Properties

Label 900.2.bj.f.523.14
Level $900$
Weight $2$
Character 900.523
Analytic conductor $7.187$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.14
Character \(\chi\) \(=\) 900.523
Dual form 900.2.bj.f.487.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.152118 - 1.40601i) q^{2} +(-1.95372 + 0.427760i) q^{4} +(-1.07461 + 1.96092i) q^{5} +(-0.868967 - 0.868967i) q^{7} +(0.898631 + 2.68188i) q^{8} +(2.92054 + 1.21262i) q^{10} +(2.63624 + 3.62847i) q^{11} +(-0.530391 - 3.34876i) q^{13} +(-1.08959 + 1.35396i) q^{14} +(3.63404 - 1.67145i) q^{16} +(-5.52269 - 2.81395i) q^{17} +(-1.47067 - 4.52625i) q^{19} +(1.26069 - 4.29076i) q^{20} +(4.70064 - 4.25853i) q^{22} +(0.748674 - 4.72694i) q^{23} +(-2.69041 - 4.21446i) q^{25} +(-4.62770 + 1.25514i) q^{26} +(2.06943 + 1.32601i) q^{28} +(-2.21880 - 0.720931i) q^{29} +(9.32059 - 3.02844i) q^{31} +(-2.90287 - 4.85524i) q^{32} +(-3.11633 + 8.19300i) q^{34} +(2.63778 - 0.770171i) q^{35} +(-8.45865 + 1.33972i) q^{37} +(-6.14023 + 2.75630i) q^{38} +(-6.22463 - 1.11984i) q^{40} +(-2.25676 - 1.63963i) q^{41} +(-5.74249 + 5.74249i) q^{43} +(-6.70259 - 5.96134i) q^{44} +(-6.76001 - 0.333587i) q^{46} +(4.24551 - 2.16319i) q^{47} -5.48979i q^{49} +(-5.51631 + 4.42384i) q^{50} +(2.46870 + 6.31566i) q^{52} +(-0.643686 + 0.327974i) q^{53} +(-9.94808 + 1.27025i) q^{55} +(1.54958 - 3.11134i) q^{56} +(-0.676115 + 3.22932i) q^{58} +(-0.305784 - 0.222165i) q^{59} +(2.68715 - 1.95233i) q^{61} +(-5.67585 - 12.6441i) q^{62} +(-6.38493 + 4.82003i) q^{64} +(7.13661 + 2.55857i) q^{65} +(3.01843 - 5.92399i) q^{67} +(11.9935 + 3.13529i) q^{68} +(-1.48412 - 3.59158i) q^{70} +(-4.75445 - 1.54481i) q^{71} +(3.39138 + 0.537142i) q^{73} +(3.17037 + 11.6891i) q^{74} +(4.80942 + 8.21394i) q^{76} +(0.862218 - 5.44383i) q^{77} +(0.521056 - 1.60364i) q^{79} +(-0.627622 + 8.92222i) q^{80} +(-1.96204 + 3.42244i) q^{82} +(-13.5881 - 6.92350i) q^{83} +(11.4527 - 7.80563i) q^{85} +(8.94753 + 7.20045i) q^{86} +(-7.36211 + 10.3307i) q^{88} +(0.948617 + 1.30566i) q^{89} +(-2.44907 + 3.37085i) q^{91} +(0.559295 + 9.55537i) q^{92} +(-3.68729 - 5.64016i) q^{94} +(10.4560 + 1.98011i) q^{95} +(-5.55806 - 10.9083i) q^{97} +(-7.71870 + 0.835099i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{8} + 8 q^{10} + 4 q^{13} - 20 q^{17} + 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 76 q^{38} - 92 q^{40} + 140 q^{44} + 164 q^{50} - 172 q^{52} + 4 q^{53} - 120 q^{58}+ \cdots - 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.152118 1.40601i −0.107564 0.994198i
\(3\) 0 0
\(4\) −1.95372 + 0.427760i −0.976860 + 0.213880i
\(5\) −1.07461 + 1.96092i −0.480582 + 0.876950i
\(6\) 0 0
\(7\) −0.868967 0.868967i −0.328439 0.328439i 0.523554 0.851993i \(-0.324606\pi\)
−0.851993 + 0.523554i \(0.824606\pi\)
\(8\) 0.898631 + 2.68188i 0.317714 + 0.948187i
\(9\) 0 0
\(10\) 2.92054 + 1.21262i 0.923555 + 0.383465i
\(11\) 2.63624 + 3.62847i 0.794856 + 1.09403i 0.993486 + 0.113951i \(0.0363507\pi\)
−0.198630 + 0.980075i \(0.563649\pi\)
\(12\) 0 0
\(13\) −0.530391 3.34876i −0.147104 0.928778i −0.945258 0.326325i \(-0.894190\pi\)
0.798154 0.602454i \(-0.205810\pi\)
\(14\) −1.08959 + 1.35396i −0.291205 + 0.361861i
\(15\) 0 0
\(16\) 3.63404 1.67145i 0.908511 0.417861i
\(17\) −5.52269 2.81395i −1.33945 0.682483i −0.370288 0.928917i \(-0.620741\pi\)
−0.969160 + 0.246434i \(0.920741\pi\)
\(18\) 0 0
\(19\) −1.47067 4.52625i −0.337394 1.03839i −0.965531 0.260290i \(-0.916182\pi\)
0.628136 0.778103i \(-0.283818\pi\)
\(20\) 1.26069 4.29076i 0.281899 0.959444i
\(21\) 0 0
\(22\) 4.70064 4.25853i 1.00218 0.907922i
\(23\) 0.748674 4.72694i 0.156109 0.985635i −0.777900 0.628388i \(-0.783715\pi\)
0.934010 0.357248i \(-0.116285\pi\)
\(24\) 0 0
\(25\) −2.69041 4.21446i −0.538082 0.842892i
\(26\) −4.62770 + 1.25514i −0.907567 + 0.246154i
\(27\) 0 0
\(28\) 2.06943 + 1.32601i 0.391085 + 0.250592i
\(29\) −2.21880 0.720931i −0.412020 0.133874i 0.0956700 0.995413i \(-0.469501\pi\)
−0.507690 + 0.861540i \(0.669501\pi\)
\(30\) 0 0
\(31\) 9.32059 3.02844i 1.67403 0.543925i 0.690289 0.723533i \(-0.257483\pi\)
0.983738 + 0.179609i \(0.0574832\pi\)
\(32\) −2.90287 4.85524i −0.513160 0.858293i
\(33\) 0 0
\(34\) −3.11633 + 8.19300i −0.534447 + 1.40509i
\(35\) 2.63778 0.770171i 0.445866 0.130183i
\(36\) 0 0
\(37\) −8.45865 + 1.33972i −1.39059 + 0.220248i −0.806402 0.591368i \(-0.798588\pi\)
−0.584191 + 0.811616i \(0.698588\pi\)
\(38\) −6.14023 + 2.75630i −0.996077 + 0.447131i
\(39\) 0 0
\(40\) −6.22463 1.11984i −0.984200 0.177062i
\(41\) −2.25676 1.63963i −0.352447 0.256067i 0.397448 0.917625i \(-0.369896\pi\)
−0.749895 + 0.661557i \(0.769896\pi\)
\(42\) 0 0
\(43\) −5.74249 + 5.74249i −0.875722 + 0.875722i −0.993089 0.117367i \(-0.962555\pi\)
0.117367 + 0.993089i \(0.462555\pi\)
\(44\) −6.70259 5.96134i −1.01045 0.898706i
\(45\) 0 0
\(46\) −6.76001 0.333587i −0.996708 0.0491847i
\(47\) 4.24551 2.16319i 0.619271 0.315534i −0.116061 0.993242i \(-0.537027\pi\)
0.735331 + 0.677708i \(0.237027\pi\)
\(48\) 0 0
\(49\) 5.48979i 0.784256i
\(50\) −5.51631 + 4.42384i −0.780124 + 0.625625i
\(51\) 0 0
\(52\) 2.46870 + 6.31566i 0.342347 + 0.875824i
\(53\) −0.643686 + 0.327974i −0.0884171 + 0.0450507i −0.497640 0.867384i \(-0.665800\pi\)
0.409223 + 0.912434i \(0.365800\pi\)
\(54\) 0 0
\(55\) −9.94808 + 1.27025i −1.34140 + 0.171280i
\(56\) 1.54958 3.11134i 0.207072 0.415771i
\(57\) 0 0
\(58\) −0.676115 + 3.22932i −0.0887783 + 0.424030i
\(59\) −0.305784 0.222165i −0.0398097 0.0289234i 0.567702 0.823234i \(-0.307832\pi\)
−0.607512 + 0.794310i \(0.707832\pi\)
\(60\) 0 0
\(61\) 2.68715 1.95233i 0.344054 0.249970i −0.402316 0.915501i \(-0.631795\pi\)
0.746370 + 0.665531i \(0.231795\pi\)
\(62\) −5.67585 12.6441i −0.720834 1.60581i
\(63\) 0 0
\(64\) −6.38493 + 4.82003i −0.798116 + 0.602504i
\(65\) 7.13661 + 2.55857i 0.885188 + 0.317351i
\(66\) 0 0
\(67\) 3.01843 5.92399i 0.368759 0.723731i −0.629835 0.776729i \(-0.716878\pi\)
0.998595 + 0.0529977i \(0.0168776\pi\)
\(68\) 11.9935 + 3.13529i 1.45442 + 0.380209i
\(69\) 0 0
\(70\) −1.48412 3.59158i −0.177386 0.429276i
\(71\) −4.75445 1.54481i −0.564249 0.183336i 0.0129832 0.999916i \(-0.495867\pi\)
−0.577232 + 0.816580i \(0.695867\pi\)
\(72\) 0 0
\(73\) 3.39138 + 0.537142i 0.396931 + 0.0628677i 0.351709 0.936109i \(-0.385601\pi\)
0.0452218 + 0.998977i \(0.485601\pi\)
\(74\) 3.17037 + 11.6891i 0.368548 + 1.35883i
\(75\) 0 0
\(76\) 4.80942 + 8.21394i 0.551678 + 0.942203i
\(77\) 0.862218 5.44383i 0.0982588 0.620382i
\(78\) 0 0
\(79\) 0.521056 1.60364i 0.0586234 0.180424i −0.917457 0.397836i \(-0.869761\pi\)
0.976080 + 0.217412i \(0.0697614\pi\)
\(80\) −0.627622 + 8.92222i −0.0701703 + 0.997535i
\(81\) 0 0
\(82\) −1.96204 + 3.42244i −0.216671 + 0.377945i
\(83\) −13.5881 6.92350i −1.49149 0.759953i −0.497300 0.867578i \(-0.665675\pi\)
−0.994192 + 0.107625i \(0.965675\pi\)
\(84\) 0 0
\(85\) 11.4527 7.80563i 1.24222 0.846640i
\(86\) 8.94753 + 7.20045i 0.964837 + 0.776445i
\(87\) 0 0
\(88\) −7.36211 + 10.3307i −0.784804 + 1.10126i
\(89\) 0.948617 + 1.30566i 0.100553 + 0.138400i 0.856329 0.516431i \(-0.172740\pi\)
−0.755775 + 0.654831i \(0.772740\pi\)
\(90\) 0 0
\(91\) −2.44907 + 3.37085i −0.256732 + 0.353361i
\(92\) 0.559295 + 9.55537i 0.0583106 + 0.996216i
\(93\) 0 0
\(94\) −3.68729 5.64016i −0.380315 0.581738i
\(95\) 10.4560 + 1.98011i 1.07276 + 0.203155i
\(96\) 0 0
\(97\) −5.55806 10.9083i −0.564336 1.10757i −0.980175 0.198133i \(-0.936512\pi\)
0.415840 0.909438i \(-0.363488\pi\)
\(98\) −7.71870 + 0.835099i −0.779706 + 0.0843577i
\(99\) 0 0
\(100\) 7.05909 + 7.08303i 0.705909 + 0.708303i
\(101\) 7.90808 0.786884 0.393442 0.919350i \(-0.371284\pi\)
0.393442 + 0.919350i \(0.371284\pi\)
\(102\) 0 0
\(103\) 7.63035 + 14.9754i 0.751841 + 1.47557i 0.875485 + 0.483245i \(0.160542\pi\)
−0.123644 + 0.992327i \(0.539458\pi\)
\(104\) 8.50433 4.43174i 0.833918 0.434568i
\(105\) 0 0
\(106\) 0.559051 + 0.855137i 0.0542999 + 0.0830582i
\(107\) −0.756931 0.756931i −0.0731753 0.0731753i 0.669572 0.742747i \(-0.266478\pi\)
−0.742747 + 0.669572i \(0.766478\pi\)
\(108\) 0 0
\(109\) −3.37095 + 4.63972i −0.322879 + 0.444404i −0.939343 0.342978i \(-0.888564\pi\)
0.616465 + 0.787383i \(0.288564\pi\)
\(110\) 3.29927 + 13.7939i 0.314573 + 1.31519i
\(111\) 0 0
\(112\) −4.61029 1.70543i −0.435632 0.161148i
\(113\) −2.86561 18.0927i −0.269574 1.70202i −0.636095 0.771611i \(-0.719451\pi\)
0.366522 0.930410i \(-0.380549\pi\)
\(114\) 0 0
\(115\) 8.46461 + 6.54772i 0.789329 + 0.610578i
\(116\) 4.64329 + 0.459385i 0.431119 + 0.0426529i
\(117\) 0 0
\(118\) −0.265851 + 0.463730i −0.0244735 + 0.0426898i
\(119\) 2.35380 + 7.24426i 0.215773 + 0.664080i
\(120\) 0 0
\(121\) −2.81687 + 8.66943i −0.256079 + 0.788130i
\(122\) −3.15375 3.48117i −0.285527 0.315170i
\(123\) 0 0
\(124\) −16.9144 + 9.90370i −1.51896 + 0.889379i
\(125\) 11.1554 0.746764i 0.997767 0.0667926i
\(126\) 0 0
\(127\) 2.29897 + 0.364120i 0.204000 + 0.0323105i 0.257598 0.966252i \(-0.417069\pi\)
−0.0535979 + 0.998563i \(0.517069\pi\)
\(128\) 7.74827 + 8.24404i 0.684857 + 0.728678i
\(129\) 0 0
\(130\) 2.51176 10.4233i 0.220296 0.914188i
\(131\) −21.3803 + 6.94688i −1.86801 + 0.606952i −0.875746 + 0.482772i \(0.839630\pi\)
−0.992260 + 0.124180i \(0.960370\pi\)
\(132\) 0 0
\(133\) −2.65520 + 5.21113i −0.230235 + 0.451862i
\(134\) −8.78834 3.34278i −0.759197 0.288773i
\(135\) 0 0
\(136\) 2.58381 17.3399i 0.221560 1.48688i
\(137\) −20.2164 + 3.20196i −1.72720 + 0.273562i −0.939514 0.342510i \(-0.888723\pi\)
−0.787690 + 0.616072i \(0.788723\pi\)
\(138\) 0 0
\(139\) 7.81703 5.67941i 0.663032 0.481721i −0.204653 0.978834i \(-0.565607\pi\)
0.867686 + 0.497114i \(0.165607\pi\)
\(140\) −4.82403 + 2.63303i −0.407705 + 0.222532i
\(141\) 0 0
\(142\) −1.44878 + 6.91978i −0.121579 + 0.580695i
\(143\) 10.7526 10.7526i 0.899181 0.899181i
\(144\) 0 0
\(145\) 3.79804 3.57616i 0.315410 0.296984i
\(146\) 0.239335 4.85002i 0.0198075 0.401391i
\(147\) 0 0
\(148\) 15.9528 6.23570i 1.31131 0.512572i
\(149\) 8.40173i 0.688296i 0.938915 + 0.344148i \(0.111832\pi\)
−0.938915 + 0.344148i \(0.888168\pi\)
\(150\) 0 0
\(151\) 0.959977i 0.0781219i −0.999237 0.0390609i \(-0.987563\pi\)
0.999237 0.0390609i \(-0.0124366\pi\)
\(152\) 10.8173 8.01158i 0.877396 0.649825i
\(153\) 0 0
\(154\) −7.78523 0.384179i −0.627352 0.0309580i
\(155\) −4.07750 + 21.5313i −0.327513 + 1.72944i
\(156\) 0 0
\(157\) 8.31117 8.31117i 0.663303 0.663303i −0.292854 0.956157i \(-0.594605\pi\)
0.956157 + 0.292854i \(0.0946049\pi\)
\(158\) −2.33400 0.488665i −0.185683 0.0388761i
\(159\) 0 0
\(160\) 12.6402 0.474792i 0.999295 0.0375356i
\(161\) −4.75813 + 3.45698i −0.374993 + 0.272448i
\(162\) 0 0
\(163\) 22.0465 3.49183i 1.72682 0.273501i 0.787442 0.616389i \(-0.211405\pi\)
0.939376 + 0.342888i \(0.111405\pi\)
\(164\) 5.11044 + 2.23803i 0.399059 + 0.174761i
\(165\) 0 0
\(166\) −7.66750 + 20.1582i −0.595113 + 1.56458i
\(167\) 0.816203 1.60189i 0.0631597 0.123958i −0.857268 0.514870i \(-0.827840\pi\)
0.920428 + 0.390912i \(0.127840\pi\)
\(168\) 0 0
\(169\) 1.43087 0.464917i 0.110067 0.0357628i
\(170\) −12.7170 14.9152i −0.975346 1.14394i
\(171\) 0 0
\(172\) 8.76282 13.6756i 0.668158 1.04276i
\(173\) 8.78515 + 1.39143i 0.667923 + 0.105789i 0.481182 0.876621i \(-0.340208\pi\)
0.186741 + 0.982409i \(0.440208\pi\)
\(174\) 0 0
\(175\) −1.32435 + 6.00011i −0.100111 + 0.453565i
\(176\) 15.6450 + 8.77970i 1.17929 + 0.661795i
\(177\) 0 0
\(178\) 1.69147 1.53238i 0.126781 0.114857i
\(179\) −2.58378 + 7.95205i −0.193120 + 0.594364i 0.806873 + 0.590725i \(0.201158\pi\)
−0.999993 + 0.00363866i \(0.998842\pi\)
\(180\) 0 0
\(181\) 6.98134 + 21.4863i 0.518919 + 1.59707i 0.776037 + 0.630688i \(0.217227\pi\)
−0.257118 + 0.966380i \(0.582773\pi\)
\(182\) 5.11200 + 2.93064i 0.378926 + 0.217234i
\(183\) 0 0
\(184\) 13.3499 2.23992i 0.984164 0.165129i
\(185\) 6.46270 18.0264i 0.475147 1.32533i
\(186\) 0 0
\(187\) −4.34879 27.4572i −0.318015 2.00787i
\(188\) −7.36920 + 6.04233i −0.537454 + 0.440682i
\(189\) 0 0
\(190\) 1.19350 15.0025i 0.0865854 1.08839i
\(191\) 3.77520 5.19612i 0.273164 0.375978i −0.650291 0.759686i \(-0.725353\pi\)
0.923455 + 0.383707i \(0.125353\pi\)
\(192\) 0 0
\(193\) −11.6325 11.6325i −0.837323 0.837323i 0.151183 0.988506i \(-0.451692\pi\)
−0.988506 + 0.151183i \(0.951692\pi\)
\(194\) −14.4917 + 9.47404i −1.04044 + 0.680196i
\(195\) 0 0
\(196\) 2.34831 + 10.7255i 0.167737 + 0.766108i
\(197\) 0.611842 + 1.20081i 0.0435919 + 0.0855540i 0.911775 0.410690i \(-0.134712\pi\)
−0.868183 + 0.496244i \(0.834712\pi\)
\(198\) 0 0
\(199\) −20.5955 −1.45997 −0.729987 0.683461i \(-0.760474\pi\)
−0.729987 + 0.683461i \(0.760474\pi\)
\(200\) 8.88498 11.0026i 0.628263 0.778001i
\(201\) 0 0
\(202\) −1.20297 11.1188i −0.0846403 0.782318i
\(203\) 1.30160 + 2.55453i 0.0913542 + 0.179293i
\(204\) 0 0
\(205\) 5.64033 2.66335i 0.393938 0.186017i
\(206\) 19.8948 13.0064i 1.38614 0.906197i
\(207\) 0 0
\(208\) −7.52473 11.2830i −0.521746 0.782336i
\(209\) 12.5463 17.2686i 0.867849 1.19449i
\(210\) 0 0
\(211\) 3.36303 + 4.62882i 0.231521 + 0.318661i 0.908933 0.416943i \(-0.136899\pi\)
−0.677412 + 0.735604i \(0.736899\pi\)
\(212\) 1.11729 0.916113i 0.0767356 0.0629189i
\(213\) 0 0
\(214\) −0.949108 + 1.17939i −0.0648797 + 0.0806218i
\(215\) −5.08961 17.4315i −0.347108 1.18882i
\(216\) 0 0
\(217\) −10.7309 5.46767i −0.728461 0.371170i
\(218\) 7.03627 + 4.03380i 0.476556 + 0.273204i
\(219\) 0 0
\(220\) 18.8924 6.73710i 1.27373 0.454215i
\(221\) −6.49405 + 19.9866i −0.436837 + 1.34445i
\(222\) 0 0
\(223\) 0.323229 2.04079i 0.0216450 0.136661i −0.974499 0.224390i \(-0.927961\pi\)
0.996144 + 0.0877290i \(0.0279609\pi\)
\(224\) −1.69654 + 6.74154i −0.113355 + 0.450438i
\(225\) 0 0
\(226\) −25.0026 + 6.78130i −1.66315 + 0.451086i
\(227\) 21.4739 + 3.40114i 1.42528 + 0.225741i 0.820952 0.570998i \(-0.193443\pi\)
0.604323 + 0.796739i \(0.293443\pi\)
\(228\) 0 0
\(229\) −9.11712 2.96233i −0.602476 0.195756i −0.00813172 0.999967i \(-0.502588\pi\)
−0.594345 + 0.804211i \(0.702588\pi\)
\(230\) 7.91853 12.8974i 0.522132 0.850426i
\(231\) 0 0
\(232\) −0.0604311 6.59839i −0.00396749 0.433206i
\(233\) −3.34038 + 6.55586i −0.218835 + 0.429488i −0.974159 0.225864i \(-0.927480\pi\)
0.755324 + 0.655352i \(0.227480\pi\)
\(234\) 0 0
\(235\) −0.320430 + 10.6497i −0.0209025 + 0.694709i
\(236\) 0.692450 + 0.303246i 0.0450746 + 0.0197397i
\(237\) 0 0
\(238\) 9.82743 4.41145i 0.637018 0.285952i
\(239\) −9.18160 + 6.67082i −0.593908 + 0.431500i −0.843711 0.536797i \(-0.819634\pi\)
0.249803 + 0.968297i \(0.419634\pi\)
\(240\) 0 0
\(241\) −4.36910 3.17434i −0.281438 0.204477i 0.438106 0.898923i \(-0.355649\pi\)
−0.719545 + 0.694446i \(0.755649\pi\)
\(242\) 12.6178 + 2.64176i 0.811102 + 0.169819i
\(243\) 0 0
\(244\) −4.41481 + 4.96375i −0.282629 + 0.317772i
\(245\) 10.7650 + 5.89941i 0.687753 + 0.376899i
\(246\) 0 0
\(247\) −14.3773 + 7.32560i −0.914805 + 0.466117i
\(248\) 16.4977 + 22.2752i 1.04760 + 1.41448i
\(249\) 0 0
\(250\) −2.74689 15.5710i −0.173729 0.984794i
\(251\) 12.4891i 0.788307i −0.919045 0.394153i \(-0.871038\pi\)
0.919045 0.394153i \(-0.128962\pi\)
\(252\) 0 0
\(253\) 19.1253 9.74480i 1.20239 0.612651i
\(254\) 0.162241 3.28775i 0.0101799 0.206292i
\(255\) 0 0
\(256\) 10.4125 12.1482i 0.650784 0.759263i
\(257\) −12.3554 + 12.3554i −0.770711 + 0.770711i −0.978231 0.207520i \(-0.933461\pi\)
0.207520 + 0.978231i \(0.433461\pi\)
\(258\) 0 0
\(259\) 8.51446 + 6.18612i 0.529063 + 0.384387i
\(260\) −15.0374 1.94597i −0.932579 0.120684i
\(261\) 0 0
\(262\) 13.0197 + 29.0041i 0.804361 + 1.79188i
\(263\) 6.03239 0.955437i 0.371973 0.0589148i 0.0323506 0.999477i \(-0.489701\pi\)
0.339623 + 0.940562i \(0.389701\pi\)
\(264\) 0 0
\(265\) 0.0485822 1.61466i 0.00298438 0.0991879i
\(266\) 7.73079 + 2.94053i 0.474005 + 0.180295i
\(267\) 0 0
\(268\) −3.36311 + 12.8650i −0.205435 + 0.785854i
\(269\) 15.3432 4.98530i 0.935490 0.303959i 0.198684 0.980064i \(-0.436333\pi\)
0.736806 + 0.676105i \(0.236333\pi\)
\(270\) 0 0
\(271\) −13.5467 4.40159i −0.822904 0.267378i −0.132850 0.991136i \(-0.542413\pi\)
−0.690053 + 0.723758i \(0.742413\pi\)
\(272\) −24.7730 0.995146i −1.50209 0.0603396i
\(273\) 0 0
\(274\) 7.57728 + 27.9374i 0.457760 + 1.68776i
\(275\) 8.19949 20.8724i 0.494448 1.25865i
\(276\) 0 0
\(277\) −2.25919 + 14.2640i −0.135742 + 0.857040i 0.822016 + 0.569464i \(0.192849\pi\)
−0.957758 + 0.287576i \(0.907151\pi\)
\(278\) −9.17441 10.1269i −0.550244 0.607369i
\(279\) 0 0
\(280\) 4.43589 + 6.38210i 0.265095 + 0.381403i
\(281\) 0.729043 + 2.24376i 0.0434911 + 0.133852i 0.970444 0.241325i \(-0.0775820\pi\)
−0.926953 + 0.375177i \(0.877582\pi\)
\(282\) 0 0
\(283\) −12.0621 6.14594i −0.717016 0.365338i 0.0571112 0.998368i \(-0.481811\pi\)
−0.774127 + 0.633030i \(0.781811\pi\)
\(284\) 9.94966 + 0.984372i 0.590404 + 0.0584117i
\(285\) 0 0
\(286\) −16.7540 13.4826i −0.990683 0.797245i
\(287\) 0.536263 + 3.38583i 0.0316546 + 0.199859i
\(288\) 0 0
\(289\) 12.5894 + 17.3278i 0.740553 + 1.01928i
\(290\) −5.60587 4.79607i −0.329188 0.281635i
\(291\) 0 0
\(292\) −6.85558 + 0.401271i −0.401192 + 0.0234826i
\(293\) −13.5220 13.5220i −0.789964 0.789964i 0.191524 0.981488i \(-0.438657\pi\)
−0.981488 + 0.191524i \(0.938657\pi\)
\(294\) 0 0
\(295\) 0.764247 0.360876i 0.0444962 0.0210110i
\(296\) −11.1942 21.4811i −0.650647 1.24857i
\(297\) 0 0
\(298\) 11.8129 1.27806i 0.684303 0.0740359i
\(299\) −16.2265 −0.938401
\(300\) 0 0
\(301\) 9.98007 0.575242
\(302\) −1.34974 + 0.146030i −0.0776686 + 0.00840310i
\(303\) 0 0
\(304\) −12.9099 13.9905i −0.740431 0.802407i
\(305\) 0.940711 + 7.36728i 0.0538650 + 0.421849i
\(306\) 0 0
\(307\) 11.3516 + 11.3516i 0.647873 + 0.647873i 0.952479 0.304606i \(-0.0985247\pi\)
−0.304606 + 0.952479i \(0.598525\pi\)
\(308\) 0.644118 + 11.0045i 0.0367020 + 0.627042i
\(309\) 0 0
\(310\) 30.8935 + 2.45768i 1.75463 + 0.139587i
\(311\) 7.06216 + 9.72023i 0.400458 + 0.551183i 0.960859 0.277038i \(-0.0893528\pi\)
−0.560401 + 0.828222i \(0.689353\pi\)
\(312\) 0 0
\(313\) 0.0322523 + 0.203633i 0.00182301 + 0.0115100i 0.988583 0.150677i \(-0.0481453\pi\)
−0.986760 + 0.162187i \(0.948145\pi\)
\(314\) −12.9499 10.4213i −0.730803 0.588108i
\(315\) 0 0
\(316\) −0.332023 + 3.35596i −0.0186777 + 0.188787i
\(317\) 0.800165 + 0.407705i 0.0449418 + 0.0228990i 0.476317 0.879274i \(-0.341971\pi\)
−0.431375 + 0.902173i \(0.641971\pi\)
\(318\) 0 0
\(319\) −3.23340 9.95139i −0.181036 0.557171i
\(320\) −2.59037 17.7000i −0.144806 0.989460i
\(321\) 0 0
\(322\) 5.58435 + 6.16410i 0.311203 + 0.343512i
\(323\) −4.61460 + 29.1354i −0.256763 + 1.62114i
\(324\) 0 0
\(325\) −12.6862 + 11.2449i −0.703706 + 0.623752i
\(326\) −8.26323 30.4665i −0.457658 1.68738i
\(327\) 0 0
\(328\) 2.36930 7.52577i 0.130823 0.415541i
\(329\) −5.56895 1.80946i −0.307026 0.0997588i
\(330\) 0 0
\(331\) −8.52303 + 2.76930i −0.468468 + 0.152214i −0.533732 0.845654i \(-0.679211\pi\)
0.0652642 + 0.997868i \(0.479211\pi\)
\(332\) 29.5090 + 7.71413i 1.61952 + 0.423368i
\(333\) 0 0
\(334\) −2.37643 0.903912i −0.130032 0.0494599i
\(335\) 8.37284 + 12.2849i 0.457457 + 0.671195i
\(336\) 0 0
\(337\) −7.67391 + 1.21543i −0.418024 + 0.0662085i −0.361904 0.932215i \(-0.617873\pi\)
−0.0561205 + 0.998424i \(0.517873\pi\)
\(338\) −0.871339 1.94109i −0.0473946 0.105581i
\(339\) 0 0
\(340\) −19.0364 + 20.1490i −1.03239 + 1.09273i
\(341\) 35.5599 + 25.8358i 1.92568 + 1.39909i
\(342\) 0 0
\(343\) −10.8532 + 10.8532i −0.586019 + 0.586019i
\(344\) −20.5610 10.2403i −1.10858 0.552119i
\(345\) 0 0
\(346\) 0.619981 12.5637i 0.0333304 0.675427i
\(347\) 19.3079 9.83786i 1.03650 0.528124i 0.148956 0.988844i \(-0.452409\pi\)
0.887546 + 0.460720i \(0.152409\pi\)
\(348\) 0 0
\(349\) 23.0418i 1.23340i 0.787198 + 0.616701i \(0.211531\pi\)
−0.787198 + 0.616701i \(0.788469\pi\)
\(350\) 8.63766 + 0.949319i 0.461702 + 0.0507432i
\(351\) 0 0
\(352\) 9.96444 23.3326i 0.531106 1.24363i
\(353\) 13.7543 7.00816i 0.732066 0.373006i −0.0478797 0.998853i \(-0.515246\pi\)
0.779946 + 0.625847i \(0.215246\pi\)
\(354\) 0 0
\(355\) 8.13844 7.66301i 0.431944 0.406710i
\(356\) −2.41184 2.14511i −0.127827 0.113691i
\(357\) 0 0
\(358\) 11.5737 + 2.42316i 0.611688 + 0.128068i
\(359\) 18.1516 + 13.1879i 0.958007 + 0.696033i 0.952687 0.303953i \(-0.0983065\pi\)
0.00532016 + 0.999986i \(0.498307\pi\)
\(360\) 0 0
\(361\) −2.95276 + 2.14531i −0.155409 + 0.112911i
\(362\) 29.1480 13.0843i 1.53198 0.687695i
\(363\) 0 0
\(364\) 3.34288 7.63332i 0.175214 0.400094i
\(365\) −4.69772 + 6.07301i −0.245890 + 0.317876i
\(366\) 0 0
\(367\) −7.37062 + 14.4657i −0.384743 + 0.755101i −0.999433 0.0336676i \(-0.989281\pi\)
0.614690 + 0.788769i \(0.289281\pi\)
\(368\) −5.18011 18.4293i −0.270032 0.960692i
\(369\) 0 0
\(370\) −26.3284 6.34446i −1.36875 0.329833i
\(371\) 0.844341 + 0.274343i 0.0438360 + 0.0142432i
\(372\) 0 0
\(373\) 8.67472 + 1.37394i 0.449160 + 0.0711400i 0.376917 0.926247i \(-0.376984\pi\)
0.0722432 + 0.997387i \(0.476984\pi\)
\(374\) −37.9435 + 10.2912i −1.96201 + 0.532144i
\(375\) 0 0
\(376\) 9.61656 + 9.44201i 0.495936 + 0.486935i
\(377\) −1.23739 + 7.81259i −0.0637290 + 0.402369i
\(378\) 0 0
\(379\) 4.77015 14.6810i 0.245026 0.754112i −0.750606 0.660750i \(-0.770238\pi\)
0.995632 0.0933626i \(-0.0297616\pi\)
\(380\) −21.2751 + 0.604084i −1.09139 + 0.0309888i
\(381\) 0 0
\(382\) −7.88007 4.51754i −0.403180 0.231138i
\(383\) 19.5086 + 9.94011i 0.996841 + 0.507916i 0.874735 0.484601i \(-0.161035\pi\)
0.122106 + 0.992517i \(0.461035\pi\)
\(384\) 0 0
\(385\) 9.74836 + 7.54075i 0.496822 + 0.384312i
\(386\) −14.5858 + 18.1249i −0.742399 + 0.922531i
\(387\) 0 0
\(388\) 15.5250 + 18.9343i 0.788164 + 0.961242i
\(389\) −19.3223 26.5948i −0.979678 1.34841i −0.937002 0.349323i \(-0.886412\pi\)
−0.0426759 0.999089i \(-0.513588\pi\)
\(390\) 0 0
\(391\) −17.4361 + 23.9987i −0.881779 + 1.21367i
\(392\) 14.7229 4.93330i 0.743621 0.249169i
\(393\) 0 0
\(394\) 1.59527 1.04292i 0.0803687 0.0525415i
\(395\) 2.58468 + 2.74505i 0.130050 + 0.138118i
\(396\) 0 0
\(397\) −4.68709 9.19893i −0.235238 0.461681i 0.742965 0.669330i \(-0.233419\pi\)
−0.978203 + 0.207649i \(0.933419\pi\)
\(398\) 3.13295 + 28.9574i 0.157041 + 1.45150i
\(399\) 0 0
\(400\) −16.8213 10.8187i −0.841066 0.540933i
\(401\) −19.3269 −0.965137 −0.482569 0.875858i \(-0.660296\pi\)
−0.482569 + 0.875858i \(0.660296\pi\)
\(402\) 0 0
\(403\) −15.0851 29.6061i −0.751442 1.47479i
\(404\) −15.4502 + 3.38276i −0.768675 + 0.168299i
\(405\) 0 0
\(406\) 3.39369 2.21865i 0.168426 0.110110i
\(407\) −27.1602 27.1602i −1.34628 1.34628i
\(408\) 0 0
\(409\) 20.5429 28.2749i 1.01578 1.39810i 0.100661 0.994921i \(-0.467904\pi\)
0.915120 0.403182i \(-0.132096\pi\)
\(410\) −4.60269 7.52520i −0.227311 0.371643i
\(411\) 0 0
\(412\) −21.3135 25.9938i −1.05004 1.28062i
\(413\) 0.0726621 + 0.458770i 0.00357547 + 0.0225746i
\(414\) 0 0
\(415\) 28.1784 19.2052i 1.38322 0.942744i
\(416\) −14.7194 + 12.2962i −0.721676 + 0.602870i
\(417\) 0 0
\(418\) −26.1883 15.0134i −1.28091 0.734329i
\(419\) −5.52699 17.0103i −0.270011 0.831010i −0.990496 0.137539i \(-0.956081\pi\)
0.720485 0.693471i \(-0.243919\pi\)
\(420\) 0 0
\(421\) −11.1963 + 34.4588i −0.545676 + 1.67942i 0.173703 + 0.984798i \(0.444427\pi\)
−0.719378 + 0.694619i \(0.755573\pi\)
\(422\) 5.99658 5.43258i 0.291909 0.264454i
\(423\) 0 0
\(424\) −1.45802 1.43156i −0.0708078 0.0695226i
\(425\) 2.99902 + 30.8458i 0.145474 + 1.49624i
\(426\) 0 0
\(427\) −4.03155 0.638535i −0.195100 0.0309009i
\(428\) 1.80262 + 1.15505i 0.0871327 + 0.0558313i
\(429\) 0 0
\(430\) −23.7347 + 9.80769i −1.14459 + 0.472969i
\(431\) −32.9891 + 10.7188i −1.58903 + 0.516307i −0.964362 0.264586i \(-0.914765\pi\)
−0.624666 + 0.780892i \(0.714765\pi\)
\(432\) 0 0
\(433\) −0.342596 + 0.672382i −0.0164641 + 0.0323126i −0.899092 0.437760i \(-0.855772\pi\)
0.882628 + 0.470072i \(0.155772\pi\)
\(434\) −6.05522 + 15.9195i −0.290660 + 0.764159i
\(435\) 0 0
\(436\) 4.60121 10.5067i 0.220358 0.503178i
\(437\) −22.4964 + 3.56308i −1.07615 + 0.170445i
\(438\) 0 0
\(439\) −6.65831 + 4.83755i −0.317784 + 0.230883i −0.735229 0.677819i \(-0.762925\pi\)
0.417445 + 0.908702i \(0.362925\pi\)
\(440\) −12.3463 25.5380i −0.588587 1.21748i
\(441\) 0 0
\(442\) 29.0892 + 6.09035i 1.38363 + 0.289689i
\(443\) −5.05289 + 5.05289i −0.240070 + 0.240070i −0.816879 0.576809i \(-0.804298\pi\)
0.576809 + 0.816879i \(0.304298\pi\)
\(444\) 0 0
\(445\) −3.57969 + 0.457083i −0.169694 + 0.0216678i
\(446\) −2.91854 0.144021i −0.138197 0.00681961i
\(447\) 0 0
\(448\) 9.73674 + 1.35984i 0.460018 + 0.0642464i
\(449\) 3.96534i 0.187136i 0.995613 + 0.0935679i \(0.0298272\pi\)
−0.995613 + 0.0935679i \(0.970173\pi\)
\(450\) 0 0
\(451\) 12.5110i 0.589122i
\(452\) 13.3379 + 34.1223i 0.627363 + 1.60498i
\(453\) 0 0
\(454\) 1.51545 30.7099i 0.0711234 1.44129i
\(455\) −3.97817 8.42479i −0.186500 0.394960i
\(456\) 0 0
\(457\) −28.6276 + 28.6276i −1.33914 + 1.33914i −0.442252 + 0.896891i \(0.645820\pi\)
−0.896891 + 0.442252i \(0.854180\pi\)
\(458\) −2.77818 + 13.2694i −0.129816 + 0.620037i
\(459\) 0 0
\(460\) −19.3383 9.17160i −0.901655 0.427628i
\(461\) −19.5894 + 14.2325i −0.912367 + 0.662874i −0.941613 0.336699i \(-0.890690\pi\)
0.0292451 + 0.999572i \(0.490690\pi\)
\(462\) 0 0
\(463\) −2.56198 + 0.405779i −0.119066 + 0.0188581i −0.215683 0.976463i \(-0.569198\pi\)
0.0966173 + 0.995322i \(0.469198\pi\)
\(464\) −9.26820 + 1.08870i −0.430266 + 0.0505418i
\(465\) 0 0
\(466\) 9.72572 + 3.69933i 0.450535 + 0.171368i
\(467\) −15.4035 + 30.2311i −0.712789 + 1.39893i 0.195550 + 0.980694i \(0.437351\pi\)
−0.908339 + 0.418234i \(0.862649\pi\)
\(468\) 0 0
\(469\) −7.77067 + 2.52484i −0.358816 + 0.116586i
\(470\) 15.0223 1.16949i 0.692927 0.0539444i
\(471\) 0 0
\(472\) 0.321033 1.01972i 0.0147767 0.0469364i
\(473\) −35.9751 5.69789i −1.65414 0.261989i
\(474\) 0 0
\(475\) −15.1190 + 18.3756i −0.693708 + 0.843128i
\(476\) −7.69747 13.1464i −0.352813 0.602564i
\(477\) 0 0
\(478\) 10.7759 + 11.8947i 0.492879 + 0.544049i
\(479\) 9.51698 29.2903i 0.434842 1.33831i −0.458406 0.888743i \(-0.651579\pi\)
0.893248 0.449564i \(-0.148421\pi\)
\(480\) 0 0
\(481\) 8.97279 + 27.6154i 0.409124 + 1.25915i
\(482\) −3.79852 + 6.62587i −0.173018 + 0.301800i
\(483\) 0 0
\(484\) 1.79494 18.1426i 0.0815881 0.824662i
\(485\) 27.3631 + 0.823305i 1.24249 + 0.0373843i
\(486\) 0 0
\(487\) −4.00267 25.2719i −0.181378 1.14518i −0.895469 0.445124i \(-0.853159\pi\)
0.714090 0.700053i \(-0.246841\pi\)
\(488\) 7.65065 + 5.45218i 0.346329 + 0.246809i
\(489\) 0 0
\(490\) 6.65705 16.0331i 0.300735 0.724304i
\(491\) 21.3712 29.4149i 0.964467 1.32748i 0.0196748 0.999806i \(-0.493737\pi\)
0.944793 0.327669i \(-0.106263\pi\)
\(492\) 0 0
\(493\) 10.2251 + 10.2251i 0.460513 + 0.460513i
\(494\) 12.4869 + 19.1002i 0.561812 + 0.859360i
\(495\) 0 0
\(496\) 28.8096 26.5844i 1.29359 1.19367i
\(497\) 2.78906 + 5.47385i 0.125107 + 0.245536i
\(498\) 0 0
\(499\) 21.4166 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(500\) −21.4750 + 6.23079i −0.960393 + 0.278649i
\(501\) 0 0
\(502\) −17.5598 + 1.89983i −0.783733 + 0.0847934i
\(503\) −2.54246 4.98985i −0.113362 0.222486i 0.827354 0.561681i \(-0.189845\pi\)
−0.940716 + 0.339195i \(0.889845\pi\)
\(504\) 0 0
\(505\) −8.49813 + 15.5071i −0.378162 + 0.690058i
\(506\) −16.6106 25.4079i −0.738430 1.12952i
\(507\) 0 0
\(508\) −4.64729 + 0.272015i −0.206190 + 0.0120687i
\(509\) 14.8244 20.4041i 0.657082 0.904395i −0.342299 0.939591i \(-0.611205\pi\)
0.999380 + 0.0351958i \(0.0112055\pi\)
\(510\) 0 0
\(511\) −2.48024 3.41376i −0.109719 0.151016i
\(512\) −18.6644 12.7922i −0.824859 0.565339i
\(513\) 0 0
\(514\) 19.2513 + 15.4924i 0.849140 + 0.683339i
\(515\) −37.5653 1.13027i −1.65532 0.0498056i
\(516\) 0 0
\(517\) 19.0413 + 9.70200i 0.837433 + 0.426694i
\(518\) 7.40253 12.9124i 0.325248 0.567339i
\(519\) 0 0
\(520\) −0.448582 + 21.4387i −0.0196716 + 0.940150i
\(521\) −10.5745 + 32.5450i −0.463278 + 1.42582i 0.397858 + 0.917447i \(0.369754\pi\)
−0.861136 + 0.508375i \(0.830246\pi\)
\(522\) 0 0
\(523\) −2.99899 + 18.9349i −0.131137 + 0.827966i 0.831174 + 0.556013i \(0.187669\pi\)
−0.962311 + 0.271953i \(0.912331\pi\)
\(524\) 38.7995 22.7179i 1.69497 0.992436i
\(525\) 0 0
\(526\) −2.26099 8.33625i −0.0985839 0.363478i
\(527\) −59.9966 9.50252i −2.61349 0.413936i
\(528\) 0 0
\(529\) 0.0908487 + 0.0295185i 0.00394994 + 0.00128341i
\(530\) −2.27762 + 0.177313i −0.0989334 + 0.00770198i
\(531\) 0 0
\(532\) 2.95841 11.3169i 0.128263 0.490648i
\(533\) −4.29376 + 8.42699i −0.185984 + 0.365013i
\(534\) 0 0
\(535\) 2.29769 0.670873i 0.0993378 0.0290044i
\(536\) 18.5999 + 2.77156i 0.803392 + 0.119713i
\(537\) 0 0
\(538\) −9.34335 20.8143i −0.402820 0.897367i
\(539\) 19.9196 14.4724i 0.857996 0.623371i
\(540\) 0 0
\(541\) −29.5454 21.4660i −1.27026 0.922895i −0.271043 0.962567i \(-0.587369\pi\)
−0.999213 + 0.0396722i \(0.987369\pi\)
\(542\) −4.12797 + 19.7164i −0.177312 + 0.846890i
\(543\) 0 0
\(544\) 2.36925 + 34.9825i 0.101581 + 1.49986i
\(545\) −5.47564 11.5961i −0.234551 0.496721i
\(546\) 0 0
\(547\) −3.73686 + 1.90403i −0.159777 + 0.0814103i −0.532050 0.846713i \(-0.678578\pi\)
0.372274 + 0.928123i \(0.378578\pi\)
\(548\) 38.1275 14.9035i 1.62873 0.636646i
\(549\) 0 0
\(550\) −30.5941 8.35347i −1.30454 0.356193i
\(551\) 11.1031i 0.473007i
\(552\) 0 0
\(553\) −1.84629 + 0.940734i −0.0785124 + 0.0400041i
\(554\) 20.3990 + 1.00663i 0.866668 + 0.0427676i
\(555\) 0 0
\(556\) −12.8429 + 14.4398i −0.544659 + 0.612383i
\(557\) 9.53036 9.53036i 0.403814 0.403814i −0.475761 0.879575i \(-0.657827\pi\)
0.879575 + 0.475761i \(0.157827\pi\)
\(558\) 0 0
\(559\) 22.2760 + 16.1845i 0.942174 + 0.684529i
\(560\) 8.29850 7.20774i 0.350676 0.304582i
\(561\) 0 0
\(562\) 3.04385 1.36636i 0.128397 0.0576364i
\(563\) 7.44681 1.17946i 0.313846 0.0497083i 0.00247542 0.999997i \(-0.499212\pi\)
0.311370 + 0.950289i \(0.399212\pi\)
\(564\) 0 0
\(565\) 38.5578 + 13.8235i 1.62214 + 0.581557i
\(566\) −6.80638 + 17.8943i −0.286093 + 0.752153i
\(567\) 0 0
\(568\) −0.129492 14.1391i −0.00543336 0.593261i
\(569\) −19.9781 + 6.49127i −0.837524 + 0.272128i −0.696211 0.717837i \(-0.745132\pi\)
−0.141313 + 0.989965i \(0.545132\pi\)
\(570\) 0 0
\(571\) −16.6846 5.42116i −0.698230 0.226869i −0.0616706 0.998097i \(-0.519643\pi\)
−0.636559 + 0.771228i \(0.719643\pi\)
\(572\) −16.4081 + 25.6072i −0.686057 + 1.07069i
\(573\) 0 0
\(574\) 4.67894 1.26904i 0.195295 0.0529687i
\(575\) −21.9357 + 9.56216i −0.914784 + 0.398770i
\(576\) 0 0
\(577\) 0.710623 4.48670i 0.0295836 0.186784i −0.968471 0.249125i \(-0.919857\pi\)
0.998055 + 0.0623417i \(0.0198569\pi\)
\(578\) 22.4480 20.3367i 0.933713 0.845894i
\(579\) 0 0
\(580\) −5.89057 + 8.61147i −0.244592 + 0.357572i
\(581\) 5.79135 + 17.8239i 0.240266 + 0.739462i
\(582\) 0 0
\(583\) −2.88696 1.47098i −0.119566 0.0609217i
\(584\) 1.60705 + 9.57796i 0.0665002 + 0.396339i
\(585\) 0 0
\(586\) −16.9551 + 21.0690i −0.700409 + 0.870352i
\(587\) 0.853147 + 5.38656i 0.0352131 + 0.222327i 0.999019 0.0442770i \(-0.0140984\pi\)
−0.963806 + 0.266604i \(0.914098\pi\)
\(588\) 0 0
\(589\) −27.4150 37.7335i −1.12962 1.55478i
\(590\) −0.623651 1.01964i −0.0256753 0.0419780i
\(591\) 0 0
\(592\) −28.4998 + 19.0068i −1.17134 + 0.781173i
\(593\) −10.2013 10.2013i −0.418916 0.418916i 0.465914 0.884830i \(-0.345726\pi\)
−0.884830 + 0.465914i \(0.845726\pi\)
\(594\) 0 0
\(595\) −16.7348 3.16916i −0.686062 0.129923i
\(596\) −3.59392 16.4146i −0.147213 0.672369i
\(597\) 0 0
\(598\) 2.46835 + 22.8146i 0.100938 + 0.932957i
\(599\) 16.3953 0.669893 0.334947 0.942237i \(-0.391282\pi\)
0.334947 + 0.942237i \(0.391282\pi\)
\(600\) 0 0
\(601\) −12.3492 −0.503736 −0.251868 0.967762i \(-0.581045\pi\)
−0.251868 + 0.967762i \(0.581045\pi\)
\(602\) −1.51815 14.0321i −0.0618753 0.571904i
\(603\) 0 0
\(604\) 0.410640 + 1.87553i 0.0167087 + 0.0763141i
\(605\) −13.9730 14.8399i −0.568083 0.603329i
\(606\) 0 0
\(607\) 29.6207 + 29.6207i 1.20227 + 1.20227i 0.973476 + 0.228791i \(0.0734771\pi\)
0.228791 + 0.973476i \(0.426523\pi\)
\(608\) −17.7069 + 20.2796i −0.718108 + 0.822445i
\(609\) 0 0
\(610\) 10.2154 2.44335i 0.413608 0.0989282i
\(611\) −9.49579 13.0698i −0.384159 0.528749i
\(612\) 0 0
\(613\) −0.513499 3.24210i −0.0207400 0.130947i 0.975146 0.221564i \(-0.0711162\pi\)
−0.995886 + 0.0906167i \(0.971116\pi\)
\(614\) 14.2337 17.6873i 0.574426 0.713802i
\(615\) 0 0
\(616\) 15.3745 2.57963i 0.619456 0.103936i
\(617\) −18.7804 9.56911i −0.756072 0.385238i 0.0330668 0.999453i \(-0.489473\pi\)
−0.789138 + 0.614215i \(0.789473\pi\)
\(618\) 0 0
\(619\) 6.78934 + 20.8954i 0.272887 + 0.839859i 0.989771 + 0.142667i \(0.0455677\pi\)
−0.716884 + 0.697192i \(0.754432\pi\)
\(620\) −1.24395 43.8104i −0.0499581 1.75947i
\(621\) 0 0
\(622\) 12.5924 11.4081i 0.504911 0.457422i
\(623\) 0.310258 1.95889i 0.0124302 0.0784813i
\(624\) 0 0
\(625\) −10.5234 + 22.6773i −0.420935 + 0.907091i
\(626\) 0.281404 0.0763234i 0.0112472 0.00305050i
\(627\) 0 0
\(628\) −12.6825 + 19.7929i −0.506087 + 0.789822i
\(629\) 50.4844 + 16.4034i 2.01294 + 0.654045i
\(630\) 0 0
\(631\) 41.0489 13.3376i 1.63413 0.530962i 0.658916 0.752217i \(-0.271015\pi\)
0.975216 + 0.221255i \(0.0710153\pi\)
\(632\) 4.76901 0.0436768i 0.189701 0.00173737i
\(633\) 0 0
\(634\) 0.451516 1.18706i 0.0179320 0.0471441i
\(635\) −3.18451 + 4.11680i −0.126373 + 0.163370i
\(636\) 0 0
\(637\) −18.3840 + 2.91174i −0.728400 + 0.115367i
\(638\) −13.4999 + 6.05998i −0.534466 + 0.239917i
\(639\) 0 0
\(640\) −24.4923 + 6.33458i −0.968143 + 0.250396i
\(641\) −23.0054 16.7144i −0.908660 0.660180i 0.0320157 0.999487i \(-0.489807\pi\)
−0.940676 + 0.339307i \(0.889807\pi\)
\(642\) 0 0
\(643\) 31.2213 31.2213i 1.23125 1.23125i 0.267763 0.963485i \(-0.413716\pi\)
0.963485 0.267763i \(-0.0862843\pi\)
\(644\) 7.81729 8.78931i 0.308044 0.346347i
\(645\) 0 0
\(646\) 41.6667 + 2.05613i 1.63935 + 0.0808974i
\(647\) 32.1671 16.3899i 1.26462 0.644355i 0.312452 0.949934i \(-0.398850\pi\)
0.952167 + 0.305578i \(0.0988498\pi\)
\(648\) 0 0
\(649\) 1.69521i 0.0665428i
\(650\) 17.7402 + 16.1264i 0.695827 + 0.632530i
\(651\) 0 0
\(652\) −41.5791 + 16.2527i −1.62836 + 0.636504i
\(653\) 34.2761 17.4646i 1.34133 0.683441i 0.371775 0.928323i \(-0.378749\pi\)
0.969553 + 0.244882i \(0.0787492\pi\)
\(654\) 0 0
\(655\) 9.35329 49.3903i 0.365463 1.92984i
\(656\) −10.9417 2.18644i −0.427202 0.0853662i
\(657\) 0 0
\(658\) −1.69698 + 8.10524i −0.0661551 + 0.315975i
\(659\) 9.74331 + 7.07893i 0.379545 + 0.275756i 0.761158 0.648566i \(-0.224631\pi\)
−0.381613 + 0.924322i \(0.624631\pi\)
\(660\) 0 0
\(661\) 31.6245 22.9765i 1.23005 0.893683i 0.233155 0.972440i \(-0.425095\pi\)
0.996894 + 0.0787568i \(0.0250951\pi\)
\(662\) 5.19017 + 11.5622i 0.201722 + 0.449377i
\(663\) 0 0
\(664\) 6.35726 42.6634i 0.246710 1.65566i
\(665\) −7.36528 10.8066i −0.285613 0.419061i
\(666\) 0 0
\(667\) −5.06895 + 9.94838i −0.196271 + 0.385203i
\(668\) −0.909409 + 3.47878i −0.0351861 + 0.134598i
\(669\) 0 0
\(670\) 15.9990 13.6410i 0.618095 0.526999i
\(671\) 14.1679 + 4.60344i 0.546947 + 0.177714i
\(672\) 0 0
\(673\) −34.7952 5.51101i −1.34126 0.212434i −0.555781 0.831329i \(-0.687581\pi\)
−0.785474 + 0.618895i \(0.787581\pi\)
\(674\) 2.87624 + 10.6047i 0.110789 + 0.408477i
\(675\) 0 0
\(676\) −2.59664 + 1.52039i −0.0998708 + 0.0584763i
\(677\) −3.20219 + 20.2178i −0.123070 + 0.777035i 0.846530 + 0.532341i \(0.178687\pi\)
−0.969600 + 0.244694i \(0.921313\pi\)
\(678\) 0 0
\(679\) −4.64919 + 14.3087i −0.178419 + 0.549119i
\(680\) 31.2255 + 23.7003i 1.19744 + 0.908865i
\(681\) 0 0
\(682\) 30.9160 53.9277i 1.18384 2.06500i
\(683\) −0.181468 0.0924627i −0.00694369 0.00353799i 0.450515 0.892769i \(-0.351240\pi\)
−0.457459 + 0.889231i \(0.651240\pi\)
\(684\) 0 0
\(685\) 15.4460 43.0836i 0.590162 1.64614i
\(686\) 16.9107 + 13.6087i 0.645653 + 0.519584i
\(687\) 0 0
\(688\) −11.2702 + 30.4667i −0.429673 + 1.16153i
\(689\) 1.43971 + 1.98159i 0.0548487 + 0.0754927i
\(690\) 0 0
\(691\) −11.4692 + 15.7860i −0.436309 + 0.600528i −0.969387 0.245538i \(-0.921035\pi\)
0.533078 + 0.846066i \(0.321035\pi\)
\(692\) −17.7589 + 1.03947i −0.675093 + 0.0395146i
\(693\) 0 0
\(694\) −16.7692 25.6505i −0.636550 0.973681i
\(695\) 2.73657 + 21.4317i 0.103804 + 0.812952i
\(696\) 0 0
\(697\) 7.84953 + 15.4056i 0.297322 + 0.583528i
\(698\) 32.3970 3.50509i 1.22625 0.132670i
\(699\) 0 0
\(700\) 0.0208031 12.2890i 0.000786285 0.464482i
\(701\) 10.3544 0.391080 0.195540 0.980696i \(-0.437354\pi\)
0.195540 + 0.980696i \(0.437354\pi\)
\(702\) 0 0
\(703\) 18.5038 + 36.3157i 0.697883 + 1.36967i
\(704\) −34.3216 10.4608i −1.29354 0.394255i
\(705\) 0 0
\(706\) −11.9458 18.2726i −0.449586 0.687697i
\(707\) −6.87186 6.87186i −0.258443 0.258443i
\(708\) 0 0
\(709\) 15.3330 21.1040i 0.575841 0.792578i −0.417390 0.908727i \(-0.637055\pi\)
0.993232 + 0.116150i \(0.0370552\pi\)
\(710\) −12.0123 10.2770i −0.450812 0.385690i
\(711\) 0 0
\(712\) −2.64916 + 3.71738i −0.0992815 + 0.139315i
\(713\) −7.33719 46.3252i −0.274780 1.73489i
\(714\) 0 0
\(715\) 9.53013 + 32.6400i 0.356407 + 1.22067i
\(716\) 1.64641 16.6413i 0.0615293 0.621915i
\(717\) 0 0
\(718\) 15.7812 27.5275i 0.588948 1.02732i
\(719\) 0.0165289 + 0.0508707i 0.000616424 + 0.00189716i 0.951364 0.308068i \(-0.0996825\pi\)
−0.950748 + 0.309965i \(0.899683\pi\)
\(720\) 0 0
\(721\) 6.38261 19.6437i 0.237701 0.731568i
\(722\) 3.46549 + 3.82527i 0.128972 + 0.142362i
\(723\) 0 0
\(724\) −22.8306 38.9920i −0.848491 1.44913i
\(725\) 2.93114 + 11.2906i 0.108860 + 0.419324i
\(726\) 0 0
\(727\) 30.0813 + 4.76440i 1.11565 + 0.176702i 0.686922 0.726731i \(-0.258961\pi\)
0.428730 + 0.903433i \(0.358961\pi\)
\(728\) −11.2410 3.53895i −0.416620 0.131162i
\(729\) 0 0
\(730\) 9.25331 + 5.68121i 0.342480 + 0.210271i
\(731\) 47.8731 15.5549i 1.77065 0.575319i
\(732\) 0 0
\(733\) 1.86449 3.65926i 0.0688664 0.135158i −0.854007 0.520262i \(-0.825834\pi\)
0.922873 + 0.385104i \(0.125834\pi\)
\(734\) 21.4601 + 8.16266i 0.792105 + 0.301289i
\(735\) 0 0
\(736\) −25.1237 + 10.0867i −0.926073 + 0.371801i
\(737\) 29.4523 4.66479i 1.08489 0.171830i
\(738\) 0 0
\(739\) −37.0386 + 26.9101i −1.36249 + 0.989905i −0.364205 + 0.931319i \(0.618659\pi\)
−0.998282 + 0.0585867i \(0.981341\pi\)
\(740\) −4.91533 + 37.9830i −0.180691 + 1.39628i
\(741\) 0 0
\(742\) 0.257289 1.22888i 0.00944537 0.0451137i
\(743\) 20.4738 20.4738i 0.751110 0.751110i −0.223576 0.974686i \(-0.571773\pi\)
0.974686 + 0.223576i \(0.0717732\pi\)
\(744\) 0 0
\(745\) −16.4751 9.02861i −0.603601 0.330783i
\(746\) 0.612188 12.4057i 0.0224138 0.454206i
\(747\) 0 0
\(748\) 20.2414 + 51.7834i 0.740098 + 1.89339i
\(749\) 1.31550i 0.0480672i
\(750\) 0 0
\(751\) 11.0553i 0.403414i −0.979446 0.201707i \(-0.935351\pi\)
0.979446 0.201707i \(-0.0646489\pi\)
\(752\) 11.8127 14.9573i 0.430765 0.545435i
\(753\) 0 0
\(754\) 11.1728 + 0.551346i 0.406889 + 0.0200788i
\(755\) 1.88244 + 1.03160i 0.0685090 + 0.0375439i
\(756\) 0 0
\(757\) 13.0048 13.0048i 0.472669 0.472669i −0.430109 0.902777i \(-0.641525\pi\)
0.902777 + 0.430109i \(0.141525\pi\)
\(758\) −21.3672 4.47362i −0.776093 0.162489i
\(759\) 0 0
\(760\) 4.08569 + 29.8211i 0.148203 + 1.08173i
\(761\) 43.5067 31.6095i 1.57712 1.14584i 0.657209 0.753709i \(-0.271737\pi\)
0.919908 0.392134i \(-0.128263\pi\)
\(762\) 0 0
\(763\) 6.96101 1.10252i 0.252005 0.0399137i
\(764\) −5.15300 + 11.7667i −0.186429 + 0.425702i
\(765\) 0 0
\(766\) 11.0083 28.9413i 0.397745 1.04569i
\(767\) −0.581792 + 1.14183i −0.0210073 + 0.0412291i
\(768\) 0 0
\(769\) −0.181257 + 0.0588941i −0.00653631 + 0.00212377i −0.312283 0.949989i \(-0.601094\pi\)
0.305747 + 0.952113i \(0.401094\pi\)
\(770\) 9.11945 14.8534i 0.328642 0.535278i
\(771\) 0 0
\(772\) 27.7025 + 17.7507i 0.997034 + 0.638861i
\(773\) 19.0875 + 3.02316i 0.686528 + 0.108735i 0.489947 0.871752i \(-0.337016\pi\)
0.196581 + 0.980488i \(0.437016\pi\)
\(774\) 0 0
\(775\) −37.8395 31.1335i −1.35923 1.11835i
\(776\) 24.2601 24.7086i 0.870887 0.886986i
\(777\) 0 0
\(778\) −34.4533 + 31.2129i −1.23521 + 1.11903i
\(779\) −4.10244 + 12.6260i −0.146985 + 0.452374i
\(780\) 0 0
\(781\) −6.92855 21.3239i −0.247923 0.763028i
\(782\) 36.3947 + 20.8646i 1.30147 + 0.746117i
\(783\) 0 0
\(784\) −9.17589 19.9501i −0.327710 0.712505i
\(785\) 7.36624 + 25.2288i 0.262912 + 0.900455i
\(786\) 0 0
\(787\) −1.63251 10.3073i −0.0581927 0.367414i −0.999550 0.0300023i \(-0.990449\pi\)
0.941357 0.337412i \(-0.109551\pi\)
\(788\) −1.70902 2.08432i −0.0608815 0.0742508i
\(789\) 0 0
\(790\) 3.46638 4.05166i 0.123328 0.144152i
\(791\) −13.2319 + 18.2121i −0.470471 + 0.647548i
\(792\) 0 0
\(793\) −7.96311 7.96311i −0.282778 0.282778i
\(794\) −12.2208 + 7.98941i −0.433699 + 0.283534i
\(795\) 0 0
\(796\) 40.2378 8.80991i 1.42619 0.312259i
\(797\) −9.74336 19.1224i −0.345127 0.677351i 0.651567 0.758591i \(-0.274112\pi\)
−0.996695 + 0.0812404i \(0.974112\pi\)
\(798\) 0 0
\(799\) −29.5337 −1.04483
\(800\) −12.6523 + 25.2966i −0.447326 + 0.894371i
\(801\) 0 0
\(802\) 2.93997 + 27.1737i 0.103814 + 0.959538i
\(803\) 6.99149 + 13.7216i 0.246724 + 0.484224i
\(804\) 0 0
\(805\) −1.66572 13.0452i −0.0587088 0.459784i
\(806\) −39.3318 + 25.7134i −1.38540 + 0.905716i
\(807\) 0 0
\(808\) 7.10644 + 21.2085i 0.250004 + 0.746113i
\(809\) 20.9545 28.8414i 0.736720 1.01401i −0.262081 0.965046i \(-0.584409\pi\)
0.998801 0.0489622i \(-0.0155914\pi\)
\(810\) 0 0
\(811\) −3.52375 4.85003i −0.123736 0.170308i 0.742655 0.669674i \(-0.233566\pi\)
−0.866391 + 0.499366i \(0.833566\pi\)
\(812\) −3.63568 4.43406i −0.127587 0.155605i
\(813\) 0 0
\(814\) −34.0559 + 42.3190i −1.19366 + 1.48328i
\(815\) −16.8443 + 46.9839i −0.590031 + 1.64577i
\(816\) 0 0
\(817\) 34.4373 + 17.5467i 1.20481 + 0.613880i
\(818\) −42.8797 24.5824i −1.49925 0.859502i
\(819\) 0 0
\(820\) −9.88035 + 7.61615i −0.345037 + 0.265968i
\(821\) 3.94578 12.1439i 0.137709 0.423824i −0.858293 0.513160i \(-0.828475\pi\)
0.996002 + 0.0893362i \(0.0284746\pi\)
\(822\) 0 0
\(823\) 7.94099 50.1375i 0.276806 1.74768i −0.321956 0.946755i \(-0.604340\pi\)
0.598761 0.800927i \(-0.295660\pi\)
\(824\) −33.3053 + 33.9210i −1.16025 + 1.18170i
\(825\) 0 0
\(826\) 0.633982 0.171951i 0.0220590 0.00598294i
\(827\) −12.9219 2.04663i −0.449339 0.0711683i −0.0723358 0.997380i \(-0.523045\pi\)
−0.377003 + 0.926212i \(0.623045\pi\)
\(828\) 0 0
\(829\) 29.1547 + 9.47295i 1.01259 + 0.329009i 0.767884 0.640589i \(-0.221310\pi\)
0.244702 + 0.969598i \(0.421310\pi\)
\(830\) −31.2891 36.6977i −1.08606 1.27379i
\(831\) 0 0
\(832\) 19.5276 + 18.8251i 0.676999 + 0.652642i
\(833\) −15.4480 + 30.3184i −0.535241 + 1.05047i
\(834\) 0 0
\(835\) 2.26407 + 3.32192i 0.0783515 + 0.114960i
\(836\) −17.1253 + 39.1048i −0.592289 + 1.35247i
\(837\) 0 0
\(838\) −23.0759 + 10.3586i −0.797145 + 0.357832i
\(839\) 39.5519 28.7361i 1.36548 0.992081i 0.367408 0.930060i \(-0.380245\pi\)
0.998075 0.0620209i \(-0.0197546\pi\)
\(840\) 0 0
\(841\) −19.0582 13.8466i −0.657178 0.477468i
\(842\) 50.1525 + 10.5003i 1.72837 + 0.361865i
\(843\) 0 0
\(844\) −8.55044 7.60484i −0.294318 0.261769i
\(845\) −0.625965 + 3.30542i −0.0215338 + 0.113710i
\(846\) 0 0
\(847\) 9.98121 5.08568i 0.342958 0.174746i
\(848\) −1.79099 + 2.26776i −0.0615029 + 0.0778752i
\(849\) 0 0
\(850\) 42.9133 8.90887i 1.47191 0.305572i
\(851\) 40.9865i 1.40500i
\(852\) 0 0
\(853\) −7.99542 + 4.07387i −0.273758 + 0.139487i −0.585480 0.810687i \(-0.699094\pi\)
0.311722 + 0.950173i \(0.399094\pi\)
\(854\) −0.284512 + 5.76553i −0.00973581 + 0.197292i
\(855\) 0 0
\(856\) 1.34979 2.71020i 0.0461350 0.0926326i
\(857\) 0.588621 0.588621i 0.0201069 0.0201069i −0.696982 0.717089i \(-0.745474\pi\)
0.717089 + 0.696982i \(0.245474\pi\)
\(858\) 0 0
\(859\) 8.15543 + 5.92527i 0.278260 + 0.202168i 0.718158 0.695880i \(-0.244985\pi\)
−0.439898 + 0.898048i \(0.644985\pi\)
\(860\) 17.4002 + 31.8792i 0.593341 + 1.08707i
\(861\) 0 0
\(862\) 20.0890 + 44.7524i 0.684233 + 1.52427i
\(863\) −28.6065 + 4.53083i −0.973777 + 0.154231i −0.622995 0.782226i \(-0.714084\pi\)
−0.350782 + 0.936457i \(0.614084\pi\)
\(864\) 0 0
\(865\) −12.1691 + 15.7317i −0.413763 + 0.534895i
\(866\) 0.997490 + 0.379411i 0.0338961 + 0.0128929i
\(867\) 0 0
\(868\) 23.3040 + 6.09205i 0.790990 + 0.206777i
\(869\) 7.19241 2.33696i 0.243986 0.0792758i
\(870\) 0 0
\(871\) −21.4390 6.96594i −0.726432 0.236032i
\(872\) −15.4724 4.87109i −0.523961 0.164956i
\(873\) 0 0
\(874\) 8.43183 + 31.0881i 0.285211 + 1.05157i
\(875\) −10.3426 9.04474i −0.349642 0.305768i
\(876\) 0 0
\(877\) −2.86266 + 18.0741i −0.0966652 + 0.610320i 0.891032 + 0.453941i \(0.149982\pi\)
−0.987697 + 0.156379i \(0.950018\pi\)
\(878\) 7.81448 + 8.62576i 0.263726 + 0.291105i
\(879\) 0 0
\(880\) −34.0286 + 21.2438i −1.14710 + 0.716129i
\(881\) 4.26429 + 13.1241i 0.143668 + 0.442164i 0.996837 0.0794700i \(-0.0253228\pi\)
−0.853170 + 0.521634i \(0.825323\pi\)
\(882\) 0 0
\(883\) −30.1105 15.3421i −1.01330 0.516301i −0.133198 0.991089i \(-0.542525\pi\)
−0.880100 + 0.474788i \(0.842525\pi\)
\(884\) 4.13808 41.8262i 0.139179 1.40677i
\(885\) 0 0
\(886\) 7.87304 + 6.33577i 0.264500 + 0.212854i
\(887\) 4.87731 + 30.7941i 0.163764 + 1.03397i 0.923462 + 0.383689i \(0.125347\pi\)
−0.759698 + 0.650276i \(0.774653\pi\)
\(888\) 0 0
\(889\) −1.68132 2.31413i −0.0563895 0.0776136i
\(890\) 1.18720 + 4.96354i 0.0397950 + 0.166378i
\(891\) 0 0
\(892\) 0.241468 + 4.12540i 0.00808494 + 0.138128i
\(893\) −16.0349 16.0349i −0.536587 0.536587i
\(894\) 0 0
\(895\) −12.8168 13.6120i −0.428417 0.454997i
\(896\) 0.430810 13.8968i 0.0143924 0.464259i
\(897\) 0 0
\(898\) 5.57530 0.603201i 0.186050 0.0201291i
\(899\) −22.8638 −0.762551
\(900\) 0 0
\(901\) 4.47778 0.149176
\(902\) −17.5906 + 1.90316i −0.585704 + 0.0633683i
\(903\) 0 0
\(904\) 45.9473 23.9439i 1.52819 0.796361i
\(905\) −49.6352 9.39968i −1.64993 0.312456i
\(906\) 0 0
\(907\) 6.58434 + 6.58434i 0.218629 + 0.218629i 0.807921 0.589291i \(-0.200593\pi\)
−0.589291 + 0.807921i \(0.700593\pi\)
\(908\) −43.4089 + 2.54081i −1.44058 + 0.0843199i
\(909\) 0 0
\(910\) −11.2402 + 6.87491i −0.372608 + 0.227901i
\(911\) −16.5700 22.8067i −0.548990 0.755620i 0.440885 0.897564i \(-0.354665\pi\)
−0.989875 + 0.141944i \(0.954665\pi\)
\(912\) 0 0
\(913\) −10.6999 67.5562i −0.354113 2.23578i
\(914\) 44.6054 + 35.8959i 1.47542 + 1.18733i
\(915\) 0 0
\(916\) 19.0795 + 1.88763i 0.630403 + 0.0623691i
\(917\) 24.6154 + 12.5422i 0.812872 + 0.414179i
\(918\) 0 0
\(919\) 8.14444 + 25.0660i 0.268660 + 0.826852i 0.990827 + 0.135133i \(0.0431461\pi\)
−0.722167 + 0.691719i \(0.756854\pi\)
\(920\) −9.95362 + 28.5850i −0.328161 + 0.942421i
\(921\) 0 0
\(922\) 22.9909 + 25.3778i 0.757166 + 0.835773i
\(923\) −2.65149 + 16.7408i −0.0872748 + 0.551032i
\(924\) 0 0
\(925\) 28.4034 + 32.0443i 0.933899 + 1.05361i
\(926\) 0.960253 + 3.54045i 0.0315559 + 0.116346i
\(927\) 0 0
\(928\) 2.94059 + 12.8656i 0.0965297 + 0.422333i
\(929\) −7.31939 2.37821i −0.240141 0.0780266i 0.186474 0.982460i \(-0.440294\pi\)
−0.426615 + 0.904433i \(0.640294\pi\)
\(930\) 0 0
\(931\) −24.8482 + 8.07366i −0.814366 + 0.264604i
\(932\) 3.72183 14.2372i 0.121913 0.466354i
\(933\) 0 0
\(934\) 44.8483 + 17.0588i 1.46748 + 0.558180i
\(935\) 58.5145 + 20.9782i 1.91363 + 0.686061i
\(936\) 0 0
\(937\) 41.5344 6.57840i 1.35687 0.214907i 0.564744 0.825266i \(-0.308975\pi\)
0.792125 + 0.610359i \(0.208975\pi\)
\(938\) 4.73201 + 10.5416i 0.154506 + 0.344194i
\(939\) 0 0
\(940\) −3.92948 20.9436i −0.128165 0.683104i
\(941\) −41.1994 29.9331i −1.34306 0.975792i −0.999325 0.0367262i \(-0.988307\pi\)
−0.343737 0.939066i \(-0.611693\pi\)
\(942\) 0 0
\(943\) −9.44001 + 9.44001i −0.307409 + 0.307409i
\(944\) −1.48257 0.296256i −0.0482535 0.00964232i
\(945\) 0 0
\(946\) −2.53881 + 51.4480i −0.0825439 + 1.67272i
\(947\) −9.51643 + 4.84886i −0.309242 + 0.157567i −0.601724 0.798704i \(-0.705519\pi\)
0.292481 + 0.956271i \(0.405519\pi\)
\(948\) 0 0
\(949\) 11.6418i 0.377909i
\(950\) 28.1361 + 18.4622i 0.912855 + 0.598993i
\(951\) 0 0
\(952\) −17.3130 + 12.8225i −0.561118 + 0.415580i
\(953\) −9.54986 + 4.86590i −0.309350 + 0.157622i −0.601773 0.798667i \(-0.705539\pi\)
0.292422 + 0.956289i \(0.405539\pi\)
\(954\) 0 0
\(955\) 6.13229 + 12.9867i 0.198436 + 0.420240i
\(956\) 15.0848 16.9604i 0.487876 0.548540i
\(957\) 0 0
\(958\) −42.6301 8.92537i −1.37732 0.288366i
\(959\) 20.3498 + 14.7850i 0.657129 + 0.477432i
\(960\) 0 0
\(961\) 52.6224 38.2324i 1.69750 1.23330i
\(962\) 37.4626 16.8166i 1.20784 0.542190i
\(963\) 0 0
\(964\) 9.89385 + 4.33284i 0.318659 + 0.139551i
\(965\) 35.3107 10.3099i 1.13669 0.331888i
\(966\) 0 0
\(967\) 9.81345 19.2600i 0.315579 0.619359i −0.677669 0.735367i \(-0.737010\pi\)
0.993248 + 0.116008i \(0.0370098\pi\)
\(968\) −25.7817 + 0.236120i −0.828654 + 0.00758918i
\(969\) 0 0
\(970\) −3.00486 38.5980i −0.0964801 1.23931i
\(971\) 32.1098 + 10.4331i 1.03045 + 0.334815i 0.774970 0.631998i \(-0.217765\pi\)
0.255484 + 0.966813i \(0.417765\pi\)
\(972\) 0 0
\(973\) −11.7280 1.85753i −0.375981 0.0595496i
\(974\) −34.9236 + 9.47211i −1.11902 + 0.303506i
\(975\) 0 0
\(976\) 6.50200 11.5863i 0.208124 0.370867i
\(977\) 3.21252 20.2830i 0.102777 0.648911i −0.881487 0.472209i \(-0.843457\pi\)
0.984264 0.176703i \(-0.0565431\pi\)
\(978\) 0 0
\(979\) −2.23677 + 6.88406i −0.0714874 + 0.220016i
\(980\) −23.5554 6.92093i −0.752450 0.221081i
\(981\) 0 0
\(982\) −44.6085 25.5735i −1.42352 0.816083i
\(983\) −9.38458 4.78168i −0.299322 0.152512i 0.297880 0.954603i \(-0.403721\pi\)
−0.597201 + 0.802092i \(0.703721\pi\)
\(984\) 0 0
\(985\) −3.01218 0.0906309i −0.0959760 0.00288774i
\(986\) 12.8211 15.9319i 0.408307 0.507376i
\(987\) 0 0
\(988\) 24.9556 20.4622i 0.793944 0.650989i
\(989\) 22.8452 + 31.4437i 0.726434 + 0.999851i
\(990\) 0 0
\(991\) 32.0318 44.0880i 1.01752 1.40050i 0.103598 0.994619i \(-0.466964\pi\)
0.913925 0.405882i \(-0.133036\pi\)
\(992\) −41.7603 36.4625i −1.32589 1.15769i
\(993\) 0 0
\(994\) 7.27201 4.75412i 0.230654 0.150792i
\(995\) 22.1322 40.3860i 0.701637 1.28032i
\(996\) 0 0
\(997\) −25.1191 49.2990i −0.795529 1.56131i −0.827262 0.561817i \(-0.810102\pi\)
0.0317326 0.999496i \(-0.489898\pi\)
\(998\) −3.25786 30.1119i −0.103126 0.953175i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.f.523.14 240
3.2 odd 2 300.2.w.a.223.17 yes 240
4.3 odd 2 inner 900.2.bj.f.523.19 240
12.11 even 2 300.2.w.a.223.12 yes 240
25.12 odd 20 inner 900.2.bj.f.487.19 240
75.62 even 20 300.2.w.a.187.12 240
100.87 even 20 inner 900.2.bj.f.487.14 240
300.287 odd 20 300.2.w.a.187.17 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.w.a.187.12 240 75.62 even 20
300.2.w.a.187.17 yes 240 300.287 odd 20
300.2.w.a.223.12 yes 240 12.11 even 2
300.2.w.a.223.17 yes 240 3.2 odd 2
900.2.bj.f.487.14 240 100.87 even 20 inner
900.2.bj.f.487.19 240 25.12 odd 20 inner
900.2.bj.f.523.14 240 1.1 even 1 trivial
900.2.bj.f.523.19 240 4.3 odd 2 inner