Properties

Label 900.2.o.a.599.8
Level $900$
Weight $2$
Character 900.599
Analytic conductor $7.187$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(299,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.299");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.7465802011608416256.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + x^{12} + 8x^{10} - 20x^{8} + 32x^{6} + 16x^{4} - 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 599.8
Root \(-0.977642 + 1.02187i\) of defining polynomial
Character \(\chi\) \(=\) 900.599
Dual form 900.2.o.a.299.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37379 - 0.335728i) q^{2} +(1.07561 - 1.35760i) q^{3} +(1.77457 - 0.922437i) q^{4} +(1.02187 - 2.22616i) q^{6} +(-0.637910 - 1.10489i) q^{7} +(2.12819 - 1.86301i) q^{8} +(-0.686141 - 2.92048i) q^{9} +(-0.252704 - 0.437696i) q^{11} +(0.656444 - 3.40134i) q^{12} +(-2.05446 - 1.18614i) q^{13} +(-1.24730 - 1.30372i) q^{14} +(2.29822 - 3.27386i) q^{16} -0.792287 q^{17} +(-1.92310 - 3.78176i) q^{18} +4.70285i q^{19} +(-2.18614 - 0.322405i) q^{21} +(-0.494108 - 0.516461i) q^{22} +(2.78912 + 1.61030i) q^{23} +(-0.240111 - 4.89309i) q^{24} +(-3.22060 - 0.939764i) q^{26} +(-4.70285 - 2.20979i) q^{27} +(-2.15121 - 1.37228i) q^{28} +(-2.18614 + 1.26217i) q^{29} +(7.04069 + 4.06494i) q^{31} +(2.05813 - 5.26916i) q^{32} +(-0.866025 - 0.127719i) q^{33} +(-1.08843 + 0.265993i) q^{34} +(-3.91157 - 4.54969i) q^{36} -6.74456i q^{37} +(1.57888 + 6.46071i) q^{38} +(-3.82009 + 1.51330i) q^{39} +(5.87228 + 3.39036i) q^{41} +(-3.11153 + 0.291034i) q^{42} +(3.86473 + 6.69391i) q^{43} +(-0.852189 - 0.543620i) q^{44} +(4.37228 + 1.27582i) q^{46} +(1.03834 - 0.599485i) q^{47} +(-1.97261 - 6.64145i) q^{48} +(2.68614 - 4.65253i) q^{49} +(-0.852189 + 1.07561i) q^{51} +(-4.73992 - 0.209786i) q^{52} +1.87953 q^{53} +(-7.20260 - 1.45689i) q^{54} +(-3.41602 - 1.16300i) q^{56} +(6.38458 + 5.05842i) q^{57} +(-2.57954 + 2.46790i) q^{58} +(-6.18850 + 10.7188i) q^{59} +(1.18614 + 2.05446i) q^{61} +(11.0371 + 3.22060i) q^{62} +(-2.78912 + 2.62112i) q^{63} +(1.05842 - 7.92967i) q^{64} +(-1.23261 + 0.115291i) q^{66} +(3.86473 - 6.69391i) q^{67} +(-1.40597 + 0.730835i) q^{68} +(5.18614 - 2.05446i) q^{69} -11.8716 q^{71} +(-6.90111 - 4.93707i) q^{72} -3.37228i q^{73} +(-2.26434 - 9.26558i) q^{74} +(4.33809 + 8.34556i) q^{76} +(-0.322405 + 0.558422i) q^{77} +(-4.73992 + 3.36147i) q^{78} +(-8.55691 + 4.94034i) q^{79} +(-8.05842 + 4.00772i) q^{81} +(9.20550 + 2.68614i) q^{82} +(6.61659 - 3.82009i) q^{83} +(-4.17686 + 1.44445i) q^{84} +(7.55665 + 7.89850i) q^{86} +(-0.637910 + 4.32550i) q^{87} +(-1.35323 - 0.460714i) q^{88} +11.9769i q^{89} +3.02661i q^{91} +(6.43491 + 0.284805i) q^{92} +(13.0916 - 5.18614i) q^{93} +(1.22519 - 1.17216i) q^{94} +(-4.93967 - 8.46166i) q^{96} +(9.08385 - 5.24456i) q^{97} +(2.12819 - 7.29339i) q^{98} +(-1.10489 + 1.03834i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{4} - 6 q^{6} + 12 q^{9} - 24 q^{14} - 2 q^{16} - 12 q^{21} - 6 q^{24} - 12 q^{29} - 14 q^{34} - 66 q^{36} + 48 q^{41} + 24 q^{46} + 20 q^{49} - 78 q^{54} + 36 q^{56} - 4 q^{61} - 52 q^{64} - 48 q^{66}+ \cdots + 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37379 0.335728i 0.971413 0.237396i
\(3\) 1.07561 1.35760i 0.621002 0.783809i
\(4\) 1.77457 0.922437i 0.887287 0.461219i
\(5\) 0 0
\(6\) 1.02187 2.22616i 0.417176 0.908826i
\(7\) −0.637910 1.10489i −0.241107 0.417610i 0.719923 0.694054i \(-0.244177\pi\)
−0.961030 + 0.276444i \(0.910844\pi\)
\(8\) 2.12819 1.86301i 0.752430 0.658672i
\(9\) −0.686141 2.92048i −0.228714 0.973494i
\(10\) 0 0
\(11\) −0.252704 0.437696i −0.0761931 0.131970i 0.825411 0.564532i \(-0.190943\pi\)
−0.901605 + 0.432561i \(0.857610\pi\)
\(12\) 0.656444 3.40134i 0.189499 0.981881i
\(13\) −2.05446 1.18614i −0.569804 0.328976i 0.187267 0.982309i \(-0.440037\pi\)
−0.757071 + 0.653333i \(0.773370\pi\)
\(14\) −1.24730 1.30372i −0.333354 0.348434i
\(15\) 0 0
\(16\) 2.29822 3.27386i 0.574555 0.818466i
\(17\) −0.792287 −0.192158 −0.0960789 0.995374i \(-0.530630\pi\)
−0.0960789 + 0.995374i \(0.530630\pi\)
\(18\) −1.92310 3.78176i −0.453279 0.891369i
\(19\) 4.70285i 1.07891i 0.842015 + 0.539454i \(0.181369\pi\)
−0.842015 + 0.539454i \(0.818631\pi\)
\(20\) 0 0
\(21\) −2.18614 0.322405i −0.477055 0.0703546i
\(22\) −0.494108 0.516461i −0.105344 0.110110i
\(23\) 2.78912 + 1.61030i 0.581572 + 0.335771i 0.761758 0.647862i \(-0.224336\pi\)
−0.180186 + 0.983633i \(0.557670\pi\)
\(24\) −0.240111 4.89309i −0.0490125 0.998798i
\(25\) 0 0
\(26\) −3.22060 0.939764i −0.631612 0.184303i
\(27\) −4.70285 2.20979i −0.905065 0.425274i
\(28\) −2.15121 1.37228i −0.406541 0.259337i
\(29\) −2.18614 + 1.26217i −0.405956 + 0.234379i −0.689051 0.724713i \(-0.741972\pi\)
0.283095 + 0.959092i \(0.408639\pi\)
\(30\) 0 0
\(31\) 7.04069 + 4.06494i 1.26455 + 0.730086i 0.973951 0.226761i \(-0.0728135\pi\)
0.290595 + 0.956846i \(0.406147\pi\)
\(32\) 2.05813 5.26916i 0.363830 0.931466i
\(33\) −0.866025 0.127719i −0.150756 0.0222330i
\(34\) −1.08843 + 0.265993i −0.186665 + 0.0456175i
\(35\) 0 0
\(36\) −3.91157 4.54969i −0.651928 0.758281i
\(37\) 6.74456i 1.10880i −0.832251 0.554400i \(-0.812948\pi\)
0.832251 0.554400i \(-0.187052\pi\)
\(38\) 1.57888 + 6.46071i 0.256128 + 1.04807i
\(39\) −3.82009 + 1.51330i −0.611704 + 0.242322i
\(40\) 0 0
\(41\) 5.87228 + 3.39036i 0.917096 + 0.529486i 0.882708 0.469923i \(-0.155718\pi\)
0.0343887 + 0.999409i \(0.489052\pi\)
\(42\) −3.11153 + 0.291034i −0.480119 + 0.0449075i
\(43\) 3.86473 + 6.69391i 0.589366 + 1.02081i 0.994316 + 0.106473i \(0.0339557\pi\)
−0.404950 + 0.914339i \(0.632711\pi\)
\(44\) −0.852189 0.543620i −0.128472 0.0819538i
\(45\) 0 0
\(46\) 4.37228 + 1.27582i 0.644658 + 0.188110i
\(47\) 1.03834 0.599485i 0.151457 0.0874439i −0.422356 0.906430i \(-0.638797\pi\)
0.573813 + 0.818986i \(0.305463\pi\)
\(48\) −1.97261 6.64145i −0.284722 0.958610i
\(49\) 2.68614 4.65253i 0.383734 0.664647i
\(50\) 0 0
\(51\) −0.852189 + 1.07561i −0.119330 + 0.150615i
\(52\) −4.73992 0.209786i −0.657309 0.0290921i
\(53\) 1.87953 0.258173 0.129086 0.991633i \(-0.458796\pi\)
0.129086 + 0.991633i \(0.458796\pi\)
\(54\) −7.20260 1.45689i −0.980150 0.198258i
\(55\) 0 0
\(56\) −3.41602 1.16300i −0.456485 0.155412i
\(57\) 6.38458 + 5.05842i 0.845659 + 0.670004i
\(58\) −2.57954 + 2.46790i −0.338711 + 0.324051i
\(59\) −6.18850 + 10.7188i −0.805674 + 1.39547i 0.110161 + 0.993914i \(0.464863\pi\)
−0.915835 + 0.401555i \(0.868470\pi\)
\(60\) 0 0
\(61\) 1.18614 + 2.05446i 0.151870 + 0.263046i 0.931915 0.362677i \(-0.118137\pi\)
−0.780045 + 0.625723i \(0.784804\pi\)
\(62\) 11.0371 + 3.22060i 1.40172 + 0.409017i
\(63\) −2.78912 + 2.62112i −0.351397 + 0.330230i
\(64\) 1.05842 7.92967i 0.132303 0.991209i
\(65\) 0 0
\(66\) −1.23261 + 0.115291i −0.151724 + 0.0141914i
\(67\) 3.86473 6.69391i 0.472152 0.817791i −0.527340 0.849654i \(-0.676811\pi\)
0.999492 + 0.0318630i \(0.0101440\pi\)
\(68\) −1.40597 + 0.730835i −0.170499 + 0.0886268i
\(69\) 5.18614 2.05446i 0.624338 0.247327i
\(70\) 0 0
\(71\) −11.8716 −1.40890 −0.704450 0.709754i \(-0.748806\pi\)
−0.704450 + 0.709754i \(0.748806\pi\)
\(72\) −6.90111 4.93707i −0.813304 0.581839i
\(73\) 3.37228i 0.394696i −0.980334 0.197348i \(-0.936767\pi\)
0.980334 0.197348i \(-0.0632328\pi\)
\(74\) −2.26434 9.26558i −0.263224 1.07710i
\(75\) 0 0
\(76\) 4.33809 + 8.34556i 0.497613 + 0.957301i
\(77\) −0.322405 + 0.558422i −0.0367415 + 0.0636381i
\(78\) −4.73992 + 3.36147i −0.536691 + 0.380611i
\(79\) −8.55691 + 4.94034i −0.962728 + 0.555831i −0.897012 0.442007i \(-0.854267\pi\)
−0.0657165 + 0.997838i \(0.520933\pi\)
\(80\) 0 0
\(81\) −8.05842 + 4.00772i −0.895380 + 0.445302i
\(82\) 9.20550 + 2.68614i 1.01658 + 0.296635i
\(83\) 6.61659 3.82009i 0.726265 0.419309i −0.0907894 0.995870i \(-0.528939\pi\)
0.817054 + 0.576561i \(0.195606\pi\)
\(84\) −4.17686 + 1.44445i −0.455733 + 0.157602i
\(85\) 0 0
\(86\) 7.55665 + 7.89850i 0.814854 + 0.851717i
\(87\) −0.637910 + 4.32550i −0.0683912 + 0.463742i
\(88\) −1.35323 0.460714i −0.144255 0.0491122i
\(89\) 11.9769i 1.26955i 0.772698 + 0.634773i \(0.218907\pi\)
−0.772698 + 0.634773i \(0.781093\pi\)
\(90\) 0 0
\(91\) 3.02661i 0.317274i
\(92\) 6.43491 + 0.284805i 0.670885 + 0.0296930i
\(93\) 13.0916 5.18614i 1.35753 0.537778i
\(94\) 1.22519 1.17216i 0.126369 0.120899i
\(95\) 0 0
\(96\) −4.93967 8.46166i −0.504152 0.863615i
\(97\) 9.08385 5.24456i 0.922325 0.532505i 0.0379490 0.999280i \(-0.487918\pi\)
0.884376 + 0.466775i \(0.154584\pi\)
\(98\) 2.12819 7.29339i 0.214980 0.736744i
\(99\) −1.10489 + 1.03834i −0.111046 + 0.104357i
\(100\) 0 0
\(101\) 1.06930 0.617359i 0.106399 0.0614295i −0.445856 0.895105i \(-0.647101\pi\)
0.552255 + 0.833675i \(0.313767\pi\)
\(102\) −0.809613 + 1.76376i −0.0801637 + 0.174638i
\(103\) 0.237482 0.411331i 0.0233998 0.0405297i −0.854088 0.520128i \(-0.825884\pi\)
0.877488 + 0.479598i \(0.159218\pi\)
\(104\) −6.58207 + 1.30312i −0.645425 + 0.127782i
\(105\) 0 0
\(106\) 2.58207 0.631011i 0.250793 0.0612892i
\(107\) 12.5652i 1.21472i 0.794427 + 0.607360i \(0.207771\pi\)
−0.794427 + 0.607360i \(0.792229\pi\)
\(108\) −10.3839 + 0.416661i −0.999196 + 0.0400933i
\(109\) −13.4891 −1.29202 −0.646012 0.763327i \(-0.723564\pi\)
−0.646012 + 0.763327i \(0.723564\pi\)
\(110\) 0 0
\(111\) −9.15640 7.25450i −0.869087 0.688566i
\(112\) −5.08333 0.450854i −0.480329 0.0426017i
\(113\) −3.63903 + 6.30298i −0.342331 + 0.592935i −0.984865 0.173322i \(-0.944550\pi\)
0.642534 + 0.766257i \(0.277883\pi\)
\(114\) 10.4693 + 4.80570i 0.980540 + 0.450095i
\(115\) 0 0
\(116\) −2.71519 + 4.25639i −0.252099 + 0.395196i
\(117\) −2.05446 + 6.81386i −0.189935 + 0.629942i
\(118\) −4.90307 + 16.8030i −0.451364 + 1.54684i
\(119\) 0.505408 + 0.875393i 0.0463307 + 0.0802471i
\(120\) 0 0
\(121\) 5.37228 9.30506i 0.488389 0.845915i
\(122\) 2.31924 + 2.42416i 0.209974 + 0.219473i
\(123\) 10.9190 4.32550i 0.984534 0.390017i
\(124\) 16.2439 + 0.718945i 1.45874 + 0.0645632i
\(125\) 0 0
\(126\) −2.95167 + 4.53724i −0.262956 + 0.404210i
\(127\) −7.65492 −0.679265 −0.339632 0.940558i \(-0.610303\pi\)
−0.339632 + 0.940558i \(0.610303\pi\)
\(128\) −1.20817 11.2490i −0.106788 0.994282i
\(129\) 13.2446 + 1.95327i 1.16612 + 0.171975i
\(130\) 0 0
\(131\) −3.82009 + 6.61659i −0.333763 + 0.578094i −0.983246 0.182282i \(-0.941652\pi\)
0.649484 + 0.760375i \(0.274985\pi\)
\(132\) −1.65464 + 0.572208i −0.144018 + 0.0498043i
\(133\) 5.19615 3.00000i 0.450564 0.260133i
\(134\) 3.06198 10.4935i 0.264514 0.906500i
\(135\) 0 0
\(136\) −1.68614 + 1.47603i −0.144585 + 0.126569i
\(137\) −2.74555 4.75544i −0.234568 0.406284i 0.724579 0.689192i \(-0.242034\pi\)
−0.959147 + 0.282908i \(0.908701\pi\)
\(138\) 6.43491 4.56352i 0.547776 0.388472i
\(139\) 13.3233 + 7.69219i 1.13006 + 0.652443i 0.943951 0.330085i \(-0.107077\pi\)
0.186114 + 0.982528i \(0.440411\pi\)
\(140\) 0 0
\(141\) 0.302985 2.05446i 0.0255159 0.173016i
\(142\) −16.3090 + 3.98563i −1.36862 + 0.334467i
\(143\) 1.19897i 0.100263i
\(144\) −11.1382 4.46557i −0.928180 0.372131i
\(145\) 0 0
\(146\) −1.13217 4.63279i −0.0936991 0.383413i
\(147\) −3.42703 8.65099i −0.282657 0.713522i
\(148\) −6.22144 11.9687i −0.511399 0.983823i
\(149\) 11.1861 + 6.45832i 0.916404 + 0.529086i 0.882486 0.470338i \(-0.155868\pi\)
0.0339182 + 0.999425i \(0.489201\pi\)
\(150\) 0 0
\(151\) −2.62112 + 1.51330i −0.213304 + 0.123151i −0.602846 0.797858i \(-0.705967\pi\)
0.389542 + 0.921009i \(0.372633\pi\)
\(152\) 8.76144 + 10.0086i 0.710647 + 0.811804i
\(153\) 0.543620 + 2.31386i 0.0439491 + 0.187064i
\(154\) −0.255437 + 0.875393i −0.0205837 + 0.0705411i
\(155\) 0 0
\(156\) −5.38310 + 6.20926i −0.430993 + 0.497139i
\(157\) −10.2723 5.93070i −0.819817 0.473322i 0.0305363 0.999534i \(-0.490278\pi\)
−0.850353 + 0.526212i \(0.823612\pi\)
\(158\) −10.0968 + 9.65976i −0.803255 + 0.768489i
\(159\) 2.02163 2.55164i 0.160326 0.202358i
\(160\) 0 0
\(161\) 4.10891i 0.323828i
\(162\) −9.72504 + 8.21119i −0.764071 + 0.645132i
\(163\) −1.75079 −0.137132 −0.0685660 0.997647i \(-0.521842\pi\)
−0.0685660 + 0.997647i \(0.521842\pi\)
\(164\) 13.5482 + 0.599636i 1.05794 + 0.0468237i
\(165\) 0 0
\(166\) 7.80726 7.46936i 0.605961 0.579734i
\(167\) 15.1469 + 8.74507i 1.17210 + 0.676714i 0.954174 0.299251i \(-0.0967368\pi\)
0.217928 + 0.975965i \(0.430070\pi\)
\(168\) −5.25317 + 3.38665i −0.405291 + 0.261286i
\(169\) −3.68614 6.38458i −0.283549 0.491122i
\(170\) 0 0
\(171\) 13.7346 3.22682i 1.05031 0.246761i
\(172\) 13.0330 + 8.31386i 0.993754 + 0.633926i
\(173\) −8.83518 15.3030i −0.671726 1.16346i −0.977414 0.211333i \(-0.932220\pi\)
0.305688 0.952132i \(-0.401114\pi\)
\(174\) 0.575839 + 6.15647i 0.0436543 + 0.466721i
\(175\) 0 0
\(176\) −2.01373 0.178603i −0.151790 0.0134627i
\(177\) 7.89542 + 19.9307i 0.593456 + 1.49808i
\(178\) 4.02098 + 16.4537i 0.301385 + 1.23325i
\(179\) 8.83915 0.660669 0.330334 0.943864i \(-0.392838\pi\)
0.330334 + 0.943864i \(0.392838\pi\)
\(180\) 0 0
\(181\) −4.00000 −0.297318 −0.148659 0.988889i \(-0.547496\pi\)
−0.148659 + 0.988889i \(0.547496\pi\)
\(182\) 1.01612 + 4.15791i 0.0753196 + 0.308205i
\(183\) 4.06494 + 0.599485i 0.300489 + 0.0443152i
\(184\) 8.93580 1.76912i 0.658756 0.130421i
\(185\) 0 0
\(186\) 16.2439 11.5199i 1.19106 0.844677i
\(187\) 0.200214 + 0.346781i 0.0146411 + 0.0253591i
\(188\) 1.28962 2.02163i 0.0940552 0.147443i
\(189\) 0.558422 + 6.60580i 0.0406192 + 0.480501i
\(190\) 0 0
\(191\) 7.54610 + 13.0702i 0.546017 + 0.945728i 0.998542 + 0.0539770i \(0.0171898\pi\)
−0.452526 + 0.891751i \(0.649477\pi\)
\(192\) −9.62686 9.96612i −0.694759 0.719243i
\(193\) 6.70699 + 3.87228i 0.482780 + 0.278733i 0.721574 0.692337i \(-0.243419\pi\)
−0.238795 + 0.971070i \(0.576752\pi\)
\(194\) 10.7185 10.2546i 0.769544 0.736238i
\(195\) 0 0
\(196\) 0.475083 10.7341i 0.0339345 0.766718i
\(197\) −23.9538 −1.70663 −0.853317 0.521392i \(-0.825413\pi\)
−0.853317 + 0.521392i \(0.825413\pi\)
\(198\) −1.16929 + 1.79740i −0.0830976 + 0.127736i
\(199\) 12.9073i 0.914973i −0.889217 0.457486i \(-0.848750\pi\)
0.889217 0.457486i \(-0.151250\pi\)
\(200\) 0 0
\(201\) −4.93070 12.4468i −0.347785 0.877927i
\(202\) 1.26172 1.20711i 0.0887743 0.0849321i
\(203\) 2.78912 + 1.61030i 0.195758 + 0.113021i
\(204\) −0.520092 + 2.69483i −0.0364137 + 0.188676i
\(205\) 0 0
\(206\) 0.188154 0.644810i 0.0131093 0.0449261i
\(207\) 2.78912 9.25048i 0.193857 0.642953i
\(208\) −8.60485 + 4.00000i −0.596639 + 0.277350i
\(209\) 2.05842 1.18843i 0.142384 0.0822055i
\(210\) 0 0
\(211\) 15.1863 + 8.76780i 1.04547 + 0.603600i 0.921377 0.388671i \(-0.127066\pi\)
0.124090 + 0.992271i \(0.460399\pi\)
\(212\) 3.33536 1.73375i 0.229073 0.119074i
\(213\) −12.7692 + 16.1168i −0.874929 + 1.10431i
\(214\) 4.21848 + 17.2618i 0.288369 + 1.17999i
\(215\) 0 0
\(216\) −14.1254 + 4.05859i −0.961114 + 0.276152i
\(217\) 10.3723i 0.704116i
\(218\) −18.5312 + 4.52868i −1.25509 + 0.306721i
\(219\) −4.57820 3.62725i −0.309366 0.245107i
\(220\) 0 0
\(221\) 1.62772 + 0.939764i 0.109492 + 0.0632154i
\(222\) −15.0145 6.89206i −1.00771 0.462565i
\(223\) −4.06494 7.04069i −0.272209 0.471479i 0.697218 0.716859i \(-0.254421\pi\)
−0.969427 + 0.245379i \(0.921087\pi\)
\(224\) −7.13477 + 1.08724i −0.476712 + 0.0726443i
\(225\) 0 0
\(226\) −2.88316 + 9.88067i −0.191785 + 0.657253i
\(227\) −12.4696 + 7.19932i −0.827635 + 0.477835i −0.853042 0.521842i \(-0.825245\pi\)
0.0254070 + 0.999677i \(0.491912\pi\)
\(228\) 15.9960 + 3.08716i 1.05936 + 0.204452i
\(229\) 1.81386 3.14170i 0.119863 0.207609i −0.799850 0.600200i \(-0.795088\pi\)
0.919713 + 0.392591i \(0.128421\pi\)
\(230\) 0 0
\(231\) 0.411331 + 1.03834i 0.0270636 + 0.0683177i
\(232\) −2.30110 + 6.75893i −0.151075 + 0.443746i
\(233\) −4.84630 −0.317491 −0.158746 0.987320i \(-0.550745\pi\)
−0.158746 + 0.987320i \(0.550745\pi\)
\(234\) −0.534776 + 10.0505i −0.0349594 + 0.657023i
\(235\) 0 0
\(236\) −1.09453 + 24.7298i −0.0712477 + 1.60977i
\(237\) −2.49689 + 16.9307i −0.162190 + 1.09977i
\(238\) 0.988216 + 1.03292i 0.0640566 + 0.0669544i
\(239\) 6.02987 10.4440i 0.390040 0.675569i −0.602414 0.798184i \(-0.705794\pi\)
0.992454 + 0.122614i \(0.0391278\pi\)
\(240\) 0 0
\(241\) 3.24456 + 5.61975i 0.209001 + 0.362000i 0.951400 0.307958i \(-0.0996456\pi\)
−0.742399 + 0.669958i \(0.766312\pi\)
\(242\) 4.25639 14.5868i 0.273611 0.937674i
\(243\) −3.22682 + 15.2508i −0.207001 + 0.978341i
\(244\) 4.00000 + 2.55164i 0.256074 + 0.163352i
\(245\) 0 0
\(246\) 13.5482 9.60812i 0.863801 0.612592i
\(247\) 5.57825 9.66181i 0.354935 0.614766i
\(248\) 22.5570 4.46585i 1.43237 0.283582i
\(249\) 1.93070 13.0916i 0.122353 0.829645i
\(250\) 0 0
\(251\) −11.1780 −0.705551 −0.352776 0.935708i \(-0.614762\pi\)
−0.352776 + 0.935708i \(0.614762\pi\)
\(252\) −2.53169 + 7.22416i −0.159481 + 0.455079i
\(253\) 1.62772i 0.102334i
\(254\) −10.5162 + 2.56997i −0.659847 + 0.161255i
\(255\) 0 0
\(256\) −5.43638 15.0481i −0.339774 0.940507i
\(257\) −7.49927 + 12.9891i −0.467792 + 0.810239i −0.999323 0.0367996i \(-0.988284\pi\)
0.531531 + 0.847039i \(0.321617\pi\)
\(258\) 18.8510 1.76321i 1.17361 0.109772i
\(259\) −7.45202 + 4.30243i −0.463046 + 0.267340i
\(260\) 0 0
\(261\) 5.18614 + 5.51856i 0.321014 + 0.341590i
\(262\) −3.02661 + 10.3723i −0.186984 + 0.640802i
\(263\) −24.2267 + 13.9873i −1.49388 + 0.862494i −0.999975 0.00701993i \(-0.997765\pi\)
−0.493908 + 0.869514i \(0.664432\pi\)
\(264\) −2.08101 + 1.34160i −0.128077 + 0.0825698i
\(265\) 0 0
\(266\) 6.13121 5.86585i 0.375929 0.359658i
\(267\) 16.2598 + 12.8824i 0.995082 + 0.788391i
\(268\) 0.683534 15.4438i 0.0417535 0.943380i
\(269\) 21.4843i 1.30992i 0.755663 + 0.654961i \(0.227315\pi\)
−0.755663 + 0.654961i \(0.772685\pi\)
\(270\) 0 0
\(271\) 29.9679i 1.82042i −0.414146 0.910211i \(-0.635920\pi\)
0.414146 0.910211i \(-0.364080\pi\)
\(272\) −1.82085 + 2.59384i −0.110405 + 0.157275i
\(273\) 4.10891 + 3.25544i 0.248683 + 0.197028i
\(274\) −5.36834 5.61119i −0.324313 0.338984i
\(275\) 0 0
\(276\) 7.30808 8.42967i 0.439895 0.507407i
\(277\) 5.51856 3.18614i 0.331578 0.191437i −0.324963 0.945727i \(-0.605352\pi\)
0.656541 + 0.754290i \(0.272019\pi\)
\(278\) 20.8858 + 6.09442i 1.25265 + 0.365519i
\(279\) 7.04069 23.3513i 0.421515 1.39801i
\(280\) 0 0
\(281\) −19.9307 + 11.5070i −1.18897 + 0.686450i −0.958072 0.286529i \(-0.907499\pi\)
−0.230894 + 0.972979i \(0.574165\pi\)
\(282\) −0.273503 2.92410i −0.0162869 0.174128i
\(283\) 4.94034 8.55691i 0.293673 0.508656i −0.681003 0.732281i \(-0.738456\pi\)
0.974675 + 0.223625i \(0.0717891\pi\)
\(284\) −21.0670 + 10.9508i −1.25010 + 0.649811i
\(285\) 0 0
\(286\) 0.402528 + 1.64713i 0.0238020 + 0.0973967i
\(287\) 8.65099i 0.510652i
\(288\) −16.8007 2.39534i −0.989989 0.141147i
\(289\) −16.3723 −0.963075
\(290\) 0 0
\(291\) 2.65064 17.9733i 0.155384 1.05361i
\(292\) −3.11072 5.98436i −0.182041 0.350208i
\(293\) −11.6545 + 20.1861i −0.680862 + 1.17929i 0.293857 + 0.955850i \(0.405061\pi\)
−0.974718 + 0.223437i \(0.928272\pi\)
\(294\) −7.61239 10.7341i −0.443964 0.626023i
\(295\) 0 0
\(296\) −12.5652 14.3537i −0.730335 0.834294i
\(297\) 0.221215 + 2.61684i 0.0128362 + 0.151845i
\(298\) 17.5356 + 5.11684i 1.01581 + 0.296411i
\(299\) −3.82009 6.61659i −0.220921 0.382647i
\(300\) 0 0
\(301\) 4.93070 8.54023i 0.284201 0.492251i
\(302\) −3.09279 + 2.95894i −0.177970 + 0.170268i
\(303\) 0.312018 2.11571i 0.0179250 0.121544i
\(304\) 15.3965 + 10.8082i 0.883050 + 0.619892i
\(305\) 0 0
\(306\) 1.52365 + 2.99624i 0.0871010 + 0.171284i
\(307\) −1.20128 −0.0685609 −0.0342805 0.999412i \(-0.510914\pi\)
−0.0342805 + 0.999412i \(0.510914\pi\)
\(308\) −0.0570221 + 1.28836i −0.00324913 + 0.0734111i
\(309\) −0.302985 0.764836i −0.0172362 0.0435100i
\(310\) 0 0
\(311\) 9.56773 16.5718i 0.542536 0.939700i −0.456221 0.889866i \(-0.650797\pi\)
0.998758 0.0498340i \(-0.0158692\pi\)
\(312\) −5.31060 + 10.3374i −0.300653 + 0.585243i
\(313\) 16.0121 9.24456i 0.905055 0.522534i 0.0262180 0.999656i \(-0.491654\pi\)
0.878837 + 0.477123i \(0.158320\pi\)
\(314\) −16.1030 4.69882i −0.908746 0.265170i
\(315\) 0 0
\(316\) −10.6277 + 16.6602i −0.597856 + 0.937210i
\(317\) −16.2607 28.1644i −0.913293 1.58187i −0.809381 0.587283i \(-0.800197\pi\)
−0.103911 0.994587i \(-0.533136\pi\)
\(318\) 1.92063 4.18413i 0.107704 0.234634i
\(319\) 1.10489 + 0.637910i 0.0618621 + 0.0357161i
\(320\) 0 0
\(321\) 17.0584 + 13.5152i 0.952108 + 0.754343i
\(322\) −1.37948 5.64476i −0.0768753 0.314570i
\(323\) 3.72601i 0.207321i
\(324\) −10.6034 + 14.5454i −0.589077 + 0.808077i
\(325\) 0 0
\(326\) −2.40520 + 0.587788i −0.133212 + 0.0325546i
\(327\) −14.5090 + 18.3128i −0.802349 + 1.01270i
\(328\) 18.8136 3.72474i 1.03881 0.205664i
\(329\) −1.32473 0.764836i −0.0730350 0.0421667i
\(330\) 0 0
\(331\) −24.0254 + 13.8711i −1.32056 + 0.762424i −0.983817 0.179174i \(-0.942657\pi\)
−0.336739 + 0.941598i \(0.609324\pi\)
\(332\) 8.21782 12.8824i 0.451012 0.707014i
\(333\) −19.6974 + 4.62772i −1.07941 + 0.253597i
\(334\) 23.7446 + 6.92860i 1.29924 + 0.379116i
\(335\) 0 0
\(336\) −6.07974 + 6.41617i −0.331677 + 0.350031i
\(337\) 13.6352 + 7.87228i 0.742756 + 0.428830i 0.823071 0.567939i \(-0.192259\pi\)
−0.0803144 + 0.996770i \(0.525592\pi\)
\(338\) −7.20745 7.53351i −0.392034 0.409769i
\(339\) 4.64275 + 11.7199i 0.252160 + 0.636536i
\(340\) 0 0
\(341\) 4.10891i 0.222510i
\(342\) 17.7851 9.04405i 0.961706 0.489046i
\(343\) −15.7848 −0.852300
\(344\) 20.6957 + 7.04593i 1.11584 + 0.379891i
\(345\) 0 0
\(346\) −17.2753 18.0568i −0.928725 0.970739i
\(347\) −6.01594 3.47331i −0.322953 0.186457i 0.329755 0.944066i \(-0.393034\pi\)
−0.652708 + 0.757610i \(0.726367\pi\)
\(348\) 2.85798 + 8.26434i 0.153204 + 0.443015i
\(349\) −2.81386 4.87375i −0.150622 0.260886i 0.780834 0.624739i \(-0.214794\pi\)
−0.931456 + 0.363853i \(0.881461\pi\)
\(350\) 0 0
\(351\) 7.04069 + 10.1182i 0.375804 + 0.540067i
\(352\) −2.82639 + 0.430703i −0.150647 + 0.0229566i
\(353\) −4.18265 7.24456i −0.222620 0.385589i 0.732983 0.680247i \(-0.238128\pi\)
−0.955603 + 0.294658i \(0.904794\pi\)
\(354\) 17.5379 + 24.7298i 0.932130 + 1.31437i
\(355\) 0 0
\(356\) 11.0479 + 21.2538i 0.585539 + 1.12645i
\(357\) 1.73205 + 0.255437i 0.0916698 + 0.0135192i
\(358\) 12.1431 2.96755i 0.641782 0.156840i
\(359\) −1.38712 −0.0732096 −0.0366048 0.999330i \(-0.511654\pi\)
−0.0366048 + 0.999330i \(0.511654\pi\)
\(360\) 0 0
\(361\) −3.11684 −0.164044
\(362\) −5.49514 + 1.34291i −0.288818 + 0.0705820i
\(363\) −6.85407 17.3020i −0.359745 0.908119i
\(364\) 2.79185 + 5.37093i 0.146333 + 0.281513i
\(365\) 0 0
\(366\) 5.78563 0.541153i 0.302420 0.0282865i
\(367\) 3.18955 + 5.52447i 0.166493 + 0.288375i 0.937185 0.348834i \(-0.113422\pi\)
−0.770691 + 0.637209i \(0.780089\pi\)
\(368\) 11.6819 5.43039i 0.608962 0.283079i
\(369\) 5.87228 19.4762i 0.305699 1.01389i
\(370\) 0 0
\(371\) −1.19897 2.07668i −0.0622474 0.107816i
\(372\) 18.4481 21.2793i 0.956487 1.10328i
\(373\) −17.2005 9.93070i −0.890607 0.514192i −0.0164662 0.999864i \(-0.505242\pi\)
−0.874141 + 0.485672i \(0.838575\pi\)
\(374\) 0.391475 + 0.409185i 0.0202427 + 0.0211585i
\(375\) 0 0
\(376\) 1.09294 3.21025i 0.0563642 0.165556i
\(377\) 5.98844 0.308420
\(378\) 2.98491 + 8.88747i 0.153527 + 0.457122i
\(379\) 6.45364i 0.331501i −0.986168 0.165751i \(-0.946995\pi\)
0.986168 0.165751i \(-0.0530047\pi\)
\(380\) 0 0
\(381\) −8.23369 + 10.3923i −0.421825 + 0.532414i
\(382\) 14.7548 + 15.4222i 0.754919 + 0.789071i
\(383\) −7.49198 4.32550i −0.382822 0.221023i 0.296223 0.955119i \(-0.404273\pi\)
−0.679045 + 0.734096i \(0.737606\pi\)
\(384\) −16.5711 10.4593i −0.845643 0.533749i
\(385\) 0 0
\(386\) 10.5140 + 3.06796i 0.535148 + 0.156155i
\(387\) 16.8977 15.8798i 0.858958 0.807217i
\(388\) 11.2822 17.6861i 0.572766 0.897878i
\(389\) −27.3030 + 15.7634i −1.38432 + 0.799235i −0.992667 0.120879i \(-0.961429\pi\)
−0.391649 + 0.920115i \(0.628095\pi\)
\(390\) 0 0
\(391\) −2.20979 1.27582i −0.111754 0.0645210i
\(392\) −2.95106 14.9058i −0.149051 0.752856i
\(393\) 4.87375 + 12.3030i 0.245848 + 0.620603i
\(394\) −32.9073 + 8.04195i −1.65785 + 0.405148i
\(395\) 0 0
\(396\) −1.00291 + 2.86180i −0.0503982 + 0.143811i
\(397\) 18.7446i 0.940763i −0.882463 0.470381i \(-0.844116\pi\)
0.882463 0.470381i \(-0.155884\pi\)
\(398\) −4.33334 17.7318i −0.217211 0.888816i
\(399\) 1.51622 10.2811i 0.0759062 0.514699i
\(400\) 0 0
\(401\) 3.98913 + 2.30312i 0.199207 + 0.115012i 0.596286 0.802772i \(-0.296643\pi\)
−0.397078 + 0.917785i \(0.629976\pi\)
\(402\) −10.9525 15.4438i −0.546259 0.770267i
\(403\) −9.64319 16.7025i −0.480362 0.832011i
\(404\) 1.32807 2.08191i 0.0660740 0.103579i
\(405\) 0 0
\(406\) 4.37228 + 1.27582i 0.216993 + 0.0633179i
\(407\) −2.95207 + 1.70438i −0.146329 + 0.0844829i
\(408\) 0.190237 + 3.87673i 0.00941813 + 0.191927i
\(409\) 6.87228 11.9031i 0.339812 0.588572i −0.644585 0.764533i \(-0.722970\pi\)
0.984397 + 0.175960i \(0.0563031\pi\)
\(410\) 0 0
\(411\) −9.40910 1.38762i −0.464117 0.0684465i
\(412\) 0.0420022 0.948999i 0.00206930 0.0467538i
\(413\) 15.7908 0.777016
\(414\) 0.726011 13.6446i 0.0356815 0.670593i
\(415\) 0 0
\(416\) −10.4783 + 8.38403i −0.513741 + 0.411061i
\(417\) 24.7735 9.81386i 1.21316 0.480587i
\(418\) 2.42884 2.32372i 0.118798 0.113657i
\(419\) 13.4819 23.3513i 0.658634 1.14079i −0.322336 0.946625i \(-0.604468\pi\)
0.980970 0.194162i \(-0.0621986\pi\)
\(420\) 0 0
\(421\) 5.30298 + 9.18504i 0.258452 + 0.447651i 0.965827 0.259186i \(-0.0834544\pi\)
−0.707376 + 0.706838i \(0.750121\pi\)
\(422\) 23.8063 + 6.94661i 1.15887 + 0.338156i
\(423\) −2.46323 2.62112i −0.119766 0.127443i
\(424\) 4.00000 3.50157i 0.194257 0.170051i
\(425\) 0 0
\(426\) −12.1312 + 26.4281i −0.587759 + 1.28044i
\(427\) 1.51330 2.62112i 0.0732339 0.126845i
\(428\) 11.5906 + 22.2978i 0.560251 + 1.07780i
\(429\) 1.62772 + 1.28962i 0.0785870 + 0.0622635i
\(430\) 0 0
\(431\) 31.1952 1.50262 0.751310 0.659949i \(-0.229422\pi\)
0.751310 + 0.659949i \(0.229422\pi\)
\(432\) −18.0427 + 10.3179i −0.868081 + 0.496422i
\(433\) 8.62772i 0.414622i 0.978275 + 0.207311i \(0.0664712\pi\)
−0.978275 + 0.207311i \(0.933529\pi\)
\(434\) −3.48227 14.2493i −0.167154 0.683988i
\(435\) 0 0
\(436\) −23.9374 + 12.4429i −1.14640 + 0.595906i
\(437\) −7.57301 + 13.1168i −0.362266 + 0.627464i
\(438\) −7.50723 3.44603i −0.358710 0.164658i
\(439\) 5.65357 3.26409i 0.269830 0.155786i −0.358980 0.933345i \(-0.616876\pi\)
0.628810 + 0.777559i \(0.283542\pi\)
\(440\) 0 0
\(441\) −15.4307 4.65253i −0.734795 0.221549i
\(442\) 2.55164 + 0.744563i 0.121369 + 0.0354152i
\(443\) −10.7188 + 6.18850i −0.509265 + 0.294025i −0.732532 0.680733i \(-0.761661\pi\)
0.223266 + 0.974758i \(0.428328\pi\)
\(444\) −22.9405 4.42743i −1.08871 0.210116i
\(445\) 0 0
\(446\) −7.94812 8.30768i −0.376354 0.393380i
\(447\) 20.7997 8.23966i 0.983791 0.389723i
\(448\) −9.43662 + 3.88898i −0.445838 + 0.183737i
\(449\) 19.4024i 0.915657i −0.889041 0.457828i \(-0.848627\pi\)
0.889041 0.457828i \(-0.151373\pi\)
\(450\) 0 0
\(451\) 3.42703i 0.161373i
\(452\) −0.643616 + 14.5419i −0.0302731 + 0.683993i
\(453\) −0.764836 + 5.18614i −0.0359351 + 0.243666i
\(454\) −14.7135 + 14.0767i −0.690540 + 0.660653i
\(455\) 0 0
\(456\) 23.0115 1.12921i 1.07761 0.0528800i
\(457\) 34.6222 19.9891i 1.61956 0.935052i 0.632523 0.774541i \(-0.282019\pi\)
0.987034 0.160510i \(-0.0513140\pi\)
\(458\) 1.43710 4.92498i 0.0671511 0.230129i
\(459\) 3.72601 + 1.75079i 0.173915 + 0.0817196i
\(460\) 0 0
\(461\) 0.302985 0.174928i 0.0141114 0.00814722i −0.492928 0.870070i \(-0.664073\pi\)
0.507039 + 0.861923i \(0.330740\pi\)
\(462\) 0.913680 + 1.28836i 0.0425083 + 0.0599399i
\(463\) −2.38870 + 4.13734i −0.111012 + 0.192279i −0.916179 0.400770i \(-0.868743\pi\)
0.805167 + 0.593049i \(0.202076\pi\)
\(464\) −0.892059 + 10.0579i −0.0414128 + 0.466925i
\(465\) 0 0
\(466\) −6.65777 + 1.62704i −0.308415 + 0.0753711i
\(467\) 5.11313i 0.236608i −0.992977 0.118304i \(-0.962254\pi\)
0.992977 0.118304i \(-0.0377457\pi\)
\(468\) 2.63958 + 13.9868i 0.122014 + 0.646540i
\(469\) −9.86141 −0.455357
\(470\) 0 0
\(471\) −19.1004 + 7.56651i −0.880102 + 0.348647i
\(472\) 6.79885 + 34.3409i 0.312942 + 1.58067i
\(473\) 1.95327 3.38316i 0.0898113 0.155558i
\(474\) 2.25393 + 24.0974i 0.103526 + 1.10683i
\(475\) 0 0
\(476\) 1.70438 + 1.08724i 0.0781201 + 0.0498336i
\(477\) −1.28962 5.48913i −0.0590477 0.251330i
\(478\) 4.77739 16.3723i 0.218513 0.748851i
\(479\) 6.53528 + 11.3194i 0.298605 + 0.517198i 0.975817 0.218589i \(-0.0701455\pi\)
−0.677212 + 0.735788i \(0.736812\pi\)
\(480\) 0 0
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 6.34404 + 6.63104i 0.288963 + 0.302035i
\(483\) −5.57825 4.41957i −0.253819 0.201098i
\(484\) 0.950167 21.4681i 0.0431894 0.975823i
\(485\) 0 0
\(486\) 0.687175 + 22.0347i 0.0311709 + 0.999514i
\(487\) −42.8752 −1.94286 −0.971430 0.237325i \(-0.923729\pi\)
−0.971430 + 0.237325i \(0.923729\pi\)
\(488\) 6.35180 + 2.16249i 0.287532 + 0.0978915i
\(489\) −1.88316 + 2.37686i −0.0851593 + 0.107485i
\(490\) 0 0
\(491\) 6.88206 11.9201i 0.310583 0.537946i −0.667906 0.744246i \(-0.732809\pi\)
0.978489 + 0.206300i \(0.0661423\pi\)
\(492\) 15.3866 17.7480i 0.693681 0.800142i
\(493\) 1.73205 1.00000i 0.0780076 0.0450377i
\(494\) 4.41957 15.1460i 0.198846 0.681452i
\(495\) 0 0
\(496\) 29.4891 13.7081i 1.32410 0.615513i
\(497\) 7.57301 + 13.1168i 0.339696 + 0.588371i
\(498\) −1.74284 18.6332i −0.0780985 0.834974i
\(499\) −2.96790 1.71352i −0.132861 0.0767076i 0.432096 0.901828i \(-0.357774\pi\)
−0.564958 + 0.825120i \(0.691107\pi\)
\(500\) 0 0
\(501\) 28.1644 11.1571i 1.25829 0.498464i
\(502\) −15.3562 + 3.75278i −0.685382 + 0.167495i
\(503\) 19.3236i 0.861597i −0.902448 0.430799i \(-0.858232\pi\)
0.902448 0.430799i \(-0.141768\pi\)
\(504\) −1.05264 + 10.7744i −0.0468884 + 0.479930i
\(505\) 0 0
\(506\) −0.546471 2.23614i −0.0242936 0.0994084i
\(507\) −12.6325 1.86301i −0.561030 0.0827390i
\(508\) −13.5842 + 7.06119i −0.602702 + 0.313290i
\(509\) −12.8139 7.39809i −0.567964 0.327914i 0.188372 0.982098i \(-0.439679\pi\)
−0.756336 + 0.654183i \(0.773012\pi\)
\(510\) 0 0
\(511\) −3.72601 + 2.15121i −0.164829 + 0.0951641i
\(512\) −12.5205 18.8477i −0.553333 0.832960i
\(513\) 10.3923 22.1168i 0.458831 0.976483i
\(514\) −5.94158 + 20.3620i −0.262072 + 0.898129i
\(515\) 0 0
\(516\) 25.3052 8.75107i 1.11400 0.385244i
\(517\) −0.524785 0.302985i −0.0230800 0.0133252i
\(518\) −8.79303 + 8.41247i −0.386344 + 0.369623i
\(519\) −30.2785 4.46537i −1.32908 0.196008i
\(520\) 0 0
\(521\) 26.0357i 1.14064i −0.821421 0.570322i \(-0.806819\pi\)
0.821421 0.570322i \(-0.193181\pi\)
\(522\) 8.97738 + 5.84018i 0.392929 + 0.255618i
\(523\) 9.40571 0.411283 0.205641 0.978627i \(-0.434072\pi\)
0.205641 + 0.978627i \(0.434072\pi\)
\(524\) −0.675639 + 15.2654i −0.0295154 + 0.666872i
\(525\) 0 0
\(526\) −28.5864 + 27.3492i −1.24643 + 1.19248i
\(527\) −5.57825 3.22060i −0.242992 0.140292i
\(528\) −2.40845 + 2.54172i −0.104814 + 0.110614i
\(529\) −6.31386 10.9359i −0.274516 0.475475i
\(530\) 0 0
\(531\) 35.5502 + 10.7188i 1.54275 + 0.465156i
\(532\) 6.45364 10.1168i 0.279801 0.438621i
\(533\) −8.04290 13.9307i −0.348376 0.603406i
\(534\) 26.6624 + 12.2388i 1.15380 + 0.529625i
\(535\) 0 0
\(536\) −4.24589 21.4460i −0.183395 0.926324i
\(537\) 9.50744 12.0000i 0.410276 0.517838i
\(538\) 7.21290 + 29.5149i 0.310970 + 1.27248i
\(539\) −2.71519 −0.116952
\(540\) 0 0
\(541\) −8.97825 −0.386005 −0.193003 0.981198i \(-0.561823\pi\)
−0.193003 + 0.981198i \(0.561823\pi\)
\(542\) −10.0611 41.1695i −0.432160 1.76838i
\(543\) −4.30243 + 5.43039i −0.184635 + 0.233040i
\(544\) −1.63063 + 4.17469i −0.0699127 + 0.178988i
\(545\) 0 0
\(546\) 6.73771 + 3.09279i 0.288347 + 0.132359i
\(547\) 11.1192 + 19.2591i 0.475424 + 0.823458i 0.999604 0.0281494i \(-0.00896140\pi\)
−0.524180 + 0.851608i \(0.675628\pi\)
\(548\) −9.25878 5.90627i −0.395515 0.252303i
\(549\) 5.18614 4.87375i 0.221339 0.208006i
\(550\) 0 0
\(551\) −5.93580 10.2811i −0.252873 0.437990i
\(552\) 7.20965 14.0341i 0.306863 0.597331i
\(553\) 10.9171 + 6.30298i 0.464242 + 0.268030i
\(554\) 6.51164 6.22981i 0.276653 0.264679i
\(555\) 0 0
\(556\) 30.7387 + 1.36048i 1.30361 + 0.0576971i
\(557\) 7.22316 0.306055 0.153027 0.988222i \(-0.451098\pi\)
0.153027 + 0.988222i \(0.451098\pi\)
\(558\) 1.83270 34.4435i 0.0775842 1.45811i
\(559\) 18.3365i 0.775549i
\(560\) 0 0
\(561\) 0.686141 + 0.101190i 0.0289689 + 0.00427224i
\(562\) −23.5173 + 22.4994i −0.992017 + 0.949082i
\(563\) 13.6709 + 7.89288i 0.576158 + 0.332645i 0.759605 0.650384i \(-0.225392\pi\)
−0.183447 + 0.983030i \(0.558726\pi\)
\(564\) −1.35744 3.92527i −0.0571585 0.165284i
\(565\) 0 0
\(566\) 3.91416 13.4140i 0.164525 0.563831i
\(567\) 9.56866 + 6.34713i 0.401846 + 0.266554i
\(568\) −25.2651 + 22.1168i −1.06010 + 0.928002i
\(569\) 21.9891 12.6954i 0.921832 0.532220i 0.0376130 0.999292i \(-0.488025\pi\)
0.884219 + 0.467072i \(0.154691\pi\)
\(570\) 0 0
\(571\) −3.66146 2.11395i −0.153227 0.0884659i 0.421426 0.906863i \(-0.361530\pi\)
−0.574653 + 0.818397i \(0.694863\pi\)
\(572\) 1.10597 + 2.12766i 0.0462431 + 0.0889619i
\(573\) 25.8607 + 3.81386i 1.08035 + 0.159326i
\(574\) −2.90438 11.8846i −0.121227 0.496054i
\(575\) 0 0
\(576\) −23.8847 + 2.34977i −0.995196 + 0.0979071i
\(577\) 31.8397i 1.32550i 0.748840 + 0.662751i \(0.230611\pi\)
−0.748840 + 0.662751i \(0.769389\pi\)
\(578\) −22.4920 + 5.49664i −0.935544 + 0.228630i
\(579\) 12.4711 4.94034i 0.518280 0.205313i
\(580\) 0 0
\(581\) −8.44158 4.87375i −0.350216 0.202197i
\(582\) −2.39273 25.5813i −0.0991817 1.06038i
\(583\) −0.474964 0.822662i −0.0196710 0.0340712i
\(584\) −6.28258 7.17687i −0.259975 0.296981i
\(585\) 0 0
\(586\) −9.23369 + 31.6442i −0.381440 + 1.30721i
\(587\) −3.38977 + 1.95708i −0.139911 + 0.0807774i −0.568321 0.822807i \(-0.692407\pi\)
0.428411 + 0.903584i \(0.359074\pi\)
\(588\) −14.0615 12.1906i −0.579887 0.502732i
\(589\) −19.1168 + 33.1113i −0.787696 + 1.36433i
\(590\) 0 0
\(591\) −25.7648 + 32.5196i −1.05982 + 1.33768i
\(592\) −22.0808 15.5005i −0.907515 0.637066i
\(593\) 8.80773 0.361690 0.180845 0.983512i \(-0.442117\pi\)
0.180845 + 0.983512i \(0.442117\pi\)
\(594\) 1.18245 + 3.52071i 0.0485165 + 0.144457i
\(595\) 0 0
\(596\) 25.8080 + 1.14225i 1.05714 + 0.0467883i
\(597\) −17.5229 13.8832i −0.717164 0.568200i
\(598\) −7.46936 7.80726i −0.305445 0.319263i
\(599\) 0.0940770 0.162946i 0.00384388 0.00665780i −0.864097 0.503325i \(-0.832110\pi\)
0.867941 + 0.496667i \(0.165443\pi\)
\(600\) 0 0
\(601\) −7.98913 13.8376i −0.325883 0.564446i 0.655807 0.754928i \(-0.272328\pi\)
−0.981691 + 0.190482i \(0.938995\pi\)
\(602\) 3.90653 13.3878i 0.159218 0.545647i
\(603\) −22.2012 6.69391i −0.904102 0.272597i
\(604\) −3.25544 + 5.10328i −0.132462 + 0.207650i
\(605\) 0 0
\(606\) −0.281658 3.01128i −0.0114416 0.122325i
\(607\) −1.98827 + 3.44378i −0.0807013 + 0.139779i −0.903551 0.428480i \(-0.859049\pi\)
0.822850 + 0.568259i \(0.192383\pi\)
\(608\) 24.7801 + 9.67909i 1.00497 + 0.392539i
\(609\) 5.18614 2.05446i 0.210153 0.0832508i
\(610\) 0 0
\(611\) −2.84429 −0.115068
\(612\) 3.09908 + 3.60466i 0.125273 + 0.145710i
\(613\) 4.23369i 0.170997i −0.996338 0.0854985i \(-0.972752\pi\)
0.996338 0.0854985i \(-0.0272483\pi\)
\(614\) −1.65031 + 0.403305i −0.0666010 + 0.0162761i
\(615\) 0 0
\(616\) 0.354202 + 1.78907i 0.0142712 + 0.0720838i
\(617\) 2.45060 4.24456i 0.0986574 0.170880i −0.812472 0.583001i \(-0.801879\pi\)
0.911129 + 0.412121i \(0.135212\pi\)
\(618\) −0.673013 0.948999i −0.0270725 0.0381744i
\(619\) −8.08103 + 4.66559i −0.324804 + 0.187526i −0.653532 0.756899i \(-0.726713\pi\)
0.328728 + 0.944425i \(0.393380\pi\)
\(620\) 0 0
\(621\) −9.55842 13.7364i −0.383566 0.551222i
\(622\) 7.58039 25.9783i 0.303946 1.04163i
\(623\) 13.2332 7.64018i 0.530176 0.306097i
\(624\) −3.82505 + 15.9844i −0.153124 + 0.639886i
\(625\) 0 0
\(626\) 18.8935 18.0757i 0.755135 0.722452i
\(627\) 0.600642 4.07279i 0.0239873 0.162652i
\(628\) −23.6996 1.04893i −0.945717 0.0418569i
\(629\) 5.34363i 0.213064i
\(630\) 0 0
\(631\) 42.8752i 1.70683i −0.521228 0.853417i \(-0.674526\pi\)
0.521228 0.853417i \(-0.325474\pi\)
\(632\) −9.00690 + 26.4556i −0.358275 + 1.05235i
\(633\) 28.2376 11.1861i 1.12234 0.444609i
\(634\) −31.7943 33.2326i −1.26271 1.31984i
\(635\) 0 0
\(636\) 1.23380 6.39290i 0.0489235 0.253495i
\(637\) −11.0371 + 6.37228i −0.437306 + 0.252479i
\(638\) 1.73205 + 0.505408i 0.0685725 + 0.0200093i
\(639\) 8.14558 + 34.6708i 0.322234 + 1.37155i
\(640\) 0 0
\(641\) 18.1277 10.4660i 0.716002 0.413384i −0.0972775 0.995257i \(-0.531013\pi\)
0.813279 + 0.581873i \(0.197680\pi\)
\(642\) 27.9720 + 12.8399i 1.10397 + 0.506752i
\(643\) −17.9733 + 31.1307i −0.708798 + 1.22767i 0.256506 + 0.966543i \(0.417429\pi\)
−0.965303 + 0.261131i \(0.915905\pi\)
\(644\) −3.79021 7.29156i −0.149355 0.287328i
\(645\) 0 0
\(646\) −1.25093 5.11874i −0.0492171 0.201394i
\(647\) 46.0993i 1.81235i −0.422904 0.906174i \(-0.638989\pi\)
0.422904 0.906174i \(-0.361011\pi\)
\(648\) −9.68348 + 23.5421i −0.380403 + 0.924821i
\(649\) 6.25544 0.245547
\(650\) 0 0
\(651\) −14.0814 11.1565i −0.551893 0.437258i
\(652\) −3.10690 + 1.61499i −0.121675 + 0.0632479i
\(653\) 2.20193 3.81386i 0.0861683 0.149248i −0.819720 0.572764i \(-0.805871\pi\)
0.905888 + 0.423516i \(0.139204\pi\)
\(654\) −13.7841 + 30.0289i −0.539002 + 1.17422i
\(655\) 0 0
\(656\) 24.5954 11.4333i 0.960288 0.446394i
\(657\) −9.84868 + 2.31386i −0.384234 + 0.0902723i
\(658\) −2.07668 0.605969i −0.0809573 0.0236231i
\(659\) −6.02987 10.4440i −0.234891 0.406842i 0.724350 0.689432i \(-0.242140\pi\)
−0.959241 + 0.282590i \(0.908807\pi\)
\(660\) 0 0
\(661\) −7.81386 + 13.5340i −0.303924 + 0.526412i −0.977021 0.213142i \(-0.931630\pi\)
0.673097 + 0.739554i \(0.264964\pi\)
\(662\) −28.3489 + 27.1219i −1.10181 + 1.05412i
\(663\) 3.02661 1.19897i 0.117544 0.0465641i
\(664\) 6.96454 20.4566i 0.270276 0.793871i
\(665\) 0 0
\(666\) −25.5063 + 12.9705i −0.988349 + 0.502595i
\(667\) −8.12989 −0.314791
\(668\) 34.9461 + 1.54669i 1.35210 + 0.0598434i
\(669\) −13.9307 2.05446i −0.538592 0.0794299i
\(670\) 0 0
\(671\) 0.599485 1.03834i 0.0231429 0.0400846i
\(672\) −6.19817 + 10.8556i −0.239100 + 0.418763i
\(673\) −25.8607 + 14.9307i −0.996858 + 0.575536i −0.907317 0.420447i \(-0.861873\pi\)
−0.0895410 + 0.995983i \(0.528540\pi\)
\(674\) 21.3748 + 6.23711i 0.823326 + 0.240244i
\(675\) 0 0
\(676\) −12.4307 7.92967i −0.478104 0.304987i
\(677\) −1.75950 3.04755i −0.0676232 0.117127i 0.830231 0.557419i \(-0.188208\pi\)
−0.897855 + 0.440292i \(0.854875\pi\)
\(678\) 10.3128 + 14.5419i 0.396062 + 0.558478i
\(679\) −11.5894 6.69112i −0.444759 0.256782i
\(680\) 0 0
\(681\) −3.63859 + 24.6723i −0.139431 + 0.945445i
\(682\) −1.37948 5.64476i −0.0528229 0.216149i
\(683\) 20.0172i 0.765936i −0.923762 0.382968i \(-0.874902\pi\)
0.923762 0.382968i \(-0.125098\pi\)
\(684\) 21.3965 18.3955i 0.818116 0.703371i
\(685\) 0 0
\(686\) −21.6849 + 5.29941i −0.827935 + 0.202332i
\(687\) −2.31416 5.84172i −0.0882907 0.222876i
\(688\) 30.7969 + 2.73146i 1.17412 + 0.104136i
\(689\) −3.86141 2.22938i −0.147108 0.0849328i
\(690\) 0 0
\(691\) −17.3961 + 10.0436i −0.661777 + 0.382077i −0.792954 0.609282i \(-0.791458\pi\)
0.131177 + 0.991359i \(0.458125\pi\)
\(692\) −29.7947 19.0064i −1.13263 0.722513i
\(693\) 1.85208 + 0.558422i 0.0703546 + 0.0212127i
\(694\) −9.43070 2.75186i −0.357985 0.104459i
\(695\) 0 0
\(696\) 6.70082 + 10.3939i 0.253994 + 0.393981i
\(697\) −4.65253 2.68614i −0.176227 0.101745i
\(698\) −5.50189 5.75079i −0.208250 0.217671i
\(699\) −5.21271 + 6.57932i −0.197163 + 0.248853i
\(700\) 0 0
\(701\) 32.7615i 1.23738i −0.785634 0.618692i \(-0.787663\pi\)
0.785634 0.618692i \(-0.212337\pi\)
\(702\) 13.0693 + 11.5364i 0.493271 + 0.435414i
\(703\) 31.7187 1.19629
\(704\) −3.73826 + 1.54059i −0.140891 + 0.0580633i
\(705\) 0 0
\(706\) −8.17827 8.54824i −0.307793 0.321717i
\(707\) −1.36423 0.787639i −0.0513072 0.0296222i
\(708\) 32.3958 + 28.0855i 1.21751 + 1.05552i
\(709\) 11.9307 + 20.6646i 0.448067 + 0.776075i 0.998260 0.0589626i \(-0.0187793\pi\)
−0.550193 + 0.835037i \(0.685446\pi\)
\(710\) 0 0
\(711\) 20.2994 + 21.6005i 0.761287 + 0.810084i
\(712\) 22.3130 + 25.4891i 0.836215 + 0.955245i
\(713\) 13.0916 + 22.6753i 0.490283 + 0.849195i
\(714\) 2.46522 0.230582i 0.0922587 0.00862933i
\(715\) 0 0
\(716\) 15.6857 8.15356i 0.586202 0.304713i
\(717\) −7.69304 19.4198i −0.287302 0.725247i
\(718\) −1.90561 + 0.465697i −0.0711168 + 0.0173797i
\(719\) 16.2912 0.607558 0.303779 0.952743i \(-0.401752\pi\)
0.303779 + 0.952743i \(0.401752\pi\)
\(720\) 0 0
\(721\) −0.605969 −0.0225675
\(722\) −4.28187 + 1.04641i −0.159355 + 0.0389434i
\(723\) 11.1192 + 1.63983i 0.413528 + 0.0609859i
\(724\) −7.09829 + 3.68975i −0.263806 + 0.137128i
\(725\) 0 0
\(726\) −15.2248 21.4681i −0.565045 0.796756i
\(727\) 19.0489 + 32.9937i 0.706485 + 1.22367i 0.966153 + 0.257969i \(0.0830534\pi\)
−0.259668 + 0.965698i \(0.583613\pi\)
\(728\) 5.63858 + 6.44121i 0.208980 + 0.238727i
\(729\) 17.2337 + 20.7846i 0.638285 + 0.769800i
\(730\) 0 0
\(731\) −3.06198 5.30350i −0.113251 0.196157i
\(732\) 7.76653 2.68583i 0.287059 0.0992710i
\(733\) 0.322405 + 0.186141i 0.0119083 + 0.00687526i 0.505942 0.862567i \(-0.331145\pi\)
−0.494034 + 0.869443i \(0.664478\pi\)
\(734\) 6.23648 + 6.51861i 0.230193 + 0.240606i
\(735\) 0 0
\(736\) 14.2253 11.3821i 0.524352 0.419551i
\(737\) −3.90653 −0.143899
\(738\) 1.52856 28.7275i 0.0562670 1.05748i
\(739\) 6.45364i 0.237401i 0.992930 + 0.118700i \(0.0378728\pi\)
−0.992930 + 0.118700i \(0.962127\pi\)
\(740\) 0 0
\(741\) −7.11684 17.9653i −0.261444 0.659972i
\(742\) −2.34433 2.45038i −0.0860630 0.0899563i
\(743\) 18.3226 + 10.5785i 0.672190 + 0.388089i 0.796906 0.604103i \(-0.206469\pi\)
−0.124716 + 0.992193i \(0.539802\pi\)
\(744\) 18.1996 35.4268i 0.667230 1.29881i
\(745\) 0 0
\(746\) −26.9638 7.86797i −0.987215 0.288067i
\(747\) −15.6964 16.7025i −0.574301 0.611112i
\(748\) 0.675178 + 0.430703i 0.0246870 + 0.0157481i
\(749\) 13.8832 8.01544i 0.507279 0.292878i
\(750\) 0 0
\(751\) 18.7832 + 10.8445i 0.685408 + 0.395721i 0.801890 0.597472i \(-0.203828\pi\)
−0.116481 + 0.993193i \(0.537162\pi\)
\(752\) 0.423696 4.77713i 0.0154506 0.174204i
\(753\) −12.0232 + 15.1753i −0.438149 + 0.553017i
\(754\) 8.22683 2.01049i 0.299604 0.0732177i
\(755\) 0 0
\(756\) 7.08440 + 11.2074i 0.257657 + 0.407608i
\(757\) 14.0000i 0.508839i 0.967094 + 0.254419i \(0.0818843\pi\)
−0.967094 + 0.254419i \(0.918116\pi\)
\(758\) −2.16667 8.86592i −0.0786970 0.322025i
\(759\) −2.20979 1.75079i −0.0802102 0.0635495i
\(760\) 0 0
\(761\) 15.0475 + 8.68771i 0.545473 + 0.314929i 0.747294 0.664493i \(-0.231353\pi\)
−0.201821 + 0.979422i \(0.564686\pi\)
\(762\) −7.82233 + 17.0411i −0.283373 + 0.617333i
\(763\) 8.60485 + 14.9040i 0.311517 + 0.539563i
\(764\) 25.4476 + 16.2333i 0.920661 + 0.587299i
\(765\) 0 0
\(766\) −11.7446 3.42703i −0.424348 0.123824i
\(767\) 25.4280 14.6809i 0.918152 0.530095i
\(768\) −26.2767 8.80544i −0.948178 0.317739i
\(769\) 4.04755 7.01056i 0.145958 0.252807i −0.783772 0.621049i \(-0.786707\pi\)
0.929730 + 0.368242i \(0.120040\pi\)
\(770\) 0 0
\(771\) 9.56773 + 24.1522i 0.344573 + 0.869820i
\(772\) 15.4740 + 0.684870i 0.556921 + 0.0246490i
\(773\) −0.699713 −0.0251669 −0.0125835 0.999921i \(-0.504006\pi\)
−0.0125835 + 0.999921i \(0.504006\pi\)
\(774\) 17.8825 27.4885i 0.642773 0.988054i
\(775\) 0 0
\(776\) 9.56155 28.0847i 0.343240 1.00818i
\(777\) −2.17448 + 14.7446i −0.0780091 + 0.528958i
\(778\) −32.2162 + 30.8219i −1.15501 + 1.10502i
\(779\) −15.9444 + 27.6165i −0.571267 + 0.989463i
\(780\) 0 0
\(781\) 3.00000 + 5.19615i 0.107348 + 0.185933i
\(782\) −3.46410 1.01082i −0.123876 0.0361467i
\(783\) 13.0702 1.10489i 0.467092 0.0394857i
\(784\) −9.05842 19.4866i −0.323515 0.695950i
\(785\) 0 0
\(786\) 10.8259 + 15.2654i 0.386149 + 0.544499i
\(787\) 17.3727 30.0903i 0.619268 1.07260i −0.370351 0.928892i \(-0.620763\pi\)
0.989620 0.143712i \(-0.0459040\pi\)
\(788\) −42.5077 + 22.0958i −1.51427 + 0.787132i
\(789\) −7.06930 + 47.9350i −0.251674 + 1.70653i
\(790\) 0 0
\(791\) 9.28550 0.330154
\(792\) −0.416997 + 4.26821i −0.0148173 + 0.151664i
\(793\) 5.62772i 0.199846i
\(794\) −6.29308 25.7510i −0.223333 0.913869i
\(795\) 0 0
\(796\) −11.9062 22.9049i −0.422003 0.811843i
\(797\) −11.9494 + 20.6970i −0.423270 + 0.733126i −0.996257 0.0864387i \(-0.972451\pi\)
0.572987 + 0.819565i \(0.305785\pi\)
\(798\) −1.36869 14.6331i −0.0484511 0.518005i
\(799\) −0.822662 + 0.474964i −0.0291037 + 0.0168030i
\(800\) 0 0
\(801\) 34.9783 8.21782i 1.23590 0.290363i
\(802\) 6.25343 + 1.82473i 0.220816 + 0.0644336i
\(803\) −1.47603 + 0.852189i −0.0520881 + 0.0300731i
\(804\) −20.2312 17.5394i −0.713501 0.618568i
\(805\) 0 0
\(806\) −18.8552 19.7082i −0.664145 0.694190i
\(807\) 29.1671 + 23.1087i 1.02673 + 0.813464i
\(808\) 1.12553 3.30596i 0.0395960 0.116303i
\(809\) 35.8381i 1.26000i −0.776595 0.630000i \(-0.783055\pi\)
0.776595 0.630000i \(-0.216945\pi\)
\(810\) 0 0
\(811\) 1.20128i 0.0421828i −0.999778 0.0210914i \(-0.993286\pi\)
0.999778 0.0210914i \(-0.00671410\pi\)
\(812\) 6.43491 + 0.284805i 0.225821 + 0.00999471i
\(813\) −40.6844 32.2337i −1.42686 1.13048i
\(814\) −3.48330 + 3.33254i −0.122090 + 0.116806i
\(815\) 0 0
\(816\) 1.56287 + 5.26193i 0.0547115 + 0.184204i
\(817\) −31.4805 + 18.1753i −1.10136 + 0.635872i
\(818\) 5.44482 18.6596i 0.190374 0.652417i
\(819\) 8.83915 2.07668i 0.308865 0.0725650i
\(820\) 0 0
\(821\) −15.8139 + 9.13014i −0.551907 + 0.318644i −0.749891 0.661561i \(-0.769894\pi\)
0.197983 + 0.980205i \(0.436561\pi\)
\(822\) −13.3920 + 1.25260i −0.467098 + 0.0436896i
\(823\) 7.01701 12.1538i 0.244598 0.423656i −0.717421 0.696640i \(-0.754677\pi\)
0.962018 + 0.272984i \(0.0880108\pi\)
\(824\) −0.260904 1.31782i −0.00908902 0.0459085i
\(825\) 0 0
\(826\) 21.6932 5.30143i 0.754804 0.184460i
\(827\) 47.4864i 1.65126i 0.564210 + 0.825632i \(0.309181\pi\)
−0.564210 + 0.825632i \(0.690819\pi\)
\(828\) −3.58348 18.9884i −0.124535 0.659894i
\(829\) 48.2337 1.67523 0.837613 0.546265i \(-0.183951\pi\)
0.837613 + 0.546265i \(0.183951\pi\)
\(830\) 0 0
\(831\) 1.61030 10.9190i 0.0558607 0.378776i
\(832\) −11.5802 + 15.0357i −0.401471 + 0.521270i
\(833\) −2.12819 + 3.68614i −0.0737376 + 0.127717i
\(834\) 30.7387 21.7993i 1.06439 0.754848i
\(835\) 0 0
\(836\) 2.55657 4.00772i 0.0884207 0.138610i
\(837\) −24.1287 34.6753i −0.834009 1.19855i
\(838\) 10.6815 36.6060i 0.368987 1.26453i
\(839\) 21.3102 + 36.9104i 0.735711 + 1.27429i 0.954411 + 0.298496i \(0.0964850\pi\)
−0.218700 + 0.975792i \(0.570182\pi\)
\(840\) 0 0
\(841\) −11.3139 + 19.5962i −0.390133 + 0.675730i
\(842\) 10.3688 + 10.8379i 0.357334 + 0.373499i
\(843\) −5.81573 + 39.4349i −0.200304 + 1.35821i
\(844\) 35.0369 + 1.55071i 1.20602 + 0.0533778i
\(845\) 0 0
\(846\) −4.26393 2.77388i −0.146597 0.0953678i
\(847\) −13.7081 −0.471017
\(848\) 4.31957 6.15332i 0.148334 0.211306i
\(849\) −6.30298 15.9109i −0.216318 0.546059i
\(850\) 0 0
\(851\) 10.8608 18.8114i 0.372303 0.644847i
\(852\) −7.79304 + 40.3793i −0.266985 + 1.38337i
\(853\) −38.6299 + 22.3030i −1.32266 + 0.763640i −0.984153 0.177323i \(-0.943256\pi\)
−0.338510 + 0.940963i \(0.609923\pi\)
\(854\) 1.19897 4.10891i 0.0410279 0.140604i
\(855\) 0 0
\(856\) 23.4090 + 26.7411i 0.800102 + 0.913992i
\(857\) 18.7851 + 32.5367i 0.641685 + 1.11143i 0.985056 + 0.172232i \(0.0550978\pi\)
−0.343371 + 0.939200i \(0.611569\pi\)
\(858\) 2.66910 + 1.22519i 0.0911215 + 0.0418273i
\(859\) 1.58077 + 0.912661i 0.0539353 + 0.0311396i 0.526725 0.850036i \(-0.323420\pi\)
−0.472790 + 0.881175i \(0.656753\pi\)
\(860\) 0 0
\(861\) −11.7446 9.30506i −0.400254 0.317116i
\(862\) 42.8555 10.4731i 1.45967 0.356716i
\(863\) 40.0344i 1.36279i 0.731918 + 0.681393i \(0.238625\pi\)
−0.731918 + 0.681393i \(0.761375\pi\)
\(864\) −21.3228 + 20.2321i −0.725417 + 0.688310i
\(865\) 0 0
\(866\) 2.89657 + 11.8526i 0.0984294 + 0.402769i
\(867\) −17.6101 + 22.2270i −0.598072 + 0.754867i
\(868\) −9.56778 18.4064i −0.324752 0.624753i
\(869\) 4.32473 + 2.49689i 0.146707 + 0.0847011i
\(870\) 0 0
\(871\) −15.8798 + 9.16823i −0.538068 + 0.310654i
\(872\) −28.7075 + 25.1303i −0.972158 + 0.851020i
\(873\) −21.5494 22.9307i −0.729338 0.776087i
\(874\) −6.00000 + 20.5622i −0.202953 + 0.695527i
\(875\) 0 0
\(876\) −11.4703 2.21371i −0.387544 0.0747945i
\(877\) −18.7302 10.8139i −0.632472 0.365158i 0.149237 0.988802i \(-0.452318\pi\)
−0.781709 + 0.623643i \(0.785652\pi\)
\(878\) 6.67094 6.38222i 0.225133 0.215389i
\(879\) 14.8690 + 37.5344i 0.501520 + 1.26600i
\(880\) 0 0
\(881\) 52.9562i 1.78414i 0.451898 + 0.892070i \(0.350747\pi\)
−0.451898 + 0.892070i \(0.649253\pi\)
\(882\) −22.7605 1.21106i −0.766385 0.0407784i
\(883\) −20.0127 −0.673481 −0.336741 0.941597i \(-0.609325\pi\)
−0.336741 + 0.941597i \(0.609325\pi\)
\(884\) 3.75538 + 0.166211i 0.126307 + 0.00559028i
\(885\) 0 0
\(886\) −12.6477 + 12.1003i −0.424907 + 0.406517i
\(887\) −16.8977 9.75588i −0.567369 0.327571i 0.188729 0.982029i \(-0.439563\pi\)
−0.756098 + 0.654459i \(0.772897\pi\)
\(888\) −33.0018 + 1.61944i −1.10747 + 0.0543450i
\(889\) 4.88316 + 8.45787i 0.163776 + 0.283668i
\(890\) 0 0
\(891\) 3.79056 + 2.51437i 0.126989 + 0.0842347i
\(892\) −13.7081 8.74456i −0.458982 0.292790i
\(893\) 2.81929 + 4.88316i 0.0943440 + 0.163409i
\(894\) 25.8080 18.3026i 0.863149 0.612129i
\(895\) 0 0
\(896\) −11.6583 + 8.51076i −0.389475 + 0.284325i
\(897\) −13.0916 1.93070i −0.437115 0.0644643i
\(898\) −6.51394 26.6548i −0.217373 0.889481i
\(899\) −20.5226 −0.684467
\(900\) 0 0
\(901\) −1.48913 −0.0496100
\(902\) −1.15055 4.70801i −0.0383092 0.156760i
\(903\) −6.29069 15.8798i −0.209341 0.528448i
\(904\) 3.99793 + 20.1935i 0.132969 + 0.671626i
\(905\) 0 0
\(906\) 0.690414 + 7.38142i 0.0229375 + 0.245231i
\(907\) 14.9467 + 25.8884i 0.496297 + 0.859611i 0.999991 0.00427097i \(-0.00135950\pi\)
−0.503694 + 0.863882i \(0.668026\pi\)
\(908\) −15.4873 + 24.2781i −0.513963 + 0.805698i
\(909\) −2.53667 2.69927i −0.0841361 0.0895290i
\(910\) 0 0
\(911\) 17.9015 + 31.0063i 0.593102 + 1.02728i 0.993812 + 0.111078i \(0.0354303\pi\)
−0.400710 + 0.916205i \(0.631236\pi\)
\(912\) 31.2338 9.27690i 1.03425 0.307189i
\(913\) −3.34408 1.93070i −0.110673 0.0638970i
\(914\) 40.8525 39.0844i 1.35128 1.29280i
\(915\) 0 0
\(916\) 0.320808 7.24834i 0.0105998 0.239492i
\(917\) 9.74749 0.321891
\(918\) 5.70653 + 1.15428i 0.188343 + 0.0380968i
\(919\) 36.9711i 1.21956i 0.792570 + 0.609781i \(0.208743\pi\)
−0.792570 + 0.609781i \(0.791257\pi\)
\(920\) 0 0
\(921\) −1.29211 + 1.63086i −0.0425765 + 0.0537387i
\(922\) 0.357508 0.342034i 0.0117739 0.0112643i
\(923\) 24.3897 + 14.0814i 0.802796 + 0.463494i
\(924\) 1.68774 + 1.46318i 0.0555226 + 0.0481351i
\(925\) 0 0
\(926\) −1.89253 + 6.48577i −0.0621925 + 0.213136i
\(927\) −1.36423 0.411331i −0.0448072 0.0135099i
\(928\) 2.15121 + 14.1168i 0.0706170 + 0.463408i
\(929\) −16.0693 + 9.27761i −0.527217 + 0.304389i −0.739882 0.672736i \(-0.765119\pi\)
0.212666 + 0.977125i \(0.431785\pi\)
\(930\) 0 0
\(931\) 21.8802 + 12.6325i 0.717094 + 0.414014i
\(932\) −8.60011 + 4.47040i −0.281706 + 0.146433i
\(933\) −12.2067 30.8139i −0.399630 1.00880i
\(934\) −1.71662 7.02435i −0.0561697 0.229844i
\(935\) 0 0
\(936\) 8.32198 + 18.3287i 0.272012 + 0.599092i
\(937\) 45.7228i 1.49370i 0.664993 + 0.746850i \(0.268435\pi\)
−0.664993 + 0.746850i \(0.731565\pi\)
\(938\) −13.5475 + 3.31075i −0.442340 + 0.108100i
\(939\) 4.67228 31.6814i 0.152474 1.03388i
\(940\) 0 0
\(941\) 11.6970 + 6.75327i 0.381312 + 0.220150i 0.678389 0.734703i \(-0.262678\pi\)
−0.297077 + 0.954854i \(0.596012\pi\)
\(942\) −23.6996 + 16.8073i −0.772175 + 0.547612i
\(943\) 10.9190 + 18.9123i 0.355572 + 0.615869i
\(944\) 20.8694 + 44.8945i 0.679240 + 1.46119i
\(945\) 0 0
\(946\) 1.54755 5.30350i 0.0503151 0.172432i
\(947\) 5.69005 3.28515i 0.184902 0.106753i −0.404692 0.914453i \(-0.632621\pi\)
0.589594 + 0.807700i \(0.299288\pi\)
\(948\) 11.1866 + 32.3480i 0.363324 + 1.05061i
\(949\) −4.00000 + 6.92820i −0.129845 + 0.224899i
\(950\) 0 0
\(951\) −55.7260 8.21830i −1.80704 0.266497i
\(952\) 2.70647 + 0.921427i 0.0877171 + 0.0298636i
\(953\) 10.2997 0.333641 0.166821 0.985987i \(-0.446650\pi\)
0.166821 + 0.985987i \(0.446650\pi\)
\(954\) −3.61452 7.10792i −0.117024 0.230127i
\(955\) 0 0
\(956\) 1.06647 24.0959i 0.0344922 0.779317i
\(957\) 2.05446 0.813859i 0.0664111 0.0263083i
\(958\) 12.7783 + 13.3564i 0.412849 + 0.431526i
\(959\) −3.50283 + 6.06709i −0.113112 + 0.195916i
\(960\) 0 0
\(961\) 17.5475 + 30.3932i 0.566050 + 0.980427i
\(962\) −6.33830 + 21.7216i −0.204355 + 0.700331i
\(963\) 36.6963 8.62146i 1.18252 0.277823i
\(964\) 10.9416 + 6.97975i 0.352404 + 0.224802i
\(965\) 0 0
\(966\) −9.14709 4.19877i −0.294303 0.135093i
\(967\) −23.4259 + 40.5748i −0.753325 + 1.30480i 0.192878 + 0.981223i \(0.438218\pi\)
−0.946203 + 0.323574i \(0.895115\pi\)
\(968\) −5.90213 29.8116i −0.189702 0.958180i
\(969\) −5.05842 4.00772i −0.162500 0.128747i
\(970\) 0 0
\(971\) −37.0019 −1.18745 −0.593724 0.804669i \(-0.702343\pi\)
−0.593724 + 0.804669i \(0.702343\pi\)
\(972\) 8.34170 + 30.0402i 0.267560 + 0.963541i
\(973\) 19.6277i 0.629236i
\(974\) −58.9013 + 14.3944i −1.88732 + 0.461227i
\(975\) 0 0
\(976\) 9.45202 + 0.838325i 0.302552 + 0.0268341i
\(977\) 27.3441 47.3614i 0.874816 1.51523i 0.0178572 0.999841i \(-0.494316\pi\)
0.856959 0.515385i \(-0.172351\pi\)
\(978\) −1.78907 + 3.89753i −0.0572082 + 0.124629i
\(979\) 5.24224 3.02661i 0.167543 0.0967307i
\(980\) 0 0
\(981\) 9.25544 + 39.3947i 0.295503 + 1.25778i
\(982\) 5.45257 18.6861i 0.173998 0.596299i
\(983\) 29.8050 17.2079i 0.950631 0.548847i 0.0573540 0.998354i \(-0.481734\pi\)
0.893277 + 0.449507i \(0.148400\pi\)
\(984\) 15.1794 29.5477i 0.483900 0.941945i
\(985\) 0 0
\(986\) 2.04374 1.95528i 0.0650859 0.0622689i
\(987\) −2.46323 + 0.975793i −0.0784055 + 0.0310598i
\(988\) 0.986595 22.2912i 0.0313878 0.709177i
\(989\) 24.8935i 0.791568i
\(990\) 0 0
\(991\) 7.65492i 0.243167i −0.992581 0.121583i \(-0.961203\pi\)
0.992581 0.121583i \(-0.0387972\pi\)
\(992\) 35.9095 28.7324i 1.14013 0.912254i
\(993\) −7.01056 + 47.5367i −0.222473 + 1.50853i
\(994\) 14.8074 + 15.4773i 0.469662 + 0.490909i
\(995\) 0 0
\(996\) −8.64998 25.0129i −0.274085 0.792564i
\(997\) −20.9046 + 12.0693i −0.662056 + 0.382238i −0.793060 0.609143i \(-0.791513\pi\)
0.131004 + 0.991382i \(0.458180\pi\)
\(998\) −4.65253 1.35760i −0.147273 0.0429740i
\(999\) −14.9040 + 31.7187i −0.471543 + 1.00354i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.o.a.599.8 16
4.3 odd 2 inner 900.2.o.a.599.3 16
5.2 odd 4 900.2.r.c.851.2 8
5.3 odd 4 36.2.h.a.23.3 yes 8
5.4 even 2 inner 900.2.o.a.599.1 16
9.2 odd 6 inner 900.2.o.a.299.6 16
15.8 even 4 108.2.h.a.71.2 8
20.3 even 4 36.2.h.a.23.4 yes 8
20.7 even 4 900.2.r.c.851.1 8
20.19 odd 2 inner 900.2.o.a.599.6 16
36.11 even 6 inner 900.2.o.a.299.1 16
40.3 even 4 576.2.s.f.383.4 8
40.13 odd 4 576.2.s.f.383.1 8
45.2 even 12 900.2.r.c.551.1 8
45.13 odd 12 324.2.b.b.323.8 8
45.23 even 12 324.2.b.b.323.1 8
45.29 odd 6 inner 900.2.o.a.299.3 16
45.38 even 12 36.2.h.a.11.4 yes 8
45.43 odd 12 108.2.h.a.35.1 8
60.23 odd 4 108.2.h.a.71.1 8
120.53 even 4 1728.2.s.f.1151.1 8
120.83 odd 4 1728.2.s.f.1151.2 8
180.23 odd 12 324.2.b.b.323.7 8
180.43 even 12 108.2.h.a.35.2 8
180.47 odd 12 900.2.r.c.551.2 8
180.83 odd 12 36.2.h.a.11.3 8
180.103 even 12 324.2.b.b.323.2 8
180.119 even 6 inner 900.2.o.a.299.8 16
360.13 odd 12 5184.2.c.j.5183.1 8
360.43 even 12 1728.2.s.f.575.1 8
360.83 odd 12 576.2.s.f.191.1 8
360.133 odd 12 1728.2.s.f.575.2 8
360.173 even 12 576.2.s.f.191.4 8
360.203 odd 12 5184.2.c.j.5183.8 8
360.283 even 12 5184.2.c.j.5183.2 8
360.293 even 12 5184.2.c.j.5183.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.2.h.a.11.3 8 180.83 odd 12
36.2.h.a.11.4 yes 8 45.38 even 12
36.2.h.a.23.3 yes 8 5.3 odd 4
36.2.h.a.23.4 yes 8 20.3 even 4
108.2.h.a.35.1 8 45.43 odd 12
108.2.h.a.35.2 8 180.43 even 12
108.2.h.a.71.1 8 60.23 odd 4
108.2.h.a.71.2 8 15.8 even 4
324.2.b.b.323.1 8 45.23 even 12
324.2.b.b.323.2 8 180.103 even 12
324.2.b.b.323.7 8 180.23 odd 12
324.2.b.b.323.8 8 45.13 odd 12
576.2.s.f.191.1 8 360.83 odd 12
576.2.s.f.191.4 8 360.173 even 12
576.2.s.f.383.1 8 40.13 odd 4
576.2.s.f.383.4 8 40.3 even 4
900.2.o.a.299.1 16 36.11 even 6 inner
900.2.o.a.299.3 16 45.29 odd 6 inner
900.2.o.a.299.6 16 9.2 odd 6 inner
900.2.o.a.299.8 16 180.119 even 6 inner
900.2.o.a.599.1 16 5.4 even 2 inner
900.2.o.a.599.3 16 4.3 odd 2 inner
900.2.o.a.599.6 16 20.19 odd 2 inner
900.2.o.a.599.8 16 1.1 even 1 trivial
900.2.r.c.551.1 8 45.2 even 12
900.2.r.c.551.2 8 180.47 odd 12
900.2.r.c.851.1 8 20.7 even 4
900.2.r.c.851.2 8 5.2 odd 4
1728.2.s.f.575.1 8 360.43 even 12
1728.2.s.f.575.2 8 360.133 odd 12
1728.2.s.f.1151.1 8 120.53 even 4
1728.2.s.f.1151.2 8 120.83 odd 4
5184.2.c.j.5183.1 8 360.13 odd 12
5184.2.c.j.5183.2 8 360.283 even 12
5184.2.c.j.5183.7 8 360.293 even 12
5184.2.c.j.5183.8 8 360.203 odd 12