901719i \(-0.357694\pi\)
−0.991181 + 0.132517i \(0.957694\pi\)
\(992\) 0.000706873 0 0.000196161i 2.24432e−5 0 6.22813e-6i
\(993\) 0 0
\(994\) −10.2669 1.53475i −0.325645 0.0486792i
\(995\) 41.8645 + 1.06526i 1.32719 + 0.0337711i
\(996\) 0 0
\(997\) −18.8432 + 36.9818i −0.596769 + 1.17123i 0.373144 + 0.927773i \(0.378280\pi\)
−0.969913 + 0.243452i \(0.921720\pi\)
\(998\) 0.636475 + 1.90244i 0.0201473 + 0.0602206i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.f.487.12 240
3.2 odd 2 300.2.w.a.187.19 yes 240
4.3 odd 2 inner 900.2.bj.f.487.15 240
12.11 even 2 300.2.w.a.187.16 240
25.23 odd 20 inner 900.2.bj.f.523.15 240
75.23 even 20 300.2.w.a.223.16 yes 240
100.23 even 20 inner 900.2.bj.f.523.12 240
300.23 odd 20 300.2.w.a.223.19 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.w.a.187.16 240 12.11 even 2
300.2.w.a.187.19 yes 240 3.2 odd 2
300.2.w.a.223.16 yes 240 75.23 even 20
300.2.w.a.223.19 yes 240 300.23 odd 20
900.2.bj.f.487.12 240 1.1 even 1 trivial
900.2.bj.f.487.15 240 4.3 odd 2 inner
900.2.bj.f.523.12 240 100.23 even 20 inner
900.2.bj.f.523.15 240 25.23 odd 20 inner