Properties

Label 900.3.f.a.199.1
Level 900900
Weight 33
Character 900.199
Analytic conductor 24.52324.523
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,3,Mod(199,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.199"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 900=223252 900 = 2^{2} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 900.f (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(26)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.523223792424.5232237924
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 199.1
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 900.199
Dual form 900.3.f.a.199.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.00000iq24.00000q4+8.00000iq810.0000iq13+16.0000q1616.0000iq1720.0000q2640.0000q2932.0000iq3232.0000q34+70.0000iq3780.0000q4149.0000q49+40.0000iq5256.0000iq53+80.0000iq5822.0000q6164.0000q64+64.0000iq68+110.000iq73+140.000q74+160.000iq82160.000q89+130.000iq97+98.0000iq98+O(q100)q-2.00000i q^{2} -4.00000 q^{4} +8.00000i q^{8} -10.0000i q^{13} +16.0000 q^{16} -16.0000i q^{17} -20.0000 q^{26} -40.0000 q^{29} -32.0000i q^{32} -32.0000 q^{34} +70.0000i q^{37} -80.0000 q^{41} -49.0000 q^{49} +40.0000i q^{52} -56.0000i q^{53} +80.0000i q^{58} -22.0000 q^{61} -64.0000 q^{64} +64.0000i q^{68} +110.000i q^{73} +140.000 q^{74} +160.000i q^{82} -160.000 q^{89} +130.000i q^{97} +98.0000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q4+32q1640q2680q2964q34160q4198q4944q61128q64+280q74320q89+O(q100) 2 q - 8 q^{4} + 32 q^{16} - 40 q^{26} - 80 q^{29} - 64 q^{34} - 160 q^{41} - 98 q^{49} - 44 q^{61} - 128 q^{64} + 280 q^{74} - 320 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/900Z)×\left(\mathbb{Z}/900\mathbb{Z}\right)^\times.

nn 101101 451451 577577
χ(n)\chi(n) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 2.00000i − 1.00000i
33 0 0
44 −4.00000 −1.00000
55 0 0
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 8.00000i 1.00000i
99 0 0
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 − 10.0000i − 0.769231i −0.923077 0.384615i 0.874334π-0.874334\pi
0.923077 0.384615i 0.125666π-0.125666\pi
1414 0 0
1515 0 0
1616 16.0000 1.00000
1717 − 16.0000i − 0.941176i −0.882353 0.470588i 0.844042π-0.844042\pi
0.882353 0.470588i 0.155958π-0.155958\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0 0
2626 −20.0000 −0.769231
2727 0 0
2828 0 0
2929 −40.0000 −1.37931 −0.689655 0.724138i 0.742238π-0.742238\pi
−0.689655 + 0.724138i 0.742238π0.742238\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 − 32.0000i − 1.00000i
3333 0 0
3434 −32.0000 −0.941176
3535 0 0
3636 0 0
3737 70.0000i 1.89189i 0.324324 + 0.945946i 0.394863π0.394863\pi
−0.324324 + 0.945946i 0.605137π0.605137\pi
3838 0 0
3939 0 0
4040 0 0
4141 −80.0000 −1.95122 −0.975610 0.219512i 0.929553π-0.929553\pi
−0.975610 + 0.219512i 0.929553π0.929553\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −49.0000 −1.00000
5050 0 0
5151 0 0
5252 40.0000i 0.769231i
5353 − 56.0000i − 1.05660i −0.849057 0.528302i 0.822829π-0.822829\pi
0.849057 0.528302i 0.177171π-0.177171\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 80.0000i 1.37931i
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 −22.0000 −0.360656 −0.180328 0.983607i 0.557716π-0.557716\pi
−0.180328 + 0.983607i 0.557716π0.557716\pi
6262 0 0
6363 0 0
6464 −64.0000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 64.0000i 0.941176i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 110.000i 1.50685i 0.657534 + 0.753425i 0.271599π0.271599\pi
−0.657534 + 0.753425i 0.728401π0.728401\pi
7474 140.000 1.89189
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 0 0
8282 160.000i 1.95122i
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −160.000 −1.79775 −0.898876 0.438202i 0.855615π-0.855615\pi
−0.898876 + 0.438202i 0.855615π0.855615\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 130.000i 1.34021i 0.742268 + 0.670103i 0.233750π0.233750\pi
−0.742268 + 0.670103i 0.766250π0.766250\pi
9898 98.0000i 1.00000i
9999 0 0
100100 0 0
101101 40.0000 0.396040 0.198020 0.980198i 0.436549π-0.436549\pi
0.198020 + 0.980198i 0.436549π0.436549\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 80.0000 0.769231
105105 0 0
106106 −112.000 −1.05660
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −182.000 −1.66972 −0.834862 0.550459i 0.814453π-0.814453\pi
−0.834862 + 0.550459i 0.814453π0.814453\pi
110110 0 0
111111 0 0
112112 0 0
113113 − 224.000i − 1.98230i −0.132743 0.991150i 0.542379π-0.542379\pi
0.132743 0.991150i 0.457621π-0.457621\pi
114114 0 0
115115 0 0
116116 160.000 1.37931
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 121.000 1.00000
122122 44.0000i 0.360656i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 128.000i 1.00000i
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 128.000 0.941176
137137 176.000i 1.28467i 0.766423 + 0.642336i 0.222035π0.222035\pi
−0.766423 + 0.642336i 0.777965π0.777965\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 220.000 1.50685
147147 0 0
148148 − 280.000i − 1.89189i
149149 −280.000 −1.87919 −0.939597 0.342282i 0.888800π-0.888800\pi
−0.939597 + 0.342282i 0.888800π0.888800\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 − 170.000i − 1.08280i −0.840764 0.541401i 0.817894π-0.817894\pi
0.840764 0.541401i 0.182106π-0.182106\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 320.000 1.95122
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 69.0000 0.408284
170170 0 0
171171 0 0
172172 0 0
173173 − 104.000i − 0.601156i −0.953757 0.300578i 0.902820π-0.902820\pi
0.953757 0.300578i 0.0971796π-0.0971796\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 320.000i 1.79775i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 38.0000 0.209945 0.104972 0.994475i 0.466525π-0.466525\pi
0.104972 + 0.994475i 0.466525π0.466525\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 − 190.000i − 0.984456i −0.870466 0.492228i 0.836183π-0.836183\pi
0.870466 0.492228i 0.163817π-0.163817\pi
194194 260.000 1.34021
195195 0 0
196196 196.000 1.00000
197197 56.0000i 0.284264i 0.989848 + 0.142132i 0.0453957π0.0453957\pi
−0.989848 + 0.142132i 0.954604π0.954604\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 − 80.0000i − 0.396040i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 − 160.000i − 0.769231i
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 224.000i 1.05660i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 364.000i 1.66972i
219219 0 0
220220 0 0
221221 −160.000 −0.723982
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 −448.000 −1.98230
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 442.000 1.93013 0.965066 0.262009i 0.0843849π-0.0843849\pi
0.965066 + 0.262009i 0.0843849π0.0843849\pi
230230 0 0
231231 0 0
232232 − 320.000i − 1.37931i
233233 − 416.000i − 1.78541i −0.450644 0.892704i 0.648806π-0.648806\pi
0.450644 0.892704i 0.351194π-0.351194\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −418.000 −1.73444 −0.867220 0.497925i 0.834095π-0.834095\pi
−0.867220 + 0.497925i 0.834095π0.834095\pi
242242 − 242.000i − 1.00000i
243243 0 0
244244 88.0000 0.360656
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 256.000 1.00000
257257 − 64.0000i − 0.249027i −0.992218 0.124514i 0.960263π-0.960263\pi
0.992218 0.124514i 0.0397370π-0.0397370\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −520.000 −1.93309 −0.966543 0.256506i 0.917429π-0.917429\pi
−0.966543 + 0.256506i 0.917429π0.917429\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 − 256.000i − 0.941176i
273273 0 0
274274 352.000 1.28467
275275 0 0
276276 0 0
277277 − 230.000i − 0.830325i −0.909747 0.415162i 0.863725π-0.863725\pi
0.909747 0.415162i 0.136275π-0.136275\pi
278278 0 0
279279 0 0
280280 0 0
281281 −320.000 −1.13879 −0.569395 0.822064i 0.692822π-0.692822\pi
−0.569395 + 0.822064i 0.692822π0.692822\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 33.0000 0.114187
290290 0 0
291291 0 0
292292 − 440.000i − 1.50685i
293293 136.000i 0.464164i 0.972696 + 0.232082i 0.0745537π0.0745537\pi
−0.972696 + 0.232082i 0.925446π0.925446\pi
294294 0 0
295295 0 0
296296 −560.000 −1.89189
297297 0 0
298298 560.000i 1.87919i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 50.0000i 0.159744i 0.996805 + 0.0798722i 0.0254512π0.0254512\pi
−0.996805 + 0.0798722i 0.974549π0.974549\pi
314314 −340.000 −1.08280
315315 0 0
316316 0 0
317317 − 616.000i − 1.94322i −0.236593 0.971609i 0.576031π-0.576031\pi
0.236593 0.971609i 0.423969π-0.423969\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 − 640.000i − 1.95122i
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 − 350.000i − 1.03858i −0.854599 0.519288i 0.826197π-0.826197\pi
0.854599 0.519288i 0.173803π-0.173803\pi
338338 − 138.000i − 0.408284i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −208.000 −0.601156
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 598.000 1.71347 0.856734 0.515759i 0.172490π-0.172490\pi
0.856734 + 0.515759i 0.172490π0.172490\pi
350350 0 0
351351 0 0
352352 0 0
353353 544.000i 1.54108i 0.637394 + 0.770538i 0.280012π0.280012\pi
−0.637394 + 0.770538i 0.719988π0.719988\pi
354354 0 0
355355 0 0
356356 640.000 1.79775
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 361.000 1.00000
362362 − 76.0000i − 0.209945i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 − 550.000i − 1.47453i −0.675603 0.737265i 0.736117π-0.736117\pi
0.675603 0.737265i 0.263883π-0.263883\pi
374374 0 0
375375 0 0
376376 0 0
377377 400.000i 1.06101i
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 −380.000 −0.984456
387387 0 0
388388 − 520.000i − 1.34021i
389389 680.000 1.74807 0.874036 0.485861i 0.161494π-0.161494\pi
0.874036 + 0.485861i 0.161494π0.161494\pi
390390 0 0
391391 0 0
392392 − 392.000i − 1.00000i
393393 0 0
394394 112.000 0.284264
395395 0 0
396396 0 0
397397 − 650.000i − 1.63728i −0.574307 0.818640i 0.694729π-0.694729\pi
0.574307 0.818640i 0.305271π-0.305271\pi
398398 0 0
399399 0 0
400400 0 0
401401 −80.0000 −0.199501 −0.0997506 0.995012i 0.531805π-0.531805\pi
−0.0997506 + 0.995012i 0.531805π0.531805\pi
402402 0 0
403403 0 0
404404 −160.000 −0.396040
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −782.000 −1.91198 −0.955990 0.293399i 0.905214π-0.905214\pi
−0.955990 + 0.293399i 0.905214π0.905214\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −320.000 −0.769231
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −58.0000 −0.137767 −0.0688836 0.997625i 0.521944π-0.521944\pi
−0.0688836 + 0.997625i 0.521944π0.521944\pi
422422 0 0
423423 0 0
424424 448.000 1.05660
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 290.000i 0.669746i 0.942263 + 0.334873i 0.108693π0.108693\pi
−0.942263 + 0.334873i 0.891307π0.891307\pi
434434 0 0
435435 0 0
436436 728.000 1.66972
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 320.000i 0.723982i
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 560.000 1.24722 0.623608 0.781737i 0.285666π-0.285666\pi
0.623608 + 0.781737i 0.285666π0.285666\pi
450450 0 0
451451 0 0
452452 896.000i 1.98230i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 850.000i 1.85996i 0.367615 + 0.929978i 0.380174π0.380174\pi
−0.367615 + 0.929978i 0.619826π0.619826\pi
458458 − 884.000i − 1.93013i
459459 0 0
460460 0 0
461461 760.000 1.64859 0.824295 0.566161i 0.191572π-0.191572\pi
0.824295 + 0.566161i 0.191572π0.191572\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 −640.000 −1.37931
465465 0 0
466466 −832.000 −1.78541
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 700.000 1.45530
482482 836.000i 1.73444i
483483 0 0
484484 −484.000 −1.00000
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 − 176.000i − 0.360656i
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 640.000i 1.29817i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 440.000 0.864440 0.432220 0.901768i 0.357730π-0.357730\pi
0.432220 + 0.901768i 0.357730π0.357730\pi
510510 0 0
511511 0 0
512512 − 512.000i − 1.00000i
513513 0 0
514514 −128.000 −0.249027
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 880.000 1.68906 0.844530 0.535509i 0.179880π-0.179880\pi
0.844530 + 0.535509i 0.179880π0.179880\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −529.000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 800.000i 1.50094i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1040.00i 1.93309i
539539 0 0
540540 0 0
541541 −682.000 −1.26063 −0.630314 0.776340i 0.717074π-0.717074\pi
−0.630314 + 0.776340i 0.717074π0.717074\pi
542542 0 0
543543 0 0
544544 −512.000 −0.941176
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 − 704.000i − 1.28467i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −460.000 −0.830325
555555 0 0
556556 0 0
557557 1064.00i 1.91023i 0.296230 + 0.955117i 0.404271π0.404271\pi
−0.296230 + 0.955117i 0.595729π0.595729\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 640.000i 1.13879i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 1040.00 1.82777 0.913884 0.405975i 0.133068π-0.133068\pi
0.913884 + 0.405975i 0.133068π0.133068\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 1150.00i 1.99307i 0.0831889 + 0.996534i 0.473490π0.473490\pi
−0.0831889 + 0.996534i 0.526510π0.526510\pi
578578 − 66.0000i − 0.114187i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 −880.000 −1.50685
585585 0 0
586586 272.000 0.464164
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1120.00i 1.89189i
593593 736.000i 1.24115i 0.784148 + 0.620573i 0.213100π0.213100\pi
−0.784148 + 0.620573i 0.786900π0.786900\pi
594594 0 0
595595 0 0
596596 1120.00 1.87919
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1102.00 −1.83361 −0.916805 0.399334i 0.869241π-0.869241\pi
−0.916805 + 0.399334i 0.869241π0.869241\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 − 70.0000i − 0.114192i −0.998369 0.0570962i 0.981816π-0.981816\pi
0.998369 0.0570962i 0.0181842π-0.0181842\pi
614614 0 0
615615 0 0
616616 0 0
617617 − 1216.00i − 1.97083i −0.170178 0.985413i 0.554434π-0.554434\pi
0.170178 0.985413i 0.445566π-0.445566\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 100.000 0.159744
627627 0 0
628628 680.000i 1.08280i
629629 1120.00 1.78060
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −1232.00 −1.94322
635635 0 0
636636 0 0
637637 490.000i 0.769231i
638638 0 0
639639 0 0
640640 0 0
641641 400.000 0.624025 0.312012 0.950078i 0.398997π-0.398997\pi
0.312012 + 0.950078i 0.398997π0.398997\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1144.00i 1.75191i 0.482389 + 0.875957i 0.339769π0.339769\pi
−0.482389 + 0.875957i 0.660231π0.660231\pi
654654 0 0
655655 0 0
656656 −1280.00 −1.95122
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 1178.00 1.78215 0.891074 0.453858i 0.149953π-0.149953\pi
0.891074 + 0.453858i 0.149953π0.149953\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 770.000i 1.14413i 0.820208 + 0.572065i 0.193858π0.193858\pi
−0.820208 + 0.572065i 0.806142π0.806142\pi
674674 −700.000 −1.03858
675675 0 0
676676 −276.000 −0.408284
677677 104.000i 0.153619i 0.997046 + 0.0768095i 0.0244733π0.0244733\pi
−0.997046 + 0.0768095i 0.975527π0.975527\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −560.000 −0.812772
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 416.000i 0.601156i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 1280.00i 1.83644i
698698 − 1196.00i − 1.71347i
699699 0 0
700700 0 0
701701 520.000 0.741797 0.370899 0.928673i 0.379050π-0.379050\pi
0.370899 + 0.928673i 0.379050π0.379050\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1088.00 1.54108
707707 0 0
708708 0 0
709709 −518.000 −0.730606 −0.365303 0.930889i 0.619035π-0.619035\pi
−0.365303 + 0.930889i 0.619035π0.619035\pi
710710 0 0
711711 0 0
712712 − 1280.00i − 1.79775i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 − 722.000i − 1.00000i
723723 0 0
724724 −152.000 −0.209945
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 − 1450.00i − 1.97817i −0.147340 0.989086i 0.547071π-0.547071\pi
0.147340 0.989086i 0.452929π-0.452929\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 −1100.00 −1.47453
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 800.000 1.06101
755755 0 0
756756 0 0
757757 − 1190.00i − 1.57199i −0.618230 0.785997i 0.712150π-0.712150\pi
0.618230 0.785997i 0.287850π-0.287850\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1520.00 −1.99737 −0.998686 0.0512484i 0.983680π-0.983680\pi
−0.998686 + 0.0512484i 0.983680π0.983680\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −962.000 −1.25098 −0.625488 0.780234i 0.715100π-0.715100\pi
−0.625488 + 0.780234i 0.715100π0.715100\pi
770770 0 0
771771 0 0
772772 760.000i 0.984456i
773773 − 1496.00i − 1.93532i −0.252264 0.967658i 0.581175π-0.581175\pi
0.252264 0.967658i 0.418825π-0.418825\pi
774774 0 0
775775 0 0
776776 −1040.00 −1.34021
777777 0 0
778778 − 1360.00i − 1.74807i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −784.000 −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 − 224.000i − 0.284264i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 220.000i 0.277427i
794794 −1300.00 −1.63728
795795 0 0
796796 0 0
797797 − 1144.00i − 1.43538i −0.696361 0.717691i 0.745199π-0.745199\pi
0.696361 0.717691i 0.254801π-0.254801\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 160.000i 0.199501i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 320.000i 0.396040i
809809 560.000 0.692213 0.346106 0.938195i 0.387504π-0.387504\pi
0.346106 + 0.938195i 0.387504π0.387504\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 1564.00i 1.91198i
819819 0 0
820820 0 0
821821 −1400.00 −1.70524 −0.852619 0.522533i 0.824987π-0.824987\pi
−0.852619 + 0.522533i 0.824987π0.824987\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 1258.00 1.51749 0.758745 0.651387i 0.225813π-0.225813\pi
0.758745 + 0.651387i 0.225813π0.225813\pi
830830 0 0
831831 0 0
832832 640.000i 0.769231i
833833 784.000i 0.941176i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 759.000 0.902497
842842 116.000i 0.137767i
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 − 896.000i − 1.05660i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 410.000i 0.480657i 0.970692 + 0.240328i 0.0772551π0.0772551\pi
−0.970692 + 0.240328i 0.922745π0.922745\pi
854854 0 0
855855 0 0
856856 0 0
857857 464.000i 0.541424i 0.962660 + 0.270712i 0.0872590π0.0872590\pi
−0.962660 + 0.270712i 0.912741π0.912741\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 580.000 0.669746
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 − 1456.00i − 1.66972i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 − 1610.00i − 1.83580i −0.396807 0.917902i 0.629882π-0.629882\pi
0.396807 0.917902i 0.370118π-0.370118\pi
878878 0 0
879879 0 0
880880 0 0
881881 1600.00 1.81612 0.908059 0.418842i 0.137564π-0.137564\pi
0.908059 + 0.418842i 0.137564π0.137564\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 640.000 0.723982
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 − 1120.00i − 1.24722i
899899 0 0
900900 0 0
901901 −896.000 −0.994451
902902 0 0
903903 0 0
904904 1792.00 1.98230
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 1700.00 1.85996
915915 0 0
916916 −1768.00 −1.93013
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 − 1520.00i − 1.64859i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 1280.00i 1.37931i
929929 −1840.00 −1.98062 −0.990312 0.138859i 0.955657π-0.955657\pi
−0.990312 + 0.138859i 0.955657π0.955657\pi
930930 0 0
931931 0 0
932932 1664.00i 1.78541i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 430.000i 0.458911i 0.973319 + 0.229456i 0.0736946π0.0736946\pi
−0.973319 + 0.229456i 0.926305π0.926305\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1160.00 −1.23273 −0.616366 0.787460i 0.711396π-0.711396\pi
−0.616366 + 0.787460i 0.711396π0.711396\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 1100.00 1.15911
950950 0 0
951951 0 0
952952 0 0
953953 1456.00i 1.52781i 0.645331 + 0.763903i 0.276720π0.276720\pi
−0.645331 + 0.763903i 0.723280π0.723280\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 961.000 1.00000
962962 − 1400.00i − 1.45530i
963963 0 0
964964 1672.00 1.73444
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 968.000i 1.00000i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −352.000 −0.360656
977977 − 496.000i − 0.507677i −0.967247 0.253838i 0.918307π-0.918307\pi
0.967247 0.253838i 0.0816931π-0.0816931\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 1280.00 1.29817
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 − 1850.00i − 1.85557i −0.373119 0.927783i 0.621712π-0.621712\pi
0.373119 0.927783i 0.378288π-0.378288\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.3.f.a.199.1 2
3.2 odd 2 900.3.f.b.199.2 2
4.3 odd 2 CM 900.3.f.a.199.1 2
5.2 odd 4 36.3.d.b.19.1 yes 1
5.3 odd 4 900.3.c.b.451.1 1
5.4 even 2 inner 900.3.f.a.199.2 2
12.11 even 2 900.3.f.b.199.2 2
15.2 even 4 36.3.d.a.19.1 1
15.8 even 4 900.3.c.c.451.1 1
15.14 odd 2 900.3.f.b.199.1 2
20.3 even 4 900.3.c.b.451.1 1
20.7 even 4 36.3.d.b.19.1 yes 1
20.19 odd 2 inner 900.3.f.a.199.2 2
40.27 even 4 576.3.g.c.127.1 1
40.37 odd 4 576.3.g.c.127.1 1
45.2 even 12 324.3.f.f.271.1 2
45.7 odd 12 324.3.f.e.271.1 2
45.22 odd 12 324.3.f.e.55.1 2
45.32 even 12 324.3.f.f.55.1 2
60.23 odd 4 900.3.c.c.451.1 1
60.47 odd 4 36.3.d.a.19.1 1
60.59 even 2 900.3.f.b.199.1 2
80.27 even 4 2304.3.b.e.127.1 2
80.37 odd 4 2304.3.b.e.127.1 2
80.67 even 4 2304.3.b.e.127.2 2
80.77 odd 4 2304.3.b.e.127.2 2
120.77 even 4 576.3.g.a.127.1 1
120.107 odd 4 576.3.g.a.127.1 1
180.7 even 12 324.3.f.e.271.1 2
180.47 odd 12 324.3.f.f.271.1 2
180.67 even 12 324.3.f.e.55.1 2
180.167 odd 12 324.3.f.f.55.1 2
240.77 even 4 2304.3.b.d.127.1 2
240.107 odd 4 2304.3.b.d.127.2 2
240.197 even 4 2304.3.b.d.127.2 2
240.227 odd 4 2304.3.b.d.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.3.d.a.19.1 1 15.2 even 4
36.3.d.a.19.1 1 60.47 odd 4
36.3.d.b.19.1 yes 1 5.2 odd 4
36.3.d.b.19.1 yes 1 20.7 even 4
324.3.f.e.55.1 2 45.22 odd 12
324.3.f.e.55.1 2 180.67 even 12
324.3.f.e.271.1 2 45.7 odd 12
324.3.f.e.271.1 2 180.7 even 12
324.3.f.f.55.1 2 45.32 even 12
324.3.f.f.55.1 2 180.167 odd 12
324.3.f.f.271.1 2 45.2 even 12
324.3.f.f.271.1 2 180.47 odd 12
576.3.g.a.127.1 1 120.77 even 4
576.3.g.a.127.1 1 120.107 odd 4
576.3.g.c.127.1 1 40.27 even 4
576.3.g.c.127.1 1 40.37 odd 4
900.3.c.b.451.1 1 5.3 odd 4
900.3.c.b.451.1 1 20.3 even 4
900.3.c.c.451.1 1 15.8 even 4
900.3.c.c.451.1 1 60.23 odd 4
900.3.f.a.199.1 2 1.1 even 1 trivial
900.3.f.a.199.1 2 4.3 odd 2 CM
900.3.f.a.199.2 2 5.4 even 2 inner
900.3.f.a.199.2 2 20.19 odd 2 inner
900.3.f.b.199.1 2 15.14 odd 2
900.3.f.b.199.1 2 60.59 even 2
900.3.f.b.199.2 2 3.2 odd 2
900.3.f.b.199.2 2 12.11 even 2
2304.3.b.d.127.1 2 240.77 even 4
2304.3.b.d.127.1 2 240.227 odd 4
2304.3.b.d.127.2 2 240.107 odd 4
2304.3.b.d.127.2 2 240.197 even 4
2304.3.b.e.127.1 2 80.27 even 4
2304.3.b.e.127.1 2 80.37 odd 4
2304.3.b.e.127.2 2 80.67 even 4
2304.3.b.e.127.2 2 80.77 odd 4