Properties

Label 900.2.k.n.343.6
Level $900$
Weight $2$
Character 900.343
Analytic conductor $7.187$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(307,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.6
Root \(-0.394157 - 1.35818i\) of defining polynomial
Character \(\chi\) \(=\) 900.343
Dual form 900.2.k.n.307.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35818 - 0.394157i) q^{2} +(1.68928 - 1.07067i) q^{4} +(2.47817 + 2.47817i) q^{7} +(1.87233 - 2.12000i) q^{8} -3.02831i q^{11} +(-0.363328 - 0.363328i) q^{13} +(4.34258 + 2.38900i) q^{14} +(1.70734 - 3.61732i) q^{16} +(-2.36333 + 2.36333i) q^{17} +4.95634 q^{19} +(-1.19363 - 4.11297i) q^{22} +(0.900390 - 0.900390i) q^{23} +(-0.636672 - 0.350255i) q^{26} +(6.83963 + 1.53303i) q^{28} +3.50466i q^{29} +3.85607i q^{31} +(0.893077 - 5.58591i) q^{32} +(-2.27829 + 4.14134i) q^{34} +(0.363328 - 0.363328i) q^{37} +(6.73158 - 1.95358i) q^{38} -2.72666 q^{41} +(3.92870 - 3.92870i) q^{43} +(-3.24231 - 5.11566i) q^{44} +(0.867993 - 1.57778i) q^{46} +(-5.85673 - 5.85673i) q^{47} +5.28267i q^{49} +(-1.00277 - 0.224760i) q^{52} +(3.14134 + 3.14134i) q^{53} +(9.89367 - 0.613763i) q^{56} +(1.38139 + 4.75995i) q^{58} +8.68516 q^{59} -15.2920 q^{61} +(1.51990 + 5.23723i) q^{62} +(-0.988770 - 7.93866i) q^{64} +(-3.92870 - 3.92870i) q^{67} +(-1.46199 + 6.52267i) q^{68} +4.25583i q^{71} +(-9.28267 - 9.28267i) q^{73} +(0.350255 - 0.636672i) q^{74} +(8.37266 - 5.30660i) q^{76} +(7.50466 - 7.50466i) q^{77} -0.399759 q^{79} +(-3.70328 + 1.07473i) q^{82} +(0.199879 - 0.199879i) q^{83} +(3.78734 - 6.88438i) q^{86} +(-6.42000 - 5.66999i) q^{88} +4.28267i q^{89} -1.80078i q^{91} +(0.556993 - 2.48503i) q^{92} +(-10.2629 - 5.64600i) q^{94} +(-6.73599 + 6.73599i) q^{97} +(2.08220 + 7.17480i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{8} + 4 q^{13} + 12 q^{16} - 20 q^{17} - 12 q^{22} - 16 q^{26} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 16 q^{38} - 16 q^{41} - 40 q^{46} + 8 q^{52} + 4 q^{53} + 64 q^{56} + 20 q^{58} - 32 q^{61}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35818 0.394157i 0.960375 0.278711i
\(3\) 0 0
\(4\) 1.68928 1.07067i 0.844640 0.535334i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.47817 + 2.47817i 0.936661 + 0.936661i 0.998110 0.0614493i \(-0.0195722\pi\)
−0.0614493 + 0.998110i \(0.519572\pi\)
\(8\) 1.87233 2.12000i 0.661968 0.749532i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.02831i 0.913069i −0.889706 0.456534i \(-0.849091\pi\)
0.889706 0.456534i \(-0.150909\pi\)
\(12\) 0 0
\(13\) −0.363328 0.363328i −0.100769 0.100769i 0.654925 0.755694i \(-0.272700\pi\)
−0.755694 + 0.654925i \(0.772700\pi\)
\(14\) 4.34258 + 2.38900i 1.16060 + 0.638488i
\(15\) 0 0
\(16\) 1.70734 3.61732i 0.426835 0.904330i
\(17\) −2.36333 + 2.36333i −0.573191 + 0.573191i −0.933019 0.359828i \(-0.882836\pi\)
0.359828 + 0.933019i \(0.382836\pi\)
\(18\) 0 0
\(19\) 4.95634 1.13706 0.568532 0.822661i \(-0.307512\pi\)
0.568532 + 0.822661i \(0.307512\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.19363 4.11297i −0.254482 0.876888i
\(23\) 0.900390 0.900390i 0.187744 0.187744i −0.606976 0.794720i \(-0.707618\pi\)
0.794720 + 0.606976i \(0.207618\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.636672 0.350255i −0.124862 0.0686907i
\(27\) 0 0
\(28\) 6.83963 + 1.53303i 1.29257 + 0.289715i
\(29\) 3.50466i 0.650800i 0.945576 + 0.325400i \(0.105499\pi\)
−0.945576 + 0.325400i \(0.894501\pi\)
\(30\) 0 0
\(31\) 3.85607i 0.692571i 0.938129 + 0.346286i \(0.112557\pi\)
−0.938129 + 0.346286i \(0.887443\pi\)
\(32\) 0.893077 5.58591i 0.157875 0.987459i
\(33\) 0 0
\(34\) −2.27829 + 4.14134i −0.390724 + 0.710233i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.363328 0.363328i 0.0597308 0.0597308i −0.676610 0.736341i \(-0.736552\pi\)
0.736341 + 0.676610i \(0.236552\pi\)
\(38\) 6.73158 1.95358i 1.09201 0.316912i
\(39\) 0 0
\(40\) 0 0
\(41\) −2.72666 −0.425832 −0.212916 0.977070i \(-0.568296\pi\)
−0.212916 + 0.977070i \(0.568296\pi\)
\(42\) 0 0
\(43\) 3.92870 3.92870i 0.599121 0.599121i −0.340958 0.940079i \(-0.610751\pi\)
0.940079 + 0.340958i \(0.110751\pi\)
\(44\) −3.24231 5.11566i −0.488797 0.771215i
\(45\) 0 0
\(46\) 0.867993 1.57778i 0.127979 0.232631i
\(47\) −5.85673 5.85673i −0.854292 0.854292i 0.136366 0.990659i \(-0.456458\pi\)
−0.990659 + 0.136366i \(0.956458\pi\)
\(48\) 0 0
\(49\) 5.28267i 0.754667i
\(50\) 0 0
\(51\) 0 0
\(52\) −1.00277 0.224760i −0.139059 0.0311685i
\(53\) 3.14134 + 3.14134i 0.431496 + 0.431496i 0.889137 0.457641i \(-0.151306\pi\)
−0.457641 + 0.889137i \(0.651306\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 9.89367 0.613763i 1.32210 0.0820176i
\(57\) 0 0
\(58\) 1.38139 + 4.75995i 0.181385 + 0.625012i
\(59\) 8.68516 1.13071 0.565356 0.824847i \(-0.308739\pi\)
0.565356 + 0.824847i \(0.308739\pi\)
\(60\) 0 0
\(61\) −15.2920 −1.95794 −0.978970 0.204004i \(-0.934604\pi\)
−0.978970 + 0.204004i \(0.934604\pi\)
\(62\) 1.51990 + 5.23723i 0.193027 + 0.665128i
\(63\) 0 0
\(64\) −0.988770 7.93866i −0.123596 0.992333i
\(65\) 0 0
\(66\) 0 0
\(67\) −3.92870 3.92870i −0.479967 0.479967i 0.425154 0.905121i \(-0.360220\pi\)
−0.905121 + 0.425154i \(0.860220\pi\)
\(68\) −1.46199 + 6.52267i −0.177292 + 0.790989i
\(69\) 0 0
\(70\) 0 0
\(71\) 4.25583i 0.505075i 0.967587 + 0.252537i \(0.0812650\pi\)
−0.967587 + 0.252537i \(0.918735\pi\)
\(72\) 0 0
\(73\) −9.28267 9.28267i −1.08645 1.08645i −0.995891 0.0905640i \(-0.971133\pi\)
−0.0905640 0.995891i \(-0.528867\pi\)
\(74\) 0.350255 0.636672i 0.0407163 0.0740116i
\(75\) 0 0
\(76\) 8.37266 5.30660i 0.960410 0.608709i
\(77\) 7.50466 7.50466i 0.855236 0.855236i
\(78\) 0 0
\(79\) −0.399759 −0.0449764 −0.0224882 0.999747i \(-0.507159\pi\)
−0.0224882 + 0.999747i \(0.507159\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −3.70328 + 1.07473i −0.408959 + 0.118684i
\(83\) 0.199879 0.199879i 0.0219396 0.0219396i −0.696052 0.717991i \(-0.745062\pi\)
0.717991 + 0.696052i \(0.245062\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.78734 6.88438i 0.408399 0.742362i
\(87\) 0 0
\(88\) −6.42000 5.66999i −0.684374 0.604422i
\(89\) 4.28267i 0.453962i 0.973899 + 0.226981i \(0.0728856\pi\)
−0.973899 + 0.226981i \(0.927114\pi\)
\(90\) 0 0
\(91\) 1.80078i 0.188773i
\(92\) 0.556993 2.48503i 0.0580705 0.259082i
\(93\) 0 0
\(94\) −10.2629 5.64600i −1.05854 0.582340i
\(95\) 0 0
\(96\) 0 0
\(97\) −6.73599 + 6.73599i −0.683936 + 0.683936i −0.960885 0.276949i \(-0.910677\pi\)
0.276949 + 0.960885i \(0.410677\pi\)
\(98\) 2.08220 + 7.17480i 0.210334 + 0.724764i
\(99\) 0 0
\(100\) 0 0
\(101\) −5.78734 −0.575862 −0.287931 0.957651i \(-0.592967\pi\)
−0.287931 + 0.957651i \(0.592967\pi\)
\(102\) 0 0
\(103\) −13.0914 + 13.0914i −1.28993 + 1.28993i −0.355104 + 0.934827i \(0.615555\pi\)
−0.934827 + 0.355104i \(0.884445\pi\)
\(104\) −1.45052 + 0.0899847i −0.142236 + 0.00882373i
\(105\) 0 0
\(106\) 5.50466 + 3.02831i 0.534660 + 0.294135i
\(107\) 9.71281 + 9.71281i 0.938973 + 0.938973i 0.998242 0.0592694i \(-0.0188771\pi\)
−0.0592694 + 0.998242i \(0.518877\pi\)
\(108\) 0 0
\(109\) 10.4626i 1.00214i 0.865407 + 0.501070i \(0.167060\pi\)
−0.865407 + 0.501070i \(0.832940\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 13.1954 4.73325i 1.24685 0.447251i
\(113\) −10.6460 10.6460i −1.00149 1.00149i −0.999999 0.00149259i \(-0.999525\pi\)
−0.00149259 0.999999i \(-0.500475\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.75233 + 5.92036i 0.348395 + 0.549692i
\(117\) 0 0
\(118\) 11.7960 3.42331i 1.08591 0.315142i
\(119\) −11.7135 −1.07377
\(120\) 0 0
\(121\) 1.82936 0.166305
\(122\) −20.7692 + 6.02745i −1.88036 + 0.545699i
\(123\) 0 0
\(124\) 4.12858 + 6.51399i 0.370757 + 0.584974i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.77766 1.77766i −0.157742 0.157742i 0.623823 0.781565i \(-0.285578\pi\)
−0.781565 + 0.623823i \(0.785578\pi\)
\(128\) −4.47200 10.3924i −0.395273 0.918564i
\(129\) 0 0
\(130\) 0 0
\(131\) 18.1981i 1.58997i 0.606626 + 0.794987i \(0.292523\pi\)
−0.606626 + 0.794987i \(0.707477\pi\)
\(132\) 0 0
\(133\) 12.2827 + 12.2827i 1.06504 + 1.06504i
\(134\) −6.88438 3.78734i −0.594720 0.327176i
\(135\) 0 0
\(136\) 0.585320 + 9.43517i 0.0501908 + 0.809060i
\(137\) −5.91934 + 5.91934i −0.505724 + 0.505724i −0.913211 0.407487i \(-0.866405\pi\)
0.407487 + 0.913211i \(0.366405\pi\)
\(138\) 0 0
\(139\) −12.4140 −1.05294 −0.526470 0.850194i \(-0.676485\pi\)
−0.526470 + 0.850194i \(0.676485\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.67747 + 5.78017i 0.140770 + 0.485061i
\(143\) −1.10027 + 1.10027i −0.0920091 + 0.0920091i
\(144\) 0 0
\(145\) 0 0
\(146\) −16.2663 8.94867i −1.34621 0.740597i
\(147\) 0 0
\(148\) 0.224760 1.00277i 0.0184751 0.0824270i
\(149\) 5.78734i 0.474117i −0.971495 0.237059i \(-0.923817\pi\)
0.971495 0.237059i \(-0.0761833\pi\)
\(150\) 0 0
\(151\) 18.0708i 1.47058i 0.677751 + 0.735292i \(0.262955\pi\)
−0.677751 + 0.735292i \(0.737045\pi\)
\(152\) 9.27990 10.5074i 0.752700 0.852265i
\(153\) 0 0
\(154\) 7.23464 13.1507i 0.582984 1.05971i
\(155\) 0 0
\(156\) 0 0
\(157\) 3.91934 3.91934i 0.312798 0.312798i −0.533195 0.845992i \(-0.679009\pi\)
0.845992 + 0.533195i \(0.179009\pi\)
\(158\) −0.542943 + 0.157568i −0.0431942 + 0.0125354i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.46264 0.351705
\(162\) 0 0
\(163\) −3.22819 + 3.22819i −0.252851 + 0.252851i −0.822139 0.569287i \(-0.807219\pi\)
0.569287 + 0.822139i \(0.307219\pi\)
\(164\) −4.60609 + 2.91934i −0.359675 + 0.227962i
\(165\) 0 0
\(166\) 0.192688 0.350255i 0.0149555 0.0271851i
\(167\) 6.95700 + 6.95700i 0.538349 + 0.538349i 0.923044 0.384695i \(-0.125693\pi\)
−0.384695 + 0.923044i \(0.625693\pi\)
\(168\) 0 0
\(169\) 12.7360i 0.979691i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.43034 10.8430i 0.185312 0.826771i
\(173\) 0.627343 + 0.627343i 0.0476960 + 0.0476960i 0.730553 0.682857i \(-0.239263\pi\)
−0.682857 + 0.730553i \(0.739263\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −10.9543 5.17035i −0.825715 0.389730i
\(177\) 0 0
\(178\) 1.68804 + 5.81662i 0.126524 + 0.435974i
\(179\) 8.93968 0.668183 0.334091 0.942541i \(-0.391571\pi\)
0.334091 + 0.942541i \(0.391571\pi\)
\(180\) 0 0
\(181\) −1.00933 −0.0750228 −0.0375114 0.999296i \(-0.511943\pi\)
−0.0375114 + 0.999296i \(0.511943\pi\)
\(182\) −0.709789 2.44577i −0.0526131 0.181293i
\(183\) 0 0
\(184\) −0.222998 3.59465i −0.0164396 0.265001i
\(185\) 0 0
\(186\) 0 0
\(187\) 7.15688 + 7.15688i 0.523363 + 0.523363i
\(188\) −16.1643 3.62305i −1.17890 0.264238i
\(189\) 0 0
\(190\) 0 0
\(191\) 21.6262i 1.56481i −0.622768 0.782407i \(-0.713992\pi\)
0.622768 0.782407i \(-0.286008\pi\)
\(192\) 0 0
\(193\) −11.5653 11.5653i −0.832492 0.832492i 0.155365 0.987857i \(-0.450345\pi\)
−0.987857 + 0.155365i \(0.950345\pi\)
\(194\) −6.49362 + 11.8037i −0.466214 + 0.847455i
\(195\) 0 0
\(196\) 5.65599 + 8.92392i 0.403999 + 0.637423i
\(197\) −9.42401 + 9.42401i −0.671433 + 0.671433i −0.958046 0.286614i \(-0.907470\pi\)
0.286614 + 0.958046i \(0.407470\pi\)
\(198\) 0 0
\(199\) 11.0130 0.780688 0.390344 0.920669i \(-0.372356\pi\)
0.390344 + 0.920669i \(0.372356\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.86022 + 2.28112i −0.553043 + 0.160499i
\(203\) −8.68516 + 8.68516i −0.609579 + 0.609579i
\(204\) 0 0
\(205\) 0 0
\(206\) −12.6203 + 22.9404i −0.879300 + 1.59834i
\(207\) 0 0
\(208\) −1.93460 + 0.693949i −0.134140 + 0.0481167i
\(209\) 15.0093i 1.03822i
\(210\) 0 0
\(211\) 27.9835i 1.92646i −0.268669 0.963232i \(-0.586584\pi\)
0.268669 0.963232i \(-0.413416\pi\)
\(212\) 8.66993 + 1.94327i 0.595453 + 0.133464i
\(213\) 0 0
\(214\) 17.0201 + 9.36333i 1.16347 + 0.640064i
\(215\) 0 0
\(216\) 0 0
\(217\) −9.55602 + 9.55602i −0.648705 + 0.648705i
\(218\) 4.12392 + 14.2101i 0.279307 + 0.962430i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.71733 0.115520
\(222\) 0 0
\(223\) 8.53479 8.53479i 0.571531 0.571531i −0.361025 0.932556i \(-0.617573\pi\)
0.932556 + 0.361025i \(0.117573\pi\)
\(224\) 16.0560 11.6297i 1.07279 0.777039i
\(225\) 0 0
\(226\) −18.6553 10.2629i −1.24093 0.682681i
\(227\) −1.02765 1.02765i −0.0682074 0.0682074i 0.672180 0.740388i \(-0.265358\pi\)
−0.740388 + 0.672180i \(0.765358\pi\)
\(228\) 0 0
\(229\) 8.84802i 0.584693i −0.956312 0.292347i \(-0.905564\pi\)
0.956312 0.292347i \(-0.0944361\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.42988 + 6.56188i 0.487795 + 0.430809i
\(233\) −4.91002 4.91002i −0.321666 0.321666i 0.527740 0.849406i \(-0.323040\pi\)
−0.849406 + 0.527740i \(0.823040\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.6717 9.29892i 0.955045 0.605308i
\(237\) 0 0
\(238\) −15.9089 + 4.61694i −1.03122 + 0.299272i
\(239\) −19.0259 −1.23068 −0.615340 0.788262i \(-0.710981\pi\)
−0.615340 + 0.788262i \(0.710981\pi\)
\(240\) 0 0
\(241\) 2.90663 0.187232 0.0936161 0.995608i \(-0.470157\pi\)
0.0936161 + 0.995608i \(0.470157\pi\)
\(242\) 2.48459 0.721054i 0.159716 0.0463511i
\(243\) 0 0
\(244\) −25.8325 + 16.3727i −1.65376 + 1.04815i
\(245\) 0 0
\(246\) 0 0
\(247\) −1.80078 1.80078i −0.114581 0.114581i
\(248\) 8.17486 + 7.21984i 0.519104 + 0.458460i
\(249\) 0 0
\(250\) 0 0
\(251\) 2.77379i 0.175080i 0.996161 + 0.0875401i \(0.0279006\pi\)
−0.996161 + 0.0875401i \(0.972099\pi\)
\(252\) 0 0
\(253\) −2.72666 2.72666i −0.171423 0.171423i
\(254\) −3.11505 1.71370i −0.195456 0.107527i
\(255\) 0 0
\(256\) −10.1700 12.3520i −0.635624 0.771999i
\(257\) −2.08066 + 2.08066i −0.129788 + 0.129788i −0.769017 0.639229i \(-0.779254\pi\)
0.639229 + 0.769017i \(0.279254\pi\)
\(258\) 0 0
\(259\) 1.80078 0.111895
\(260\) 0 0
\(261\) 0 0
\(262\) 7.17290 + 24.7162i 0.443143 + 1.52697i
\(263\) 4.75646 4.75646i 0.293296 0.293296i −0.545085 0.838381i \(-0.683503\pi\)
0.838381 + 0.545085i \(0.183503\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 21.5233 + 11.8407i 1.31968 + 0.726001i
\(267\) 0 0
\(268\) −10.8430 2.43034i −0.662342 0.148457i
\(269\) 21.6846i 1.32214i 0.750326 + 0.661068i \(0.229896\pi\)
−0.750326 + 0.661068i \(0.770104\pi\)
\(270\) 0 0
\(271\) 3.15556i 0.191687i −0.995396 0.0958434i \(-0.969445\pi\)
0.995396 0.0958434i \(-0.0305548\pi\)
\(272\) 4.51391 + 12.5839i 0.273696 + 0.763012i
\(273\) 0 0
\(274\) −5.70636 + 10.3727i −0.344734 + 0.626635i
\(275\) 0 0
\(276\) 0 0
\(277\) 3.53397 3.53397i 0.212336 0.212336i −0.592923 0.805259i \(-0.702026\pi\)
0.805259 + 0.592923i \(0.202026\pi\)
\(278\) −16.8604 + 4.89305i −1.01122 + 0.293466i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.179969 −0.0107361 −0.00536804 0.999986i \(-0.501709\pi\)
−0.00536804 + 0.999986i \(0.501709\pi\)
\(282\) 0 0
\(283\) 9.84007 9.84007i 0.584931 0.584931i −0.351323 0.936254i \(-0.614268\pi\)
0.936254 + 0.351323i \(0.114268\pi\)
\(284\) 4.55658 + 7.18930i 0.270384 + 0.426606i
\(285\) 0 0
\(286\) −1.06068 + 1.92804i −0.0627193 + 0.114007i
\(287\) −6.75712 6.75712i −0.398860 0.398860i
\(288\) 0 0
\(289\) 5.82936i 0.342903i
\(290\) 0 0
\(291\) 0 0
\(292\) −25.6197 5.74238i −1.49928 0.336047i
\(293\) 15.8680 + 15.8680i 0.927018 + 0.927018i 0.997512 0.0704942i \(-0.0224576\pi\)
−0.0704942 + 0.997512i \(0.522458\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.0899847 1.45052i −0.00523026 0.0843100i
\(297\) 0 0
\(298\) −2.28112 7.86022i −0.132142 0.455330i
\(299\) −0.654274 −0.0378376
\(300\) 0 0
\(301\) 19.4720 1.12235
\(302\) 7.12274 + 24.5434i 0.409868 + 1.41231i
\(303\) 0 0
\(304\) 8.46216 17.9287i 0.485338 1.02828i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.78477 + 7.78477i 0.444300 + 0.444300i 0.893454 0.449154i \(-0.148275\pi\)
−0.449154 + 0.893454i \(0.648275\pi\)
\(308\) 4.64248 20.7125i 0.264530 1.18020i
\(309\) 0 0
\(310\) 0 0
\(311\) 7.05788i 0.400215i −0.979774 0.200108i \(-0.935871\pi\)
0.979774 0.200108i \(-0.0641292\pi\)
\(312\) 0 0
\(313\) 11.3013 + 11.3013i 0.638789 + 0.638789i 0.950257 0.311468i \(-0.100821\pi\)
−0.311468 + 0.950257i \(0.600821\pi\)
\(314\) 3.77832 6.86799i 0.213223 0.387583i
\(315\) 0 0
\(316\) −0.675305 + 0.428009i −0.0379889 + 0.0240774i
\(317\) 19.4754 19.4754i 1.09385 1.09385i 0.0987310 0.995114i \(-0.468522\pi\)
0.995114 0.0987310i \(-0.0314783\pi\)
\(318\) 0 0
\(319\) 10.6132 0.594225
\(320\) 0 0
\(321\) 0 0
\(322\) 6.06105 1.75898i 0.337769 0.0980241i
\(323\) −11.7135 + 11.7135i −0.651755 + 0.651755i
\(324\) 0 0
\(325\) 0 0
\(326\) −3.11203 + 5.65685i −0.172359 + 0.313304i
\(327\) 0 0
\(328\) −5.10520 + 5.78050i −0.281887 + 0.319175i
\(329\) 29.0280i 1.60036i
\(330\) 0 0
\(331\) 15.0143i 0.825259i 0.910899 + 0.412630i \(0.135390\pi\)
−0.910899 + 0.412630i \(0.864610\pi\)
\(332\) 0.123648 0.551657i 0.00678607 0.0302761i
\(333\) 0 0
\(334\) 12.1910 + 6.70668i 0.667061 + 0.366973i
\(335\) 0 0
\(336\) 0 0
\(337\) 21.5840 21.5840i 1.17576 1.17576i 0.194940 0.980815i \(-0.437549\pi\)
0.980815 0.194940i \(-0.0624513\pi\)
\(338\) −5.01997 17.2977i −0.273051 0.940871i
\(339\) 0 0
\(340\) 0 0
\(341\) 11.6774 0.632365
\(342\) 0 0
\(343\) 4.25583 4.25583i 0.229793 0.229793i
\(344\) −0.973012 15.6846i −0.0524613 0.845659i
\(345\) 0 0
\(346\) 1.09931 + 0.604770i 0.0590995 + 0.0325127i
\(347\) −16.9969 16.9969i −0.912444 0.912444i 0.0840201 0.996464i \(-0.473224\pi\)
−0.996464 + 0.0840201i \(0.973224\pi\)
\(348\) 0 0
\(349\) 4.38538i 0.234744i 0.993088 + 0.117372i \(0.0374469\pi\)
−0.993088 + 0.117372i \(0.962553\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.9159 2.70451i −0.901618 0.144151i
\(353\) −2.62734 2.62734i −0.139839 0.139839i 0.633722 0.773561i \(-0.281526\pi\)
−0.773561 + 0.633722i \(0.781526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.58532 + 7.23464i 0.243021 + 0.383435i
\(357\) 0 0
\(358\) 12.1416 3.52363i 0.641706 0.186230i
\(359\) 34.9952 1.84697 0.923487 0.383630i \(-0.125326\pi\)
0.923487 + 0.383630i \(0.125326\pi\)
\(360\) 0 0
\(361\) 5.56534 0.292913
\(362\) −1.37085 + 0.397834i −0.0720500 + 0.0209097i
\(363\) 0 0
\(364\) −1.92804 3.04202i −0.101057 0.159445i
\(365\) 0 0
\(366\) 0 0
\(367\) 9.93581 + 9.93581i 0.518645 + 0.518645i 0.917161 0.398516i \(-0.130475\pi\)
−0.398516 + 0.917161i \(0.630475\pi\)
\(368\) −1.71973 4.79427i −0.0896469 0.249918i
\(369\) 0 0
\(370\) 0 0
\(371\) 15.5695i 0.808330i
\(372\) 0 0
\(373\) 7.08998 + 7.08998i 0.367105 + 0.367105i 0.866421 0.499315i \(-0.166415\pi\)
−0.499315 + 0.866421i \(0.666415\pi\)
\(374\) 12.5412 + 6.89937i 0.648492 + 0.356758i
\(375\) 0 0
\(376\) −23.3820 + 1.45052i −1.20583 + 0.0748051i
\(377\) 1.27334 1.27334i 0.0655805 0.0655805i
\(378\) 0 0
\(379\) −30.0388 −1.54299 −0.771495 0.636235i \(-0.780491\pi\)
−0.771495 + 0.636235i \(0.780491\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.52410 29.3721i −0.436131 1.50281i
\(383\) 11.9133 11.9133i 0.608744 0.608744i −0.333874 0.942618i \(-0.608356\pi\)
0.942618 + 0.333874i \(0.108356\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −20.2663 11.1492i −1.03153 0.567480i
\(387\) 0 0
\(388\) −4.16697 + 18.5910i −0.211546 + 0.943814i
\(389\) 16.3340i 0.828168i 0.910239 + 0.414084i \(0.135898\pi\)
−0.910239 + 0.414084i \(0.864102\pi\)
\(390\) 0 0
\(391\) 4.25583i 0.215227i
\(392\) 11.1992 + 9.89090i 0.565647 + 0.499566i
\(393\) 0 0
\(394\) −9.08492 + 16.5140i −0.457692 + 0.831963i
\(395\) 0 0
\(396\) 0 0
\(397\) 19.1927 19.1927i 0.963253 0.963253i −0.0360950 0.999348i \(-0.511492\pi\)
0.999348 + 0.0360950i \(0.0114919\pi\)
\(398\) 14.9575 4.34083i 0.749753 0.217586i
\(399\) 0 0
\(400\) 0 0
\(401\) −26.5653 −1.32661 −0.663305 0.748349i \(-0.730847\pi\)
−0.663305 + 0.748349i \(0.730847\pi\)
\(402\) 0 0
\(403\) 1.40102 1.40102i 0.0697898 0.0697898i
\(404\) −9.77644 + 6.19632i −0.486396 + 0.308278i
\(405\) 0 0
\(406\) −8.37266 + 15.2193i −0.415528 + 0.755321i
\(407\) −1.10027 1.10027i −0.0545383 0.0545383i
\(408\) 0 0
\(409\) 25.3947i 1.25569i −0.778339 0.627844i \(-0.783938\pi\)
0.778339 0.627844i \(-0.216062\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.09849 + 36.1315i −0.398984 + 1.78007i
\(413\) 21.5233 + 21.5233i 1.05909 + 1.05909i
\(414\) 0 0
\(415\) 0 0
\(416\) −2.35400 + 1.70504i −0.115414 + 0.0835964i
\(417\) 0 0
\(418\) −5.91603 20.3853i −0.289362 0.997078i
\(419\) −40.0788 −1.95798 −0.978988 0.203919i \(-0.934632\pi\)
−0.978988 + 0.203919i \(0.934632\pi\)
\(420\) 0 0
\(421\) 19.3947 0.945240 0.472620 0.881266i \(-0.343308\pi\)
0.472620 + 0.881266i \(0.343308\pi\)
\(422\) −11.0299 38.0065i −0.536927 1.85013i
\(423\) 0 0
\(424\) 12.5412 0.778008i 0.609056 0.0377834i
\(425\) 0 0
\(426\) 0 0
\(427\) −37.8962 37.8962i −1.83393 1.83393i
\(428\) 26.8069 + 6.00847i 1.29576 + 0.290430i
\(429\) 0 0
\(430\) 0 0
\(431\) 15.8241i 0.762218i −0.924530 0.381109i \(-0.875542\pi\)
0.924530 0.381109i \(-0.124458\pi\)
\(432\) 0 0
\(433\) 21.1214 + 21.1214i 1.01503 + 1.01503i 0.999885 + 0.0151424i \(0.00482018\pi\)
0.0151424 + 0.999885i \(0.495180\pi\)
\(434\) −9.21218 + 16.7453i −0.442199 + 0.803801i
\(435\) 0 0
\(436\) 11.2020 + 17.6743i 0.536479 + 0.846447i
\(437\) 4.46264 4.46264i 0.213477 0.213477i
\(438\) 0 0
\(439\) −6.61188 −0.315568 −0.157784 0.987474i \(-0.550435\pi\)
−0.157784 + 0.987474i \(0.550435\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.33243 0.676896i 0.110942 0.0321967i
\(443\) 14.5419 14.5419i 0.690906 0.690906i −0.271525 0.962431i \(-0.587528\pi\)
0.962431 + 0.271525i \(0.0875280\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 8.22769 14.9558i 0.389593 0.708177i
\(447\) 0 0
\(448\) 17.2230 22.1237i 0.813711 1.04525i
\(449\) 33.6120i 1.58625i 0.609060 + 0.793124i \(0.291547\pi\)
−0.609060 + 0.793124i \(0.708453\pi\)
\(450\) 0 0
\(451\) 8.25715i 0.388814i
\(452\) −29.3824 6.58575i −1.38203 0.309768i
\(453\) 0 0
\(454\) −1.80078 0.990671i −0.0845148 0.0464945i
\(455\) 0 0
\(456\) 0 0
\(457\) −15.5653 + 15.5653i −0.728116 + 0.728116i −0.970244 0.242128i \(-0.922155\pi\)
0.242128 + 0.970244i \(0.422155\pi\)
\(458\) −3.48751 12.0172i −0.162960 0.561525i
\(459\) 0 0
\(460\) 0 0
\(461\) 26.1473 1.21780 0.608900 0.793247i \(-0.291611\pi\)
0.608900 + 0.793247i \(0.291611\pi\)
\(462\) 0 0
\(463\) −5.77898 + 5.77898i −0.268572 + 0.268572i −0.828525 0.559953i \(-0.810819\pi\)
0.559953 + 0.828525i \(0.310819\pi\)
\(464\) 12.6775 + 5.98365i 0.588538 + 0.277784i
\(465\) 0 0
\(466\) −8.60398 4.73335i −0.398572 0.219268i
\(467\) 2.25517 + 2.25517i 0.104357 + 0.104357i 0.757357 0.653000i \(-0.226490\pi\)
−0.653000 + 0.757357i \(0.726490\pi\)
\(468\) 0 0
\(469\) 19.4720i 0.899132i
\(470\) 0 0
\(471\) 0 0
\(472\) 16.2615 18.4125i 0.748495 0.847505i
\(473\) −11.8973 11.8973i −0.547038 0.547038i
\(474\) 0 0
\(475\) 0 0
\(476\) −19.7873 + 12.5412i −0.906951 + 0.574827i
\(477\) 0 0
\(478\) −25.8405 + 7.49917i −1.18191 + 0.343004i
\(479\) −1.40102 −0.0640143 −0.0320071 0.999488i \(-0.510190\pi\)
−0.0320071 + 0.999488i \(0.510190\pi\)
\(480\) 0 0
\(481\) −0.264015 −0.0120380
\(482\) 3.94771 1.14567i 0.179813 0.0521837i
\(483\) 0 0
\(484\) 3.09030 1.95864i 0.140468 0.0890289i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.978144 0.978144i −0.0443239 0.0443239i 0.684597 0.728921i \(-0.259978\pi\)
−0.728921 + 0.684597i \(0.759978\pi\)
\(488\) −28.6317 + 32.4190i −1.29609 + 1.46754i
\(489\) 0 0
\(490\) 0 0
\(491\) 36.1134i 1.62978i −0.579619 0.814888i \(-0.696799\pi\)
0.579619 0.814888i \(-0.303201\pi\)
\(492\) 0 0
\(493\) −8.28267 8.28267i −0.373033 0.373033i
\(494\) −3.15556 1.73599i −0.141976 0.0781057i
\(495\) 0 0
\(496\) 13.9486 + 6.58363i 0.626313 + 0.295614i
\(497\) −10.5467 + 10.5467i −0.473084 + 0.473084i
\(498\) 0 0
\(499\) 6.35736 0.284595 0.142297 0.989824i \(-0.454551\pi\)
0.142297 + 0.989824i \(0.454551\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.09331 + 3.76730i 0.0487968 + 0.168143i
\(503\) 17.1704 17.1704i 0.765592 0.765592i −0.211735 0.977327i \(-0.567911\pi\)
0.977327 + 0.211735i \(0.0679114\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4.77801 2.62855i −0.212408 0.116853i
\(507\) 0 0
\(508\) −4.90626 1.09968i −0.217680 0.0487906i
\(509\) 18.8739i 0.836572i −0.908315 0.418286i \(-0.862631\pi\)
0.908315 0.418286i \(-0.137369\pi\)
\(510\) 0 0
\(511\) 46.0081i 2.03528i
\(512\) −18.6812 12.7676i −0.825602 0.564253i
\(513\) 0 0
\(514\) −2.00579 + 3.64600i −0.0884717 + 0.160818i
\(515\) 0 0
\(516\) 0 0
\(517\) −17.7360 + 17.7360i −0.780028 + 0.780028i
\(518\) 2.44577 0.709789i 0.107461 0.0311864i
\(519\) 0 0
\(520\) 0 0
\(521\) 33.9346 1.48670 0.743351 0.668901i \(-0.233235\pi\)
0.743351 + 0.668901i \(0.233235\pi\)
\(522\) 0 0
\(523\) −3.78345 + 3.78345i −0.165439 + 0.165439i −0.784971 0.619532i \(-0.787322\pi\)
0.619532 + 0.784971i \(0.287322\pi\)
\(524\) 19.4841 + 30.7417i 0.851167 + 1.34296i
\(525\) 0 0
\(526\) 4.58532 8.33491i 0.199929 0.363419i
\(527\) −9.11317 9.11317i −0.396976 0.396976i
\(528\) 0 0
\(529\) 21.3786i 0.929504i
\(530\) 0 0
\(531\) 0 0
\(532\) 33.8995 + 7.59822i 1.46973 + 0.329425i
\(533\) 0.990671 + 0.990671i 0.0429107 + 0.0429107i
\(534\) 0 0
\(535\) 0 0
\(536\) −15.6846 + 0.973012i −0.677473 + 0.0420277i
\(537\) 0 0
\(538\) 8.54715 + 29.4515i 0.368494 + 1.26975i
\(539\) 15.9976 0.689063
\(540\) 0 0
\(541\) 28.4813 1.22451 0.612253 0.790662i \(-0.290263\pi\)
0.612253 + 0.790662i \(0.290263\pi\)
\(542\) −1.24379 4.28581i −0.0534252 0.184091i
\(543\) 0 0
\(544\) 11.0907 + 15.3120i 0.475510 + 0.656496i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.726896 0.726896i −0.0310798 0.0310798i 0.691396 0.722476i \(-0.256996\pi\)
−0.722476 + 0.691396i \(0.756996\pi\)
\(548\) −3.66178 + 16.3371i −0.156424 + 0.697886i
\(549\) 0 0
\(550\) 0 0
\(551\) 17.3703i 0.740001i
\(552\) 0 0
\(553\) −0.990671 0.990671i −0.0421276 0.0421276i
\(554\) 3.40681 6.19269i 0.144742 0.263102i
\(555\) 0 0
\(556\) −20.9707 + 13.2912i −0.889356 + 0.563675i
\(557\) −11.4427 + 11.4427i −0.484841 + 0.484841i −0.906674 0.421832i \(-0.861387\pi\)
0.421832 + 0.906674i \(0.361387\pi\)
\(558\) 0 0
\(559\) −2.85481 −0.120746
\(560\) 0 0
\(561\) 0 0
\(562\) −0.244430 + 0.0709362i −0.0103107 + 0.00299226i
\(563\) −7.08426 + 7.08426i −0.298566 + 0.298566i −0.840452 0.541886i \(-0.817710\pi\)
0.541886 + 0.840452i \(0.317710\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 9.48601 17.2431i 0.398727 0.724780i
\(567\) 0 0
\(568\) 9.02235 + 7.96832i 0.378569 + 0.334343i
\(569\) 46.2427i 1.93860i −0.245890 0.969298i \(-0.579080\pi\)
0.245890 0.969298i \(-0.420920\pi\)
\(570\) 0 0
\(571\) 31.2381i 1.30727i −0.756808 0.653637i \(-0.773242\pi\)
0.756808 0.653637i \(-0.226758\pi\)
\(572\) −0.680641 + 3.03669i −0.0284590 + 0.126970i
\(573\) 0 0
\(574\) −11.8407 6.51399i −0.494222 0.271889i
\(575\) 0 0
\(576\) 0 0
\(577\) −1.16131 + 1.16131i −0.0483461 + 0.0483461i −0.730866 0.682520i \(-0.760884\pi\)
0.682520 + 0.730866i \(0.260884\pi\)
\(578\) 2.29768 + 7.91729i 0.0955709 + 0.329316i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.990671 0.0411000
\(582\) 0 0
\(583\) 9.51293 9.51293i 0.393985 0.393985i
\(584\) −37.0594 + 2.29902i −1.53353 + 0.0951341i
\(585\) 0 0
\(586\) 27.8060 + 15.2970i 1.14866 + 0.631915i
\(587\) 23.6268 + 23.6268i 0.975183 + 0.975183i 0.999699 0.0245164i \(-0.00780461\pi\)
−0.0245164 + 0.999699i \(0.507805\pi\)
\(588\) 0 0
\(589\) 19.1120i 0.787498i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.693949 1.93460i −0.0285211 0.0795115i
\(593\) −0.260625 0.260625i −0.0107026 0.0107026i 0.701735 0.712438i \(-0.252409\pi\)
−0.712438 + 0.701735i \(0.752409\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.19632 9.77644i −0.253811 0.400458i
\(597\) 0 0
\(598\) −0.888619 + 0.257887i −0.0363383 + 0.0105458i
\(599\) 33.0851 1.35182 0.675910 0.736984i \(-0.263751\pi\)
0.675910 + 0.736984i \(0.263751\pi\)
\(600\) 0 0
\(601\) −24.3200 −0.992033 −0.496016 0.868313i \(-0.665204\pi\)
−0.496016 + 0.868313i \(0.665204\pi\)
\(602\) 26.4464 7.67501i 1.07787 0.312810i
\(603\) 0 0
\(604\) 19.3479 + 30.5267i 0.787253 + 1.24211i
\(605\) 0 0
\(606\) 0 0
\(607\) 4.53347 + 4.53347i 0.184008 + 0.184008i 0.793100 0.609092i \(-0.208466\pi\)
−0.609092 + 0.793100i \(0.708466\pi\)
\(608\) 4.42639 27.6857i 0.179514 1.12280i
\(609\) 0 0
\(610\) 0 0
\(611\) 4.25583i 0.172173i
\(612\) 0 0
\(613\) 20.2793 + 20.2793i 0.819073 + 0.819073i 0.985974 0.166901i \(-0.0533761\pi\)
−0.166901 + 0.985974i \(0.553376\pi\)
\(614\) 13.6415 + 7.50466i 0.550526 + 0.302864i
\(615\) 0 0
\(616\) −1.85866 29.9611i −0.0748877 1.20717i
\(617\) 17.1086 17.1086i 0.688768 0.688768i −0.273192 0.961960i \(-0.588079\pi\)
0.961960 + 0.273192i \(0.0880793\pi\)
\(618\) 0 0
\(619\) 29.4373 1.18319 0.591593 0.806237i \(-0.298499\pi\)
0.591593 + 0.806237i \(0.298499\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.78191 9.58583i −0.111544 0.384357i
\(623\) −10.6132 + 10.6132i −0.425209 + 0.425209i
\(624\) 0 0
\(625\) 0 0
\(626\) 19.8037 + 10.8947i 0.791514 + 0.435439i
\(627\) 0 0
\(628\) 2.42456 10.8172i 0.0967503 0.431653i
\(629\) 1.71733i 0.0684743i
\(630\) 0 0
\(631\) 5.25710i 0.209282i 0.994510 + 0.104641i \(0.0333693\pi\)
−0.994510 + 0.104641i \(0.966631\pi\)
\(632\) −0.748480 + 0.847487i −0.0297729 + 0.0337112i
\(633\) 0 0
\(634\) 18.7746 34.1273i 0.745635 1.35537i
\(635\) 0 0
\(636\) 0 0
\(637\) 1.91934 1.91934i 0.0760472 0.0760472i
\(638\) 14.4146 4.18326i 0.570679 0.165617i
\(639\) 0 0
\(640\) 0 0
\(641\) −20.0773 −0.793004 −0.396502 0.918034i \(-0.629776\pi\)
−0.396502 + 0.918034i \(0.629776\pi\)
\(642\) 0 0
\(643\) 9.28480 9.28480i 0.366157 0.366157i −0.499917 0.866073i \(-0.666636\pi\)
0.866073 + 0.499917i \(0.166636\pi\)
\(644\) 7.53866 4.77801i 0.297065 0.188280i
\(645\) 0 0
\(646\) −11.2920 + 20.5259i −0.444278 + 0.807580i
\(647\) 28.7387 + 28.7387i 1.12983 + 1.12983i 0.990204 + 0.139630i \(0.0445912\pi\)
0.139630 + 0.990204i \(0.455409\pi\)
\(648\) 0 0
\(649\) 26.3013i 1.03242i
\(650\) 0 0
\(651\) 0 0
\(652\) −1.99700 + 8.90963i −0.0782084 + 0.348928i
\(653\) −11.9380 11.9380i −0.467170 0.467170i 0.433826 0.900996i \(-0.357163\pi\)
−0.900996 + 0.433826i \(0.857163\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.65533 + 9.86318i −0.181760 + 0.385093i
\(657\) 0 0
\(658\) −11.4416 39.4251i −0.446039 1.53695i
\(659\) 17.9963 0.701038 0.350519 0.936556i \(-0.386005\pi\)
0.350519 + 0.936556i \(0.386005\pi\)
\(660\) 0 0
\(661\) −9.06794 −0.352702 −0.176351 0.984327i \(-0.556429\pi\)
−0.176351 + 0.984327i \(0.556429\pi\)
\(662\) 5.91798 + 20.3920i 0.230009 + 0.792558i
\(663\) 0 0
\(664\) −0.0495037 0.797984i −0.00192112 0.0309678i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.15556 + 3.15556i 0.122184 + 0.122184i
\(668\) 19.2010 + 4.30369i 0.742908 + 0.166515i
\(669\) 0 0
\(670\) 0 0
\(671\) 46.3089i 1.78773i
\(672\) 0 0
\(673\) −35.7640 35.7640i −1.37860 1.37860i −0.846988 0.531611i \(-0.821587\pi\)
−0.531611 0.846988i \(-0.678413\pi\)
\(674\) 20.8074 37.8223i 0.801470 1.45686i
\(675\) 0 0
\(676\) −13.6360 21.5147i −0.524462 0.827487i
\(677\) 16.2020 16.2020i 0.622694 0.622694i −0.323525 0.946219i \(-0.604868\pi\)
0.946219 + 0.323525i \(0.104868\pi\)
\(678\) 0 0
\(679\) −33.3859 −1.28123
\(680\) 0 0
\(681\) 0 0
\(682\) 15.8599 4.60272i 0.607308 0.176247i
\(683\) 33.3943 33.3943i 1.27780 1.27780i 0.335897 0.941899i \(-0.390961\pi\)
0.941899 0.335897i \(-0.109039\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.10270 7.45763i 0.156642 0.284734i
\(687\) 0 0
\(688\) −7.50373 20.9190i −0.286077 0.797528i
\(689\) 2.28267i 0.0869629i
\(690\) 0 0
\(691\) 24.6365i 0.937216i 0.883406 + 0.468608i \(0.155244\pi\)
−0.883406 + 0.468608i \(0.844756\pi\)
\(692\) 1.73143 + 0.388082i 0.0658193 + 0.0147527i
\(693\) 0 0
\(694\) −29.7843 16.3854i −1.13060 0.621980i
\(695\) 0 0
\(696\) 0 0
\(697\) 6.44398 6.44398i 0.244083 0.244083i
\(698\) 1.72853 + 5.95611i 0.0654256 + 0.225442i
\(699\) 0 0
\(700\) 0 0
\(701\) 23.0420 0.870285 0.435143 0.900362i \(-0.356698\pi\)
0.435143 + 0.900362i \(0.356698\pi\)
\(702\) 0 0
\(703\) 1.80078 1.80078i 0.0679177 0.0679177i
\(704\) −24.0407 + 2.99430i −0.906068 + 0.112852i
\(705\) 0 0
\(706\) −4.60398 2.53281i −0.173273 0.0953235i
\(707\) −14.3420 14.3420i −0.539387 0.539387i
\(708\) 0 0
\(709\) 37.7360i 1.41720i 0.705608 + 0.708602i \(0.250674\pi\)
−0.705608 + 0.708602i \(0.749326\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.07925 + 8.01857i 0.340259 + 0.300509i
\(713\) 3.47197 + 3.47197i 0.130026 + 0.130026i
\(714\) 0 0
\(715\) 0 0
\(716\) 15.1016 9.57143i 0.564374 0.357701i
\(717\) 0 0
\(718\) 47.5296 13.7936i 1.77379 0.514772i
\(719\) −41.3423 −1.54181 −0.770903 0.636953i \(-0.780195\pi\)
−0.770903 + 0.636953i \(0.780195\pi\)
\(720\) 0 0
\(721\) −64.8853 −2.41646
\(722\) 7.55871 2.19362i 0.281306 0.0816380i
\(723\) 0 0
\(724\) −1.70504 + 1.08066i −0.0633673 + 0.0401623i
\(725\) 0 0
\(726\) 0 0
\(727\) −9.48981 9.48981i −0.351958 0.351958i 0.508880 0.860838i \(-0.330060\pi\)
−0.860838 + 0.508880i \(0.830060\pi\)
\(728\) −3.81765 3.37165i −0.141491 0.124962i
\(729\) 0 0
\(730\) 0 0
\(731\) 18.5696i 0.686821i
\(732\) 0 0
\(733\) −3.21134 3.21134i −0.118614 0.118614i 0.645308 0.763922i \(-0.276729\pi\)
−0.763922 + 0.645308i \(0.776729\pi\)
\(734\) 17.4108 + 9.57830i 0.642646 + 0.353542i
\(735\) 0 0
\(736\) −4.22538 5.83362i −0.155750 0.215030i
\(737\) −11.8973 + 11.8973i −0.438243 + 0.438243i
\(738\) 0 0
\(739\) 25.3832 0.933737 0.466868 0.884327i \(-0.345382\pi\)
0.466868 + 0.884327i \(0.345382\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.13684 + 21.1462i 0.225290 + 0.776300i
\(743\) −32.7400 + 32.7400i −1.20111 + 1.20111i −0.227285 + 0.973828i \(0.572985\pi\)
−0.973828 + 0.227285i \(0.927015\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 12.4240 + 6.83488i 0.454875 + 0.250243i
\(747\) 0 0
\(748\) 19.7526 + 4.42734i 0.722228 + 0.161880i
\(749\) 48.1400i 1.75900i
\(750\) 0 0
\(751\) 24.4810i 0.893323i 0.894703 + 0.446662i \(0.147387\pi\)
−0.894703 + 0.446662i \(0.852613\pi\)
\(752\) −31.1851 + 11.1862i −1.13720 + 0.407920i
\(753\) 0 0
\(754\) 1.22753 2.23132i 0.0447039 0.0812599i
\(755\) 0 0
\(756\) 0 0
\(757\) −22.9473 + 22.9473i −0.834035 + 0.834035i −0.988066 0.154031i \(-0.950774\pi\)
0.154031 + 0.988066i \(0.450774\pi\)
\(758\) −40.7980 + 11.8400i −1.48185 + 0.430048i
\(759\) 0 0
\(760\) 0 0
\(761\) −37.0466 −1.34294 −0.671470 0.741032i \(-0.734337\pi\)
−0.671470 + 0.741032i \(0.734337\pi\)
\(762\) 0 0
\(763\) −25.9282 + 25.9282i −0.938665 + 0.938665i
\(764\) −23.1544 36.5327i −0.837698 1.32170i
\(765\) 0 0
\(766\) 11.4847 20.8761i 0.414959 0.754286i
\(767\) −3.15556 3.15556i −0.113941 0.113941i
\(768\) 0 0
\(769\) 6.62395i 0.238866i −0.992842 0.119433i \(-0.961892\pi\)
0.992842 0.119433i \(-0.0381077\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −31.9198 7.15447i −1.14882 0.257495i
\(773\) 16.2606 + 16.2606i 0.584854 + 0.584854i 0.936233 0.351379i \(-0.114287\pi\)
−0.351379 + 0.936233i \(0.614287\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.66829 + 26.8922i 0.0598880 + 0.965375i
\(777\) 0 0
\(778\) 6.43817 + 22.1845i 0.230819 + 0.795352i
\(779\) −13.5142 −0.484198
\(780\) 0 0
\(781\) 12.8880 0.461168
\(782\) 1.67747 + 5.78017i 0.0599860 + 0.206698i
\(783\) 0 0
\(784\) 19.1091 + 9.01932i 0.682468 + 0.322118i
\(785\) 0 0
\(786\) 0 0
\(787\) 31.2117 + 31.2117i 1.11258 + 1.11258i 0.992801 + 0.119776i \(0.0382177\pi\)
0.119776 + 0.992801i \(0.461782\pi\)
\(788\) −5.82981 + 26.0098i −0.207678 + 0.926560i
\(789\) 0 0
\(790\) 0 0
\(791\) 52.7652i 1.87612i
\(792\) 0 0
\(793\) 5.55602 + 5.55602i 0.197300 + 0.197300i
\(794\) 18.5021 33.6320i 0.656615 1.19355i
\(795\) 0 0
\(796\) 18.6040 11.7912i 0.659401 0.417929i
\(797\) 17.3540 17.3540i 0.614710 0.614710i −0.329460 0.944170i \(-0.606867\pi\)
0.944170 + 0.329460i \(0.106867\pi\)
\(798\) 0 0
\(799\) 27.6828 0.979346
\(800\) 0 0
\(801\) 0 0
\(802\) −36.0804 + 10.4709i −1.27404 + 0.369741i
\(803\) −28.1108 + 28.1108i −0.992008 + 0.992008i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.35061 2.45505i 0.0475732 0.0864756i
\(807\) 0 0
\(808\) −10.8358 + 12.2691i −0.381202 + 0.431627i
\(809\) 27.4320i 0.964458i 0.876045 + 0.482229i \(0.160173\pi\)
−0.876045 + 0.482229i \(0.839827\pi\)
\(810\) 0 0
\(811\) 27.1840i 0.954559i 0.878751 + 0.477280i \(0.158377\pi\)
−0.878751 + 0.477280i \(0.841623\pi\)
\(812\) −5.37275 + 23.9706i −0.188547 + 0.841203i
\(813\) 0 0
\(814\) −1.92804 1.06068i −0.0675777 0.0371768i
\(815\) 0 0
\(816\) 0 0
\(817\) 19.4720 19.4720i 0.681238 0.681238i
\(818\) −10.0095 34.4905i −0.349974 1.20593i
\(819\) 0 0
\(820\) 0 0
\(821\) −23.6074 −0.823903 −0.411951 0.911206i \(-0.635153\pi\)
−0.411951 + 0.911206i \(0.635153\pi\)
\(822\) 0 0
\(823\) −24.6596 + 24.6596i −0.859579 + 0.859579i −0.991288 0.131709i \(-0.957954\pi\)
0.131709 + 0.991288i \(0.457954\pi\)
\(824\) 3.24231 + 52.2650i 0.112951 + 1.82074i
\(825\) 0 0
\(826\) 37.7160 + 20.7489i 1.31231 + 0.721946i
\(827\) −13.5406 13.5406i −0.470854 0.470854i 0.431337 0.902191i \(-0.358042\pi\)
−0.902191 + 0.431337i \(0.858042\pi\)
\(828\) 0 0
\(829\) 9.00933i 0.312907i 0.987685 + 0.156453i \(0.0500061\pi\)
−0.987685 + 0.156453i \(0.949994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.52509 + 3.24359i −0.0875418 + 0.112451i
\(833\) −12.4847 12.4847i −0.432569 0.432569i
\(834\) 0 0
\(835\) 0 0
\(836\) −16.0700 25.3550i −0.555793 0.876920i
\(837\) 0 0
\(838\) −54.4340 + 15.7973i −1.88039 + 0.545709i
\(839\) 10.2597 0.354203 0.177102 0.984193i \(-0.443328\pi\)
0.177102 + 0.984193i \(0.443328\pi\)
\(840\) 0 0
\(841\) 16.7173 0.576460
\(842\) 26.3414 7.64455i 0.907785 0.263449i
\(843\) 0 0
\(844\) −29.9611 47.2720i −1.03130 1.62717i
\(845\) 0 0
\(846\) 0 0
\(847\) 4.53347 + 4.53347i 0.155772 + 0.155772i
\(848\) 16.7265 5.99988i 0.574392 0.206037i
\(849\) 0 0
\(850\) 0 0
\(851\) 0.654274i 0.0224282i
\(852\) 0 0
\(853\) −17.1086 17.1086i −0.585789 0.585789i 0.350699 0.936488i \(-0.385944\pi\)
−0.936488 + 0.350699i \(0.885944\pi\)
\(854\) −66.4067 36.5327i −2.27239 1.25012i
\(855\) 0 0
\(856\) 38.7767 2.40555i 1.32536 0.0822200i
\(857\) −26.7674 + 26.7674i −0.914356 + 0.914356i −0.996611 0.0822556i \(-0.973788\pi\)
0.0822556 + 0.996611i \(0.473788\pi\)
\(858\) 0 0
\(859\) −28.6378 −0.977109 −0.488554 0.872533i \(-0.662476\pi\)
−0.488554 + 0.872533i \(0.662476\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6.23716 21.4918i −0.212438 0.732015i
\(863\) −15.8157 + 15.8157i −0.538371 + 0.538371i −0.923050 0.384679i \(-0.874312\pi\)
0.384679 + 0.923050i \(0.374312\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 37.0116 + 20.3614i 1.25771 + 0.691908i
\(867\) 0 0
\(868\) −5.91147 + 26.3741i −0.200648 + 0.895196i
\(869\) 1.21059i 0.0410665i
\(870\) 0 0
\(871\) 2.85481i 0.0967316i
\(872\) 22.1808 + 19.5895i 0.751135 + 0.663384i
\(873\) 0 0
\(874\) 4.30207 7.82003i 0.145520 0.264516i
\(875\) 0 0
\(876\) 0 0
\(877\) 17.3727 17.3727i 0.586633 0.586633i −0.350085 0.936718i \(-0.613847\pi\)
0.936718 + 0.350085i \(0.113847\pi\)
\(878\) −8.98009 + 2.60612i −0.303063 + 0.0879522i
\(879\) 0 0
\(880\) 0 0
\(881\) −56.5254 −1.90439 −0.952194 0.305493i \(-0.901179\pi\)
−0.952194 + 0.305493i \(0.901179\pi\)
\(882\) 0 0
\(883\) 15.1962 15.1962i 0.511392 0.511392i −0.403561 0.914953i \(-0.632228\pi\)
0.914953 + 0.403561i \(0.132228\pi\)
\(884\) 2.90105 1.83869i 0.0975728 0.0618418i
\(885\) 0 0
\(886\) 14.0187 25.4822i 0.470966 0.856092i
\(887\) −11.0676 11.0676i −0.371613 0.371613i 0.496451 0.868065i \(-0.334636\pi\)
−0.868065 + 0.496451i \(0.834636\pi\)
\(888\) 0 0
\(889\) 8.81070i 0.295501i
\(890\) 0 0
\(891\) 0 0
\(892\) 5.27973 23.5556i 0.176778 0.788699i
\(893\) −29.0280 29.0280i −0.971385 0.971385i
\(894\) 0 0
\(895\) 0 0
\(896\) 14.6717 36.8364i 0.490146 1.23062i
\(897\) 0 0
\(898\) 13.2484 + 45.6510i 0.442105 + 1.52339i
\(899\) −13.5142 −0.450725
\(900\) 0 0
\(901\) −14.8480 −0.494659
\(902\) 3.25461 + 11.2147i 0.108367 + 0.373407i
\(903\) 0 0
\(904\) −42.5023 + 2.63667i −1.41361 + 0.0876944i
\(905\) 0 0
\(906\) 0 0
\(907\) 28.1654 + 28.1654i 0.935217 + 0.935217i 0.998026 0.0628084i \(-0.0200057\pi\)
−0.0628084 + 0.998026i \(0.520006\pi\)
\(908\) −2.83625 0.635716i −0.0941244 0.0210970i
\(909\) 0 0
\(910\) 0 0
\(911\) 34.8499i 1.15463i 0.816522 + 0.577315i \(0.195899\pi\)
−0.816522 + 0.577315i \(0.804101\pi\)
\(912\) 0 0
\(913\) −0.605296 0.605296i −0.0200324 0.0200324i
\(914\) −15.0053 + 27.2757i −0.496331 + 0.902198i
\(915\) 0 0
\(916\) −9.47329 14.9468i −0.313006 0.493856i
\(917\) −45.0980 + 45.0980i −1.48927 + 1.48927i
\(918\) 0 0
\(919\) −21.1171 −0.696590 −0.348295 0.937385i \(-0.613239\pi\)
−0.348295 + 0.937385i \(0.613239\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 35.5126 10.3061i 1.16954 0.339414i
\(923\) 1.54626 1.54626i 0.0508959 0.0508959i
\(924\) 0 0
\(925\) 0 0
\(926\) −5.57104 + 10.1267i −0.183076 + 0.332784i
\(927\) 0 0
\(928\) 19.5767 + 3.12993i 0.642638 + 0.102745i
\(929\) 39.0653i 1.28169i −0.767670 0.640845i \(-0.778584\pi\)
0.767670 0.640845i \(-0.221416\pi\)
\(930\) 0 0
\(931\) 26.1827i 0.858105i
\(932\) −13.5514 3.03740i −0.443891 0.0994933i
\(933\) 0 0
\(934\) 3.95181 + 2.17403i 0.129307 + 0.0711364i
\(935\) 0 0
\(936\) 0 0
\(937\) −1.82936 + 1.82936i −0.0597626 + 0.0597626i −0.736356 0.676594i \(-0.763455\pi\)
0.676594 + 0.736356i \(0.263455\pi\)
\(938\) −7.67501 26.4464i −0.250598 0.863504i
\(939\) 0 0
\(940\) 0 0
\(941\) −1.58193 −0.0515695 −0.0257847 0.999668i \(-0.508208\pi\)
−0.0257847 + 0.999668i \(0.508208\pi\)
\(942\) 0 0
\(943\) −2.45505 + 2.45505i −0.0799476 + 0.0799476i
\(944\) 14.8285 31.4170i 0.482627 1.02254i
\(945\) 0 0
\(946\) −20.8480 11.4692i −0.677827 0.372896i
\(947\) −15.9429 15.9429i −0.518075 0.518075i 0.398913 0.916989i \(-0.369387\pi\)
−0.916989 + 0.398913i \(0.869387\pi\)
\(948\) 0 0
\(949\) 6.74531i 0.218962i
\(950\) 0 0
\(951\) 0 0
\(952\) −21.9315 + 24.8325i −0.710803 + 0.804826i
\(953\) −27.2113 27.2113i −0.881462 0.881462i 0.112221 0.993683i \(-0.464203\pi\)
−0.993683 + 0.112221i \(0.964203\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −32.1400 + 20.3704i −1.03948 + 0.658825i
\(957\) 0 0
\(958\) −1.90283 + 0.552222i −0.0614777 + 0.0178415i
\(959\) −29.3383 −0.947383
\(960\) 0 0
\(961\) 16.1307 0.520345
\(962\) −0.358578 + 0.104063i −0.0115610 + 0.00335513i
\(963\) 0 0
\(964\) 4.91011 3.11203i 0.158144 0.100232i
\(965\) 0 0
\(966\) 0 0
\(967\) −14.8921 14.8921i −0.478899 0.478899i 0.425880 0.904780i \(-0.359964\pi\)
−0.904780 + 0.425880i \(0.859964\pi\)
\(968\) 3.42516 3.87824i 0.110089 0.124651i
\(969\) 0 0
\(970\) 0 0
\(971\) 41.6250i 1.33581i −0.744246 0.667905i \(-0.767191\pi\)
0.744246 0.667905i \(-0.232809\pi\)
\(972\) 0 0
\(973\) −30.7640 30.7640i −0.986248 0.986248i
\(974\) −1.71403 0.942949i −0.0549212 0.0302140i
\(975\) 0 0
\(976\) −26.1086 + 55.3160i −0.835717 + 1.77062i
\(977\) −12.0807 + 12.0807i −0.386494 + 0.386494i −0.873435 0.486941i \(-0.838113\pi\)
0.486941 + 0.873435i \(0.338113\pi\)
\(978\) 0 0
\(979\) 12.9692 0.414499
\(980\) 0 0
\(981\) 0 0
\(982\) −14.2343 49.0484i −0.454236 1.56520i
\(983\) −22.2258 + 22.2258i −0.708893 + 0.708893i −0.966302 0.257410i \(-0.917131\pi\)
0.257410 + 0.966302i \(0.417131\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −14.5140 7.98465i −0.462220 0.254283i
\(987\) 0 0
\(988\) −4.97006 1.11399i −0.158119 0.0354406i
\(989\) 7.07472i 0.224963i
\(990\) 0 0
\(991\) 0.353523i 0.0112300i 0.999984 + 0.00561501i \(0.00178732\pi\)
−0.999984 + 0.00561501i \(0.998213\pi\)
\(992\) 21.5397 + 3.44377i 0.683886 + 0.109340i
\(993\) 0 0
\(994\) −10.1672 + 18.4813i −0.322484 + 0.586191i
\(995\) 0 0
\(996\) 0 0
\(997\) −27.9380 + 27.9380i −0.884805 + 0.884805i −0.994018 0.109213i \(-0.965167\pi\)
0.109213 + 0.994018i \(0.465167\pi\)
\(998\) 8.63442 2.50580i 0.273318 0.0793197i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.k.n.343.6 12
3.2 odd 2 300.2.j.d.43.1 12
4.3 odd 2 inner 900.2.k.n.343.4 12
5.2 odd 4 inner 900.2.k.n.307.4 12
5.3 odd 4 180.2.k.e.127.3 12
5.4 even 2 180.2.k.e.163.1 12
12.11 even 2 300.2.j.d.43.3 12
15.2 even 4 300.2.j.d.7.3 12
15.8 even 4 60.2.j.a.7.4 12
15.14 odd 2 60.2.j.a.43.6 yes 12
20.3 even 4 180.2.k.e.127.1 12
20.7 even 4 inner 900.2.k.n.307.6 12
20.19 odd 2 180.2.k.e.163.3 12
60.23 odd 4 60.2.j.a.7.6 yes 12
60.47 odd 4 300.2.j.d.7.1 12
60.59 even 2 60.2.j.a.43.4 yes 12
120.29 odd 2 960.2.w.g.703.6 12
120.53 even 4 960.2.w.g.127.3 12
120.59 even 2 960.2.w.g.703.3 12
120.83 odd 4 960.2.w.g.127.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.j.a.7.4 12 15.8 even 4
60.2.j.a.7.6 yes 12 60.23 odd 4
60.2.j.a.43.4 yes 12 60.59 even 2
60.2.j.a.43.6 yes 12 15.14 odd 2
180.2.k.e.127.1 12 20.3 even 4
180.2.k.e.127.3 12 5.3 odd 4
180.2.k.e.163.1 12 5.4 even 2
180.2.k.e.163.3 12 20.19 odd 2
300.2.j.d.7.1 12 60.47 odd 4
300.2.j.d.7.3 12 15.2 even 4
300.2.j.d.43.1 12 3.2 odd 2
300.2.j.d.43.3 12 12.11 even 2
900.2.k.n.307.4 12 5.2 odd 4 inner
900.2.k.n.307.6 12 20.7 even 4 inner
900.2.k.n.343.4 12 4.3 odd 2 inner
900.2.k.n.343.6 12 1.1 even 1 trivial
960.2.w.g.127.3 12 120.53 even 4
960.2.w.g.127.6 12 120.83 odd 4
960.2.w.g.703.3 12 120.59 even 2
960.2.w.g.703.6 12 120.29 odd 2