Properties

Label 900.3.u.b.749.4
Level $900$
Weight $3$
Character 900.749
Analytic conductor $24.523$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,3,Mod(149,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.149");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5232237924\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 749.4
Root \(-1.40126 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 900.749
Dual form 900.3.u.b.149.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.59808 + 1.50000i) q^{3} +(10.1723 + 5.87298i) q^{7} +(4.50000 + 7.79423i) q^{9} +(13.1190 + 7.57423i) q^{11} +(15.3685 - 8.87298i) q^{13} -15.1485 q^{17} +11.2540 q^{19} +(17.6190 + 30.5169i) q^{21} +(-16.8805 - 29.2379i) q^{23} +27.0000i q^{27} +(-8.23790 - 4.75615i) q^{29} +(-28.1109 - 48.6895i) q^{31} +(22.7227 + 39.3569i) q^{33} +14.0000i q^{37} +53.2379 q^{39} +(-22.5000 + 12.9904i) q^{41} +(-17.3065 - 9.99193i) q^{43} +(-36.1531 + 62.6190i) q^{47} +(44.4839 + 77.0483i) q^{49} +(-39.3569 - 22.7227i) q^{51} +37.6651 q^{53} +(29.2388 + 16.8810i) q^{57} +(55.1190 - 31.8229i) q^{59} +(-0.618950 + 1.07205i) q^{61} +105.714i q^{63} +(74.4363 - 42.9758i) q^{67} -101.283i q^{69} -22.1046i q^{71} +60.2379i q^{73} +(88.9666 + 154.095i) q^{77} +(51.6190 - 89.4066i) q^{79} +(-40.5000 + 70.1481i) q^{81} +(-45.0333 + 78.0000i) q^{83} +(-14.2685 - 24.7137i) q^{87} +12.0964i q^{89} +208.444 q^{91} -168.665i q^{93} +(-86.3406 - 49.8488i) q^{97} +136.336i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{9} + 12 q^{11} + 152 q^{19} + 48 q^{21} + 120 q^{29} - 8 q^{31} + 240 q^{39} - 180 q^{41} + 108 q^{49} - 36 q^{51} + 348 q^{59} + 88 q^{61} + 320 q^{79} - 324 q^{81} + 800 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.59808 + 1.50000i 0.866025 + 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 10.1723 + 5.87298i 1.45319 + 0.838998i 0.998661 0.0517360i \(-0.0164754\pi\)
0.454526 + 0.890734i \(0.349809\pi\)
\(8\) 0 0
\(9\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 13.1190 + 7.57423i 1.19263 + 0.688566i 0.958903 0.283735i \(-0.0915737\pi\)
0.233729 + 0.972302i \(0.424907\pi\)
\(12\) 0 0
\(13\) 15.3685 8.87298i 1.18219 0.682537i 0.225669 0.974204i \(-0.427543\pi\)
0.956520 + 0.291667i \(0.0942099\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −15.1485 −0.891086 −0.445543 0.895261i \(-0.646989\pi\)
−0.445543 + 0.895261i \(0.646989\pi\)
\(18\) 0 0
\(19\) 11.2540 0.592318 0.296159 0.955139i \(-0.404294\pi\)
0.296159 + 0.955139i \(0.404294\pi\)
\(20\) 0 0
\(21\) 17.6190 + 30.5169i 0.838998 + 1.45319i
\(22\) 0 0
\(23\) −16.8805 29.2379i −0.733935 1.27121i −0.955189 0.295997i \(-0.904348\pi\)
0.221254 0.975216i \(-0.428985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 1.00000i
\(28\) 0 0
\(29\) −8.23790 4.75615i −0.284066 0.164005i 0.351197 0.936302i \(-0.385775\pi\)
−0.635262 + 0.772296i \(0.719108\pi\)
\(30\) 0 0
\(31\) −28.1109 48.6895i −0.906803 1.57063i −0.818479 0.574537i \(-0.805182\pi\)
−0.0883237 0.996092i \(-0.528151\pi\)
\(32\) 0 0
\(33\) 22.7227 + 39.3569i 0.688566 + 1.19263i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14.0000i 0.378378i 0.981941 + 0.189189i \(0.0605859\pi\)
−0.981941 + 0.189189i \(0.939414\pi\)
\(38\) 0 0
\(39\) 53.2379 1.36507
\(40\) 0 0
\(41\) −22.5000 + 12.9904i −0.548780 + 0.316839i −0.748630 0.662988i \(-0.769288\pi\)
0.199849 + 0.979827i \(0.435955\pi\)
\(42\) 0 0
\(43\) −17.3065 9.99193i −0.402478 0.232371i 0.285075 0.958505i \(-0.407982\pi\)
−0.687552 + 0.726135i \(0.741315\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −36.1531 + 62.6190i −0.769214 + 1.33232i 0.168775 + 0.985655i \(0.446019\pi\)
−0.937990 + 0.346664i \(0.887315\pi\)
\(48\) 0 0
\(49\) 44.4839 + 77.0483i 0.907834 + 1.57241i
\(50\) 0 0
\(51\) −39.3569 22.7227i −0.771703 0.445543i
\(52\) 0 0
\(53\) 37.6651 0.710663 0.355331 0.934740i \(-0.384368\pi\)
0.355331 + 0.934740i \(0.384368\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 29.2388 + 16.8810i 0.512962 + 0.296159i
\(58\) 0 0
\(59\) 55.1190 31.8229i 0.934219 0.539372i 0.0460759 0.998938i \(-0.485328\pi\)
0.888144 + 0.459566i \(0.151995\pi\)
\(60\) 0 0
\(61\) −0.618950 + 1.07205i −0.0101467 + 0.0175746i −0.871054 0.491187i \(-0.836563\pi\)
0.860907 + 0.508762i \(0.169897\pi\)
\(62\) 0 0
\(63\) 105.714i 1.67800i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 74.4363 42.9758i 1.11099 0.641430i 0.171904 0.985114i \(-0.445008\pi\)
0.939085 + 0.343684i \(0.111675\pi\)
\(68\) 0 0
\(69\) 101.283i 1.46787i
\(70\) 0 0
\(71\) 22.1046i 0.311332i −0.987810 0.155666i \(-0.950248\pi\)
0.987810 0.155666i \(-0.0497524\pi\)
\(72\) 0 0
\(73\) 60.2379i 0.825177i 0.910918 + 0.412588i \(0.135375\pi\)
−0.910918 + 0.412588i \(0.864625\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 88.9666 + 154.095i 1.15541 + 2.00123i
\(78\) 0 0
\(79\) 51.6190 89.4066i 0.653404 1.13173i −0.328887 0.944369i \(-0.606673\pi\)
0.982291 0.187360i \(-0.0599932\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −45.0333 + 78.0000i −0.542570 + 0.939759i 0.456185 + 0.889885i \(0.349215\pi\)
−0.998756 + 0.0498743i \(0.984118\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −14.2685 24.7137i −0.164005 0.284066i
\(88\) 0 0
\(89\) 12.0964i 0.135915i 0.997688 + 0.0679574i \(0.0216482\pi\)
−0.997688 + 0.0679574i \(0.978352\pi\)
\(90\) 0 0
\(91\) 208.444 2.29059
\(92\) 0 0
\(93\) 168.665i 1.81361i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −86.3406 49.8488i −0.890110 0.513905i −0.0161312 0.999870i \(-0.505135\pi\)
−0.873978 + 0.485965i \(0.838468\pi\)
\(98\) 0 0
\(99\) 136.336i 1.37713i
\(100\) 0 0
\(101\) −134.238 77.5023i −1.32909 0.767349i −0.343929 0.938995i \(-0.611758\pi\)
−0.985159 + 0.171646i \(0.945091\pi\)
\(102\) 0 0
\(103\) −134.852 + 77.8569i −1.30924 + 0.755892i −0.981970 0.189038i \(-0.939463\pi\)
−0.327273 + 0.944930i \(0.606130\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −84.8705 −0.793182 −0.396591 0.917995i \(-0.629807\pi\)
−0.396591 + 0.917995i \(0.629807\pi\)
\(108\) 0 0
\(109\) 38.0323 0.348920 0.174460 0.984664i \(-0.444182\pi\)
0.174460 + 0.984664i \(0.444182\pi\)
\(110\) 0 0
\(111\) −21.0000 + 36.3731i −0.189189 + 0.327685i
\(112\) 0 0
\(113\) −3.46410 6.00000i −0.0306558 0.0530973i 0.850290 0.526314i \(-0.176426\pi\)
−0.880946 + 0.473216i \(0.843093\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 138.316 + 79.8569i 1.18219 + 0.682537i
\(118\) 0 0
\(119\) −154.095 88.9666i −1.29491 0.747619i
\(120\) 0 0
\(121\) 54.2379 + 93.9428i 0.448247 + 0.776387i
\(122\) 0 0
\(123\) −77.9423 −0.633677
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 145.903i 1.14884i 0.818559 + 0.574422i \(0.194773\pi\)
−0.818559 + 0.574422i \(0.805227\pi\)
\(128\) 0 0
\(129\) −29.9758 51.9196i −0.232371 0.402478i
\(130\) 0 0
\(131\) 57.7137 33.3210i 0.440563 0.254359i −0.263274 0.964721i \(-0.584802\pi\)
0.703836 + 0.710362i \(0.251469\pi\)
\(132\) 0 0
\(133\) 114.479 + 66.0948i 0.860748 + 0.496953i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −36.6070 + 63.4052i −0.267205 + 0.462812i −0.968139 0.250414i \(-0.919433\pi\)
0.700934 + 0.713226i \(0.252767\pi\)
\(138\) 0 0
\(139\) −53.3569 92.4168i −0.383862 0.664869i 0.607748 0.794130i \(-0.292073\pi\)
−0.991611 + 0.129261i \(0.958740\pi\)
\(140\) 0 0
\(141\) −187.857 + 108.459i −1.33232 + 0.769214i
\(142\) 0 0
\(143\) 268.824 1.87989
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 266.903i 1.81567i
\(148\) 0 0
\(149\) 144.333 83.3305i 0.968676 0.559265i 0.0698433 0.997558i \(-0.477750\pi\)
0.898832 + 0.438293i \(0.144417\pi\)
\(150\) 0 0
\(151\) −1.71370 + 2.96822i −0.0113490 + 0.0196571i −0.871644 0.490139i \(-0.836946\pi\)
0.860295 + 0.509796i \(0.170279\pi\)
\(152\) 0 0
\(153\) −68.1681 118.071i −0.445543 0.771703i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −58.8338 + 33.9677i −0.374738 + 0.216355i −0.675526 0.737336i \(-0.736084\pi\)
0.300788 + 0.953691i \(0.402750\pi\)
\(158\) 0 0
\(159\) 97.8569 + 56.4977i 0.615452 + 0.355331i
\(160\) 0 0
\(161\) 396.556i 2.46308i
\(162\) 0 0
\(163\) 76.4113i 0.468781i −0.972143 0.234390i \(-0.924691\pi\)
0.972143 0.234390i \(-0.0753094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −141.752 245.522i −0.848816 1.47019i −0.882266 0.470752i \(-0.843983\pi\)
0.0334495 0.999440i \(-0.489351\pi\)
\(168\) 0 0
\(169\) 72.9597 126.370i 0.431714 0.747751i
\(170\) 0 0
\(171\) 50.6431 + 87.7165i 0.296159 + 0.512962i
\(172\) 0 0
\(173\) −67.4941 + 116.903i −0.390139 + 0.675741i −0.992468 0.122507i \(-0.960906\pi\)
0.602328 + 0.798248i \(0.294240\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 190.938 1.07874
\(178\) 0 0
\(179\) 171.445i 0.957794i 0.877871 + 0.478897i \(0.158963\pi\)
−0.877871 + 0.478897i \(0.841037\pi\)
\(180\) 0 0
\(181\) 120.794 0.667372 0.333686 0.942684i \(-0.391707\pi\)
0.333686 + 0.942684i \(0.391707\pi\)
\(182\) 0 0
\(183\) −3.21616 + 1.85685i −0.0175746 + 0.0101467i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −198.732 114.738i −1.06274 0.613572i
\(188\) 0 0
\(189\) −158.571 + 274.652i −0.838998 + 1.45319i
\(190\) 0 0
\(191\) −241.808 139.608i −1.26601 0.730933i −0.291782 0.956485i \(-0.594248\pi\)
−0.974231 + 0.225552i \(0.927581\pi\)
\(192\) 0 0
\(193\) 91.1806 52.6431i 0.472438 0.272762i −0.244822 0.969568i \(-0.578729\pi\)
0.717260 + 0.696806i \(0.245396\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57.9538 0.294182 0.147091 0.989123i \(-0.453009\pi\)
0.147091 + 0.989123i \(0.453009\pi\)
\(198\) 0 0
\(199\) 25.2702 0.126986 0.0634929 0.997982i \(-0.479776\pi\)
0.0634929 + 0.997982i \(0.479776\pi\)
\(200\) 0 0
\(201\) 257.855 1.28286
\(202\) 0 0
\(203\) −55.8656 96.7621i −0.275200 0.476661i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 151.925 263.141i 0.733935 1.27121i
\(208\) 0 0
\(209\) 147.641 + 85.2406i 0.706417 + 0.407850i
\(210\) 0 0
\(211\) 52.0161 + 90.0946i 0.246522 + 0.426989i 0.962558 0.271074i \(-0.0873789\pi\)
−0.716036 + 0.698063i \(0.754046\pi\)
\(212\) 0 0
\(213\) 33.1569 57.4294i 0.155666 0.269622i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 660.379i 3.04322i
\(218\) 0 0
\(219\) −90.3569 + 156.503i −0.412588 + 0.714624i
\(220\) 0 0
\(221\) −232.808 + 134.412i −1.05343 + 0.608199i
\(222\) 0 0
\(223\) 214.223 + 123.681i 0.960639 + 0.554625i 0.896370 0.443307i \(-0.146195\pi\)
0.0642694 + 0.997933i \(0.479528\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −151.114 + 261.738i −0.665702 + 1.15303i 0.313392 + 0.949624i \(0.398535\pi\)
−0.979094 + 0.203407i \(0.934799\pi\)
\(228\) 0 0
\(229\) 133.111 + 230.555i 0.581270 + 1.00679i 0.995329 + 0.0965395i \(0.0307774\pi\)
−0.414059 + 0.910250i \(0.635889\pi\)
\(230\) 0 0
\(231\) 533.800i 2.31082i
\(232\) 0 0
\(233\) −176.969 −0.759526 −0.379763 0.925084i \(-0.623994\pi\)
−0.379763 + 0.925084i \(0.623994\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 268.220 154.857i 1.13173 0.653404i
\(238\) 0 0
\(239\) −68.2863 + 39.4251i −0.285717 + 0.164959i −0.636009 0.771682i \(-0.719416\pi\)
0.350292 + 0.936641i \(0.386082\pi\)
\(240\) 0 0
\(241\) 110.246 190.952i 0.457452 0.792330i −0.541373 0.840782i \(-0.682095\pi\)
0.998826 + 0.0484519i \(0.0154288\pi\)
\(242\) 0 0
\(243\) −210.444 + 121.500i −0.866025 + 0.500000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 172.957 99.8569i 0.700231 0.404279i
\(248\) 0 0
\(249\) −234.000 + 135.100i −0.939759 + 0.542570i
\(250\) 0 0
\(251\) 277.373i 1.10507i 0.833490 + 0.552535i \(0.186339\pi\)
−0.833490 + 0.552535i \(0.813661\pi\)
\(252\) 0 0
\(253\) 511.427i 2.02145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −76.0322 131.692i −0.295845 0.512418i 0.679336 0.733827i \(-0.262268\pi\)
−0.975181 + 0.221409i \(0.928935\pi\)
\(258\) 0 0
\(259\) −82.2218 + 142.412i −0.317459 + 0.549854i
\(260\) 0 0
\(261\) 85.6108i 0.328011i
\(262\) 0 0
\(263\) −2.85999 + 4.95365i −0.0108745 + 0.0188352i −0.871411 0.490553i \(-0.836795\pi\)
0.860537 + 0.509388i \(0.170128\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −18.1446 + 31.4274i −0.0679574 + 0.117706i
\(268\) 0 0
\(269\) 361.531i 1.34398i −0.740560 0.671990i \(-0.765440\pi\)
0.740560 0.671990i \(-0.234560\pi\)
\(270\) 0 0
\(271\) 507.427 1.87243 0.936213 0.351433i \(-0.114306\pi\)
0.936213 + 0.351433i \(0.114306\pi\)
\(272\) 0 0
\(273\) 541.552 + 312.665i 1.98371 + 1.14529i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −193.606 111.778i −0.698937 0.403532i 0.108014 0.994149i \(-0.465551\pi\)
−0.806951 + 0.590618i \(0.798884\pi\)
\(278\) 0 0
\(279\) 252.998 438.205i 0.906803 1.57063i
\(280\) 0 0
\(281\) −39.8105 22.9846i −0.141674 0.0817957i 0.427487 0.904021i \(-0.359399\pi\)
−0.569162 + 0.822226i \(0.692732\pi\)
\(282\) 0 0
\(283\) −124.736 + 72.0161i −0.440762 + 0.254474i −0.703921 0.710279i \(-0.748569\pi\)
0.263159 + 0.964753i \(0.415236\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −305.169 −1.06331
\(288\) 0 0
\(289\) −59.5242 −0.205966
\(290\) 0 0
\(291\) −149.546 259.022i −0.513905 0.890110i
\(292\) 0 0
\(293\) −208.698 361.476i −0.712280 1.23371i −0.963999 0.265905i \(-0.914329\pi\)
0.251719 0.967800i \(-0.419004\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −204.504 + 354.212i −0.688566 + 1.19263i
\(298\) 0 0
\(299\) −518.855 299.561i −1.73530 1.00188i
\(300\) 0 0
\(301\) −117.365 203.282i −0.389917 0.675355i
\(302\) 0 0
\(303\) −232.507 402.714i −0.767349 1.32909i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 310.048i 1.00993i −0.863140 0.504965i \(-0.831505\pi\)
0.863140 0.504965i \(-0.168495\pi\)
\(308\) 0 0
\(309\) −467.141 −1.51178
\(310\) 0 0
\(311\) −242.238 + 139.856i −0.778900 + 0.449698i −0.836040 0.548668i \(-0.815135\pi\)
0.0571403 + 0.998366i \(0.481802\pi\)
\(312\) 0 0
\(313\) −25.2509 14.5786i −0.0806738 0.0465771i 0.459120 0.888374i \(-0.348165\pi\)
−0.539794 + 0.841797i \(0.681498\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −62.9859 + 109.095i −0.198694 + 0.344147i −0.948105 0.317957i \(-0.897003\pi\)
0.749411 + 0.662105i \(0.230337\pi\)
\(318\) 0 0
\(319\) −72.0484 124.791i −0.225857 0.391196i
\(320\) 0 0
\(321\) −220.500 127.306i −0.686916 0.396591i
\(322\) 0 0
\(323\) −170.481 −0.527806
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 98.8107 + 57.0484i 0.302173 + 0.174460i
\(328\) 0 0
\(329\) −735.520 + 424.653i −2.23562 + 1.29074i
\(330\) 0 0
\(331\) 232.903 403.400i 0.703635 1.21873i −0.263547 0.964647i \(-0.584892\pi\)
0.967182 0.254085i \(-0.0817743\pi\)
\(332\) 0 0
\(333\) −109.119 + 63.0000i −0.327685 + 0.189189i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 303.259 175.087i 0.899878 0.519545i 0.0227177 0.999742i \(-0.492768\pi\)
0.877161 + 0.480197i \(0.159435\pi\)
\(338\) 0 0
\(339\) 20.7846i 0.0613115i
\(340\) 0 0
\(341\) 851.673i 2.49758i
\(342\) 0 0
\(343\) 469.460i 1.36869i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 41.0594 + 71.1169i 0.118327 + 0.204948i 0.919105 0.394013i \(-0.128914\pi\)
−0.800778 + 0.598961i \(0.795580\pi\)
\(348\) 0 0
\(349\) 22.7621 39.4251i 0.0652209 0.112966i −0.831571 0.555418i \(-0.812558\pi\)
0.896792 + 0.442452i \(0.145891\pi\)
\(350\) 0 0
\(351\) 239.571 + 414.948i 0.682537 + 1.18219i
\(352\) 0 0
\(353\) 262.046 453.877i 0.742340 1.28577i −0.209087 0.977897i \(-0.567049\pi\)
0.951427 0.307873i \(-0.0996173\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −266.900 462.284i −0.747619 1.29491i
\(358\) 0 0
\(359\) 295.601i 0.823401i −0.911319 0.411701i \(-0.864935\pi\)
0.911319 0.411701i \(-0.135065\pi\)
\(360\) 0 0
\(361\) −234.347 −0.649160
\(362\) 0 0
\(363\) 325.427i 0.896494i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.1249 + 16.2379i 0.0766345 + 0.0442450i 0.537828 0.843055i \(-0.319245\pi\)
−0.461193 + 0.887300i \(0.652578\pi\)
\(368\) 0 0
\(369\) −202.500 116.913i −0.548780 0.316839i
\(370\) 0 0
\(371\) 383.141 + 221.207i 1.03273 + 0.596244i
\(372\) 0 0
\(373\) 214.334 123.746i 0.574623 0.331759i −0.184371 0.982857i \(-0.559025\pi\)
0.758994 + 0.651098i \(0.225691\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −168.805 −0.447759
\(378\) 0 0
\(379\) −300.746 −0.793525 −0.396762 0.917921i \(-0.629866\pi\)
−0.396762 + 0.917921i \(0.629866\pi\)
\(380\) 0 0
\(381\) −218.855 + 379.068i −0.574422 + 0.994928i
\(382\) 0 0
\(383\) 106.039 + 183.665i 0.276865 + 0.479544i 0.970604 0.240683i \(-0.0773713\pi\)
−0.693739 + 0.720226i \(0.744038\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 179.855i 0.464741i
\(388\) 0 0
\(389\) 190.760 + 110.135i 0.490386 + 0.283124i 0.724734 0.689028i \(-0.241962\pi\)
−0.234349 + 0.972153i \(0.575296\pi\)
\(390\) 0 0
\(391\) 255.714 + 442.909i 0.653999 + 1.13276i
\(392\) 0 0
\(393\) 199.926 0.508718
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 97.4919i 0.245572i −0.992433 0.122786i \(-0.960817\pi\)
0.992433 0.122786i \(-0.0391828\pi\)
\(398\) 0 0
\(399\) 198.284 + 343.438i 0.496953 + 0.860748i
\(400\) 0 0
\(401\) −66.8347 + 38.5870i −0.166670 + 0.0962270i −0.581015 0.813893i \(-0.697344\pi\)
0.414345 + 0.910120i \(0.364011\pi\)
\(402\) 0 0
\(403\) −864.042 498.855i −2.14402 1.23785i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −106.039 + 183.665i −0.260539 + 0.451266i
\(408\) 0 0
\(409\) −97.4355 168.763i −0.238229 0.412624i 0.721978 0.691917i \(-0.243233\pi\)
−0.960206 + 0.279293i \(0.909900\pi\)
\(410\) 0 0
\(411\) −190.216 + 109.821i −0.462812 + 0.267205i
\(412\) 0 0
\(413\) 747.582 1.81013
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 320.141i 0.767724i
\(418\) 0 0
\(419\) −196.476 + 113.435i −0.468916 + 0.270729i −0.715786 0.698320i \(-0.753931\pi\)
0.246870 + 0.969049i \(0.420598\pi\)
\(420\) 0 0
\(421\) 150.857 261.292i 0.358330 0.620645i −0.629352 0.777120i \(-0.716680\pi\)
0.987682 + 0.156475i \(0.0500130\pi\)
\(422\) 0 0
\(423\) −650.755 −1.53843
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.5923 + 7.27017i −0.0294902 + 0.0170262i
\(428\) 0 0
\(429\) 698.425 + 403.236i 1.62803 + 0.939944i
\(430\) 0 0
\(431\) 707.661i 1.64191i −0.570996 0.820953i \(-0.693443\pi\)
0.570996 0.820953i \(-0.306557\pi\)
\(432\) 0 0
\(433\) 669.883i 1.54707i 0.633751 + 0.773537i \(0.281514\pi\)
−0.633751 + 0.773537i \(0.718486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −189.974 329.044i −0.434723 0.752962i
\(438\) 0 0
\(439\) −38.3327 + 66.3941i −0.0873181 + 0.151239i −0.906377 0.422471i \(-0.861163\pi\)
0.819059 + 0.573710i \(0.194496\pi\)
\(440\) 0 0
\(441\) −400.355 + 693.435i −0.907834 + 1.57241i
\(442\) 0 0
\(443\) −340.704 + 590.117i −0.769084 + 1.33209i 0.168976 + 0.985620i \(0.445954\pi\)
−0.938060 + 0.346472i \(0.887379\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 499.983 1.11853
\(448\) 0 0
\(449\) 630.327i 1.40385i −0.712253 0.701923i \(-0.752325\pi\)
0.712253 0.701923i \(-0.247675\pi\)
\(450\) 0 0
\(451\) −393.569 −0.872657
\(452\) 0 0
\(453\) −8.90465 + 5.14110i −0.0196571 + 0.0113490i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 496.229 + 286.498i 1.08584 + 0.626910i 0.932466 0.361258i \(-0.117653\pi\)
0.153374 + 0.988168i \(0.450986\pi\)
\(458\) 0 0
\(459\) 409.008i 0.891086i
\(460\) 0 0
\(461\) 615.950 + 355.619i 1.33612 + 0.771407i 0.986229 0.165385i \(-0.0528866\pi\)
0.349887 + 0.936792i \(0.386220\pi\)
\(462\) 0 0
\(463\) −556.317 + 321.190i −1.20155 + 0.693714i −0.960899 0.276899i \(-0.910693\pi\)
−0.240648 + 0.970612i \(0.577360\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 506.331 1.08422 0.542111 0.840307i \(-0.317625\pi\)
0.542111 + 0.840307i \(0.317625\pi\)
\(468\) 0 0
\(469\) 1009.58 2.15263
\(470\) 0 0
\(471\) −203.806 −0.432710
\(472\) 0 0
\(473\) −151.362 262.167i −0.320005 0.554265i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 169.493 + 293.571i 0.355331 + 0.615452i
\(478\) 0 0
\(479\) 644.044 + 371.839i 1.34456 + 0.776282i 0.987473 0.157789i \(-0.0504365\pi\)
0.357087 + 0.934071i \(0.383770\pi\)
\(480\) 0 0
\(481\) 124.222 + 215.158i 0.258257 + 0.447315i
\(482\) 0 0
\(483\) 594.834 1030.28i 1.23154 2.13309i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 154.065i 0.316354i 0.987411 + 0.158177i \(0.0505617\pi\)
−0.987411 + 0.158177i \(0.949438\pi\)
\(488\) 0 0
\(489\) 114.617 198.522i 0.234390 0.405976i
\(490\) 0 0
\(491\) −145.167 + 83.8124i −0.295657 + 0.170697i −0.640490 0.767967i \(-0.721269\pi\)
0.344833 + 0.938664i \(0.387935\pi\)
\(492\) 0 0
\(493\) 124.791 + 72.0484i 0.253127 + 0.146143i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 129.820 224.855i 0.261207 0.452424i
\(498\) 0 0
\(499\) 247.308 + 428.351i 0.495608 + 0.858418i 0.999987 0.00506391i \(-0.00161190\pi\)
−0.504379 + 0.863482i \(0.668279\pi\)
\(500\) 0 0
\(501\) 850.514i 1.69763i
\(502\) 0 0
\(503\) 711.349 1.41421 0.707106 0.707107i \(-0.250000\pi\)
0.707106 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 379.110 218.879i 0.747751 0.431714i
\(508\) 0 0
\(509\) 717.714 414.372i 1.41005 0.814091i 0.414654 0.909979i \(-0.363902\pi\)
0.995392 + 0.0958882i \(0.0305691\pi\)
\(510\) 0 0
\(511\) −353.776 + 612.758i −0.692321 + 1.19914i
\(512\) 0 0
\(513\) 303.859i 0.592318i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −948.581 + 547.663i −1.83478 + 1.05931i
\(518\) 0 0
\(519\) −350.710 + 202.482i −0.675741 + 0.390139i
\(520\) 0 0
\(521\) 622.686i 1.19518i −0.801804 0.597588i \(-0.796126\pi\)
0.801804 0.597588i \(-0.203874\pi\)
\(522\) 0 0
\(523\) 89.4274i 0.170989i 0.996339 + 0.0854946i \(0.0272471\pi\)
−0.996339 + 0.0854946i \(0.972753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 425.837 + 737.571i 0.808039 + 1.39956i
\(528\) 0 0
\(529\) −305.403 + 528.974i −0.577322 + 0.999951i
\(530\) 0 0
\(531\) 496.071 + 286.406i 0.934219 + 0.539372i
\(532\) 0 0
\(533\) −230.527 + 399.284i −0.432508 + 0.749126i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −257.168 + 445.427i −0.478897 + 0.829474i
\(538\) 0 0
\(539\) 1347.72i 2.50042i
\(540\) 0 0
\(541\) 834.629 1.54275 0.771376 0.636380i \(-0.219569\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(542\) 0 0
\(543\) 313.833 + 181.192i 0.577961 + 0.333686i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −765.189 441.782i −1.39888 0.807646i −0.404608 0.914490i \(-0.632592\pi\)
−0.994276 + 0.106845i \(0.965925\pi\)
\(548\) 0 0
\(549\) −11.1411 −0.0202934
\(550\) 0 0
\(551\) −92.7096 53.5259i −0.168257 0.0971432i
\(552\) 0 0
\(553\) 1050.17 606.314i 1.89904 1.09641i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −256.448 −0.460410 −0.230205 0.973142i \(-0.573940\pi\)
−0.230205 + 0.973142i \(0.573940\pi\)
\(558\) 0 0
\(559\) −354.633 −0.634406
\(560\) 0 0
\(561\) −344.214 596.196i −0.613572 1.06274i
\(562\) 0 0
\(563\) 103.937 + 180.024i 0.184613 + 0.319759i 0.943446 0.331526i \(-0.107564\pi\)
−0.758833 + 0.651285i \(0.774230\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −823.957 + 475.712i −1.45319 + 0.838998i
\(568\) 0 0
\(569\) −430.923 248.794i −0.757334 0.437247i 0.0710034 0.997476i \(-0.477380\pi\)
−0.828338 + 0.560229i \(0.810713\pi\)
\(570\) 0 0
\(571\) −453.817 786.033i −0.794775 1.37659i −0.922982 0.384843i \(-0.874256\pi\)
0.128207 0.991747i \(-0.459078\pi\)
\(572\) 0 0
\(573\) −418.825 725.425i −0.730933 1.26601i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 758.810i 1.31510i 0.753413 + 0.657548i \(0.228406\pi\)
−0.753413 + 0.657548i \(0.771594\pi\)
\(578\) 0 0
\(579\) 315.859 0.545525
\(580\) 0 0
\(581\) −916.185 + 528.960i −1.57691 + 0.910430i
\(582\) 0 0
\(583\) 494.127 + 285.284i 0.847559 + 0.489338i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −378.809 + 656.117i −0.645331 + 1.11775i 0.338894 + 0.940825i \(0.389947\pi\)
−0.984225 + 0.176921i \(0.943386\pi\)
\(588\) 0 0
\(589\) −316.361 547.953i −0.537115 0.930311i
\(590\) 0 0
\(591\) 150.569 + 86.9308i 0.254769 + 0.147091i
\(592\) 0 0
\(593\) −258.648 −0.436169 −0.218084 0.975930i \(-0.569981\pi\)
−0.218084 + 0.975930i \(0.569981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 65.6538 + 37.9052i 0.109973 + 0.0634929i
\(598\) 0 0
\(599\) 495.665 286.172i 0.827488 0.477750i −0.0255038 0.999675i \(-0.508119\pi\)
0.852992 + 0.521924i \(0.174786\pi\)
\(600\) 0 0
\(601\) −68.8186 + 119.197i −0.114507 + 0.198332i −0.917582 0.397545i \(-0.869862\pi\)
0.803076 + 0.595877i \(0.203195\pi\)
\(602\) 0 0
\(603\) 669.926 + 386.782i 1.11099 + 0.641430i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0005 9.23790i 0.0263600 0.0152189i −0.486762 0.873535i \(-0.661822\pi\)
0.513122 + 0.858316i \(0.328489\pi\)
\(608\) 0 0
\(609\) 335.194i 0.550400i
\(610\) 0 0
\(611\) 1283.14i 2.10007i
\(612\) 0 0
\(613\) 392.569i 0.640405i −0.947349 0.320203i \(-0.896249\pi\)
0.947349 0.320203i \(-0.103751\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 132.994 + 230.353i 0.215550 + 0.373343i 0.953443 0.301575i \(-0.0975123\pi\)
−0.737893 + 0.674918i \(0.764179\pi\)
\(618\) 0 0
\(619\) 416.736 721.808i 0.673240 1.16609i −0.303739 0.952755i \(-0.598235\pi\)
0.976980 0.213332i \(-0.0684315\pi\)
\(620\) 0 0
\(621\) 789.423 455.774i 1.27121 0.733935i
\(622\) 0 0
\(623\) −71.0420 + 123.048i −0.114032 + 0.197509i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 255.722 + 442.923i 0.407850 + 0.706417i
\(628\) 0 0
\(629\) 212.078i 0.337168i
\(630\) 0 0
\(631\) −351.875 −0.557647 −0.278823 0.960342i \(-0.589944\pi\)
−0.278823 + 0.960342i \(0.589944\pi\)
\(632\) 0 0
\(633\) 312.097i 0.493044i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1367.30 + 789.409i 2.14646 + 1.23926i
\(638\) 0 0
\(639\) 172.288 99.4707i 0.269622 0.155666i
\(640\) 0 0
\(641\) 355.645 + 205.332i 0.554829 + 0.320331i 0.751067 0.660226i \(-0.229539\pi\)
−0.196239 + 0.980556i \(0.562873\pi\)
\(642\) 0 0
\(643\) 191.552 110.593i 0.297904 0.171995i −0.343597 0.939117i \(-0.611645\pi\)
0.641501 + 0.767122i \(0.278312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1095.26 1.69282 0.846412 0.532529i \(-0.178758\pi\)
0.846412 + 0.532529i \(0.178758\pi\)
\(648\) 0 0
\(649\) 964.137 1.48557
\(650\) 0 0
\(651\) 990.569 1715.71i 1.52161 2.63551i
\(652\) 0 0
\(653\) −516.179 894.048i −0.790473 1.36914i −0.925674 0.378322i \(-0.876501\pi\)
0.135201 0.990818i \(-0.456832\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −469.508 + 271.071i −0.714624 + 0.412588i
\(658\) 0 0
\(659\) 988.851 + 570.913i 1.50053 + 0.866333i 1.00000 0.000614829i \(0.000195706\pi\)
0.500532 + 0.865718i \(0.333138\pi\)
\(660\) 0 0
\(661\) 513.282 + 889.031i 0.776524 + 1.34498i 0.933934 + 0.357445i \(0.116352\pi\)
−0.157410 + 0.987533i \(0.550315\pi\)
\(662\) 0 0
\(663\) −806.472 −1.21640
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 321.145i 0.481477i
\(668\) 0 0
\(669\) 371.044 + 642.668i 0.554625 + 0.960639i
\(670\) 0 0
\(671\) −16.2399 + 9.37614i −0.0242026 + 0.0139734i
\(672\) 0 0
\(673\) −242.403 139.952i −0.360183 0.207952i 0.308978 0.951069i \(-0.400013\pi\)
−0.669161 + 0.743117i \(0.733346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 144.060 249.520i 0.212792 0.368567i −0.739795 0.672832i \(-0.765078\pi\)
0.952587 + 0.304265i \(0.0984108\pi\)
\(678\) 0 0
\(679\) −585.522 1014.15i −0.862330 1.49360i
\(680\) 0 0
\(681\) −785.214 + 453.343i −1.15303 + 0.665702i
\(682\) 0 0
\(683\) −283.805 −0.415527 −0.207763 0.978179i \(-0.566618\pi\)
−0.207763 + 0.978179i \(0.566618\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 798.665i 1.16254i
\(688\) 0 0
\(689\) 578.855 334.202i 0.840138 0.485054i
\(690\) 0 0
\(691\) −440.331 + 762.675i −0.637237 + 1.10373i 0.348800 + 0.937197i \(0.386589\pi\)
−0.986037 + 0.166529i \(0.946744\pi\)
\(692\) 0 0
\(693\) −800.700 + 1386.85i −1.15541 + 2.00123i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 340.840 196.784i 0.489011 0.282330i
\(698\) 0 0
\(699\) −459.780 265.454i −0.657768 0.379763i
\(700\) 0 0
\(701\) 680.500i 0.970757i 0.874304 + 0.485378i \(0.161318\pi\)
−0.874304 + 0.485378i \(0.838682\pi\)
\(702\) 0 0
\(703\) 157.556i 0.224120i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −910.339 1576.75i −1.28761 2.23020i
\(708\) 0 0
\(709\) −289.696 + 501.767i −0.408597 + 0.707711i −0.994733 0.102502i \(-0.967315\pi\)
0.586135 + 0.810213i \(0.300649\pi\)
\(710\) 0 0
\(711\) 929.141 1.30681
\(712\) 0 0
\(713\) −949.052 + 1643.81i −1.33107 + 2.30548i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −236.551 −0.329917
\(718\) 0 0
\(719\) 597.306i 0.830746i 0.909651 + 0.415373i \(0.136349\pi\)
−0.909651 + 0.415373i \(0.863651\pi\)
\(720\) 0 0
\(721\) −1829.01 −2.53677
\(722\) 0 0
\(723\) 572.855 330.738i 0.792330 0.457452i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 583.537 + 336.905i 0.802664 + 0.463419i 0.844402 0.535710i \(-0.179956\pi\)
−0.0417376 + 0.999129i \(0.513289\pi\)
\(728\) 0 0
\(729\) −729.000 −1.00000
\(730\) 0 0
\(731\) 262.167 + 151.362i 0.358642 + 0.207062i
\(732\) 0 0
\(733\) 676.816 390.760i 0.923351 0.533097i 0.0386484 0.999253i \(-0.487695\pi\)
0.884703 + 0.466156i \(0.154361\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1302.03 1.76667
\(738\) 0 0
\(739\) −232.335 −0.314391 −0.157195 0.987568i \(-0.550245\pi\)
−0.157195 + 0.987568i \(0.550245\pi\)
\(740\) 0 0
\(741\) 599.141 0.808557
\(742\) 0 0
\(743\) −251.036 434.806i −0.337868 0.585204i 0.646164 0.763199i \(-0.276372\pi\)
−0.984031 + 0.177995i \(0.943039\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −810.600 −1.08514
\(748\) 0 0
\(749\) −863.329 498.443i −1.15264 0.665478i
\(750\) 0 0
\(751\) −477.190 826.516i −0.635405 1.10055i −0.986429 0.164188i \(-0.947500\pi\)
0.351024 0.936367i \(-0.385834\pi\)
\(752\) 0 0
\(753\) −416.059 + 720.635i −0.552535 + 0.957019i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 266.379i 0.351888i −0.984400 0.175944i \(-0.943702\pi\)
0.984400 0.175944i \(-0.0562977\pi\)
\(758\) 0 0
\(759\) 767.141 1328.73i 1.01073 1.75063i
\(760\) 0 0
\(761\) 294.665 170.125i 0.387208 0.223555i −0.293742 0.955885i \(-0.594901\pi\)
0.680950 + 0.732330i \(0.261567\pi\)
\(762\) 0 0
\(763\) 386.876 + 223.363i 0.507046 + 0.292743i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 564.729 978.139i 0.736283 1.27528i
\(768\) 0 0
\(769\) 644.552 + 1116.40i 0.838170 + 1.45175i 0.891423 + 0.453171i \(0.149707\pi\)
−0.0532540 + 0.998581i \(0.516959\pi\)
\(770\) 0 0
\(771\) 456.193i 0.591690i
\(772\) 0 0
\(773\) 919.244 1.18919 0.594595 0.804025i \(-0.297312\pi\)
0.594595 + 0.804025i \(0.297312\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −427.237 + 246.665i −0.549854 + 0.317459i
\(778\) 0 0
\(779\) −253.216 + 146.194i −0.325052 + 0.187669i
\(780\) 0 0
\(781\) 167.425 289.989i 0.214373 0.371305i
\(782\) 0 0
\(783\) 128.416 222.423i 0.164005 0.284066i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1094.40 + 631.855i −1.39060 + 0.802865i −0.993382 0.114858i \(-0.963359\pi\)
−0.397221 + 0.917723i \(0.630025\pi\)
\(788\) 0 0
\(789\) −14.8609 + 8.57997i −0.0188352 + 0.0108745i
\(790\) 0 0
\(791\) 81.3784i 0.102880i
\(792\) 0 0
\(793\) 21.9677i 0.0277021i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −306.461 530.806i −0.384518 0.666006i 0.607184 0.794561i \(-0.292299\pi\)
−0.991702 + 0.128556i \(0.958966\pi\)
\(798\) 0 0
\(799\) 547.663 948.581i 0.685436 1.18721i
\(800\) 0 0
\(801\) −94.2822 + 54.4339i −0.117706 + 0.0679574i
\(802\) 0 0
\(803\) −456.256 + 790.258i −0.568189 + 0.984132i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 542.296 939.284i 0.671990 1.16392i
\(808\) 0 0
\(809\) 273.189i 0.337687i 0.985643 + 0.168844i \(0.0540033\pi\)
−0.985643 + 0.168844i \(0.945997\pi\)
\(810\) 0 0
\(811\) −1446.49 −1.78359 −0.891793 0.452444i \(-0.850552\pi\)
−0.891793 + 0.452444i \(0.850552\pi\)
\(812\) 0 0
\(813\) 1318.34 + 761.141i 1.62157 + 0.936213i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −194.768 112.450i −0.238395 0.137637i
\(818\) 0 0
\(819\) 937.996 + 1624.66i 1.14529 + 1.98371i
\(820\) 0 0
\(821\) 221.813 + 128.064i 0.270174 + 0.155985i 0.628967 0.777432i \(-0.283478\pi\)
−0.358793 + 0.933417i \(0.616812\pi\)
\(822\) 0 0
\(823\) −1065.59 + 615.218i −1.29476 + 0.747531i −0.979494 0.201473i \(-0.935427\pi\)
−0.315267 + 0.949003i \(0.602094\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −726.246 −0.878169 −0.439085 0.898446i \(-0.644697\pi\)
−0.439085 + 0.898446i \(0.644697\pi\)
\(828\) 0 0
\(829\) −1439.23 −1.73610 −0.868052 0.496474i \(-0.834628\pi\)
−0.868052 + 0.496474i \(0.834628\pi\)
\(830\) 0 0
\(831\) −335.335 580.817i −0.403532 0.698937i
\(832\) 0 0
\(833\) −673.862 1167.16i −0.808958 1.40116i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1314.62 758.994i 1.57063 0.906803i
\(838\) 0 0
\(839\) −968.135 558.953i −1.15392 0.666213i −0.204077 0.978955i \(-0.565419\pi\)
−0.949838 + 0.312742i \(0.898753\pi\)
\(840\) 0 0
\(841\) −375.258 649.966i −0.446205 0.772849i
\(842\) 0 0
\(843\) −68.9538 119.431i −0.0817957 0.141674i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1274.15i 1.50431i
\(848\) 0 0
\(849\) −432.097 −0.508948
\(850\) 0 0
\(851\) 409.331 236.327i 0.481000 0.277705i
\(852\) 0 0
\(853\) −602.834 348.046i −0.706722 0.408026i 0.103124 0.994669i \(-0.467116\pi\)
−0.809846 + 0.586642i \(0.800449\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −430.149 + 745.040i −0.501924 + 0.869358i 0.498073 + 0.867135i \(0.334041\pi\)
−0.999998 + 0.00222347i \(0.999292\pi\)
\(858\) 0 0
\(859\) −321.216 556.362i −0.373942 0.647686i 0.616226 0.787569i \(-0.288661\pi\)
−0.990168 + 0.139883i \(0.955327\pi\)
\(860\) 0 0
\(861\) −792.853 457.754i −0.920851 0.531654i
\(862\) 0 0
\(863\) 1466.58 1.69940 0.849698 0.527269i \(-0.176784\pi\)
0.849698 + 0.527269i \(0.176784\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −154.648 89.2863i −0.178372 0.102983i
\(868\) 0 0
\(869\) 1354.37 781.948i 1.55854 0.899825i
\(870\) 0 0
\(871\) 762.647 1320.94i 0.875599 1.51658i
\(872\) 0 0
\(873\) 897.278i 1.02781i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −167.461 + 96.6835i −0.190947 + 0.110243i −0.592426 0.805625i \(-0.701830\pi\)
0.401479 + 0.915868i \(0.368496\pi\)
\(878\) 0 0
\(879\) 1252.19i 1.42456i
\(880\) 0 0
\(881\) 554.368i 0.629249i 0.949216 + 0.314624i \(0.101879\pi\)
−0.949216 + 0.314624i \(0.898121\pi\)
\(882\) 0 0
\(883\) 352.460i 0.399162i −0.979881 0.199581i \(-0.936042\pi\)
0.979881 0.199581i \(-0.0639580\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 538.140 + 932.087i 0.606697 + 1.05083i 0.991781 + 0.127949i \(0.0408393\pi\)
−0.385084 + 0.922882i \(0.625827\pi\)
\(888\) 0 0
\(889\) −856.887 + 1484.17i −0.963877 + 1.66948i
\(890\) 0 0
\(891\) −1062.63 + 613.513i −1.19263 + 0.688566i
\(892\) 0 0
\(893\) −406.868 + 704.716i −0.455619 + 0.789155i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −898.683 1556.56i −1.00188 1.73530i
\(898\) 0 0
\(899\) 534.799i 0.594882i
\(900\) 0 0
\(901\) −570.569 −0.633261
\(902\) 0 0
\(903\) 704.190i 0.779833i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 191.385 + 110.496i 0.211008 + 0.121826i 0.601780 0.798662i \(-0.294458\pi\)
−0.390772 + 0.920488i \(0.627792\pi\)
\(908\) 0 0
\(909\) 1395.04i 1.53470i
\(910\) 0 0
\(911\) 1535.28 + 886.394i 1.68527 + 0.972991i 0.958057 + 0.286578i \(0.0925177\pi\)
0.727212 + 0.686413i \(0.240816\pi\)
\(912\) 0 0
\(913\) −1181.58 + 682.185i −1.29417 + 0.747191i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 782.775 0.853626
\(918\) 0 0
\(919\) −1006.85 −1.09560 −0.547799 0.836610i \(-0.684534\pi\)
−0.547799 + 0.836610i \(0.684534\pi\)
\(920\) 0 0
\(921\) 465.073 805.529i 0.504965 0.874625i
\(922\) 0 0
\(923\) −196.134 339.714i −0.212496 0.368054i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1213.67 700.712i −1.30924 0.755892i
\(928\) 0 0
\(929\) 974.758 + 562.777i 1.04926 + 0.605788i 0.922441 0.386139i \(-0.126191\pi\)
0.126814 + 0.991926i \(0.459525\pi\)
\(930\) 0 0
\(931\) 500.623 + 867.104i 0.537726 + 0.931369i
\(932\) 0 0
\(933\) −839.137 −0.899396
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1343.20i 1.43351i 0.697324 + 0.716756i \(0.254374\pi\)
−0.697324 + 0.716756i \(0.745626\pi\)
\(938\) 0 0
\(939\) −43.7359 75.7527i −0.0465771 0.0806738i
\(940\) 0 0
\(941\) 618.375 357.019i 0.657147 0.379404i −0.134042 0.990976i \(-0.542796\pi\)
0.791189 + 0.611572i \(0.209462\pi\)
\(942\) 0 0
\(943\) 759.623 + 438.569i 0.805539 + 0.465078i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 358.220 620.456i 0.378268 0.655180i −0.612542 0.790438i \(-0.709853\pi\)
0.990810 + 0.135258i \(0.0431863\pi\)
\(948\) 0 0
\(949\) 534.490 + 925.764i 0.563214 + 0.975515i
\(950\) 0 0
\(951\) −327.284 + 188.958i −0.344147 + 0.198694i
\(952\) 0 0
\(953\) 793.300 0.832424 0.416212 0.909268i \(-0.363357\pi\)
0.416212 + 0.909268i \(0.363357\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 432.290i 0.451714i
\(958\) 0 0
\(959\) −744.756 + 429.985i −0.776596 + 0.448368i
\(960\) 0 0
\(961\) −1099.94 + 1905.16i −1.14458 + 1.98247i
\(962\) 0 0
\(963\) −381.917 661.500i −0.396591 0.686916i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1583.67 914.331i 1.63771 0.945533i 0.656093 0.754680i \(-0.272208\pi\)
0.981619 0.190853i \(-0.0611254\pi\)
\(968\) 0 0
\(969\) −442.923 255.722i −0.457093 0.263903i
\(970\) 0 0
\(971\) 1843.33i 1.89839i −0.314691 0.949194i \(-0.601901\pi\)
0.314691 0.949194i \(-0.398099\pi\)
\(972\) 0 0
\(973\) 1253.46i 1.28824i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 167.195 + 289.591i 0.171131 + 0.296408i 0.938816 0.344420i \(-0.111924\pi\)
−0.767684 + 0.640828i \(0.778591\pi\)
\(978\) 0 0
\(979\) −91.6210 + 158.692i −0.0935863 + 0.162096i
\(980\) 0 0
\(981\) 171.145 + 296.432i 0.174460 + 0.302173i
\(982\) 0 0
\(983\) 926.480 1604.71i 0.942502 1.63246i 0.181825 0.983331i \(-0.441800\pi\)
0.760677 0.649131i \(-0.224867\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2547.92 −2.58148
\(988\) 0 0
\(989\) 674.676i 0.682180i
\(990\) 0 0
\(991\) 415.419 0.419192 0.209596 0.977788i \(-0.432785\pi\)
0.209596 + 0.977788i \(0.432785\pi\)
\(992\) 0 0
\(993\) 1210.20 698.710i 1.21873 0.703635i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1033.70 596.808i −1.03681 0.598604i −0.117884 0.993027i \(-0.537611\pi\)
−0.918929 + 0.394423i \(0.870944\pi\)
\(998\) 0 0
\(999\) −378.000 −0.378378
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.3.u.b.749.4 8
3.2 odd 2 2700.3.u.a.2249.4 8
5.2 odd 4 900.3.p.b.101.1 4
5.3 odd 4 180.3.o.a.101.2 yes 4
5.4 even 2 inner 900.3.u.b.749.1 8
9.4 even 3 2700.3.u.a.449.1 8
9.5 odd 6 inner 900.3.u.b.149.1 8
15.2 even 4 2700.3.p.a.1601.1 4
15.8 even 4 540.3.o.a.521.1 4
15.14 odd 2 2700.3.u.a.2249.1 8
20.3 even 4 720.3.bs.a.641.2 4
45.4 even 6 2700.3.u.a.449.4 8
45.13 odd 12 540.3.o.a.341.1 4
45.14 odd 6 inner 900.3.u.b.149.4 8
45.22 odd 12 2700.3.p.a.2501.1 4
45.23 even 12 180.3.o.a.41.2 4
45.32 even 12 900.3.p.b.401.1 4
45.38 even 12 1620.3.g.a.161.1 4
45.43 odd 12 1620.3.g.a.161.3 4
60.23 odd 4 2160.3.bs.a.1601.1 4
180.23 odd 12 720.3.bs.a.401.2 4
180.103 even 12 2160.3.bs.a.881.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.3.o.a.41.2 4 45.23 even 12
180.3.o.a.101.2 yes 4 5.3 odd 4
540.3.o.a.341.1 4 45.13 odd 12
540.3.o.a.521.1 4 15.8 even 4
720.3.bs.a.401.2 4 180.23 odd 12
720.3.bs.a.641.2 4 20.3 even 4
900.3.p.b.101.1 4 5.2 odd 4
900.3.p.b.401.1 4 45.32 even 12
900.3.u.b.149.1 8 9.5 odd 6 inner
900.3.u.b.149.4 8 45.14 odd 6 inner
900.3.u.b.749.1 8 5.4 even 2 inner
900.3.u.b.749.4 8 1.1 even 1 trivial
1620.3.g.a.161.1 4 45.38 even 12
1620.3.g.a.161.3 4 45.43 odd 12
2160.3.bs.a.881.1 4 180.103 even 12
2160.3.bs.a.1601.1 4 60.23 odd 4
2700.3.p.a.1601.1 4 15.2 even 4
2700.3.p.a.2501.1 4 45.22 odd 12
2700.3.u.a.449.1 8 9.4 even 3
2700.3.u.a.449.4 8 45.4 even 6
2700.3.u.a.2249.1 8 15.14 odd 2
2700.3.u.a.2249.4 8 3.2 odd 2