Properties

Label 9000.2.a.p.1.1
Level $9000$
Weight $2$
Character 9000.1
Self dual yes
Analytic conductor $71.865$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3000)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 9000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.38197 q^{7} +O(q^{10})\) \(q+1.38197 q^{7} +1.00000 q^{11} +0.236068 q^{13} +3.85410 q^{17} -6.23607 q^{19} -8.70820 q^{23} +1.76393 q^{29} +1.09017 q^{31} -1.76393 q^{37} +9.09017 q^{41} +3.14590 q^{43} +2.23607 q^{47} -5.09017 q^{49} +5.61803 q^{53} +11.8541 q^{59} +3.85410 q^{61} +1.52786 q^{67} -10.5623 q^{71} -0.854102 q^{73} +1.38197 q^{77} +0.291796 q^{79} +0.909830 q^{83} +11.0000 q^{89} +0.326238 q^{91} +16.7984 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{7} + 2 q^{11} - 4 q^{13} + q^{17} - 8 q^{19} - 4 q^{23} + 8 q^{29} - 9 q^{31} - 8 q^{37} + 7 q^{41} + 13 q^{43} + q^{49} + 9 q^{53} + 17 q^{59} + q^{61} + 12 q^{67} - q^{71} + 5 q^{73} + 5 q^{77} + 14 q^{79} + 13 q^{83} + 22 q^{89} - 15 q^{91} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.38197 0.522334 0.261167 0.965294i \(-0.415893\pi\)
0.261167 + 0.965294i \(0.415893\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 0.236068 0.0654735 0.0327367 0.999464i \(-0.489578\pi\)
0.0327367 + 0.999464i \(0.489578\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.85410 0.934757 0.467379 0.884057i \(-0.345199\pi\)
0.467379 + 0.884057i \(0.345199\pi\)
\(18\) 0 0
\(19\) −6.23607 −1.43065 −0.715326 0.698791i \(-0.753722\pi\)
−0.715326 + 0.698791i \(0.753722\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.70820 −1.81579 −0.907893 0.419202i \(-0.862310\pi\)
−0.907893 + 0.419202i \(0.862310\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.76393 0.327554 0.163777 0.986497i \(-0.447632\pi\)
0.163777 + 0.986497i \(0.447632\pi\)
\(30\) 0 0
\(31\) 1.09017 0.195800 0.0979002 0.995196i \(-0.468787\pi\)
0.0979002 + 0.995196i \(0.468787\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.76393 −0.289989 −0.144994 0.989432i \(-0.546316\pi\)
−0.144994 + 0.989432i \(0.546316\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.09017 1.41965 0.709823 0.704380i \(-0.248775\pi\)
0.709823 + 0.704380i \(0.248775\pi\)
\(42\) 0 0
\(43\) 3.14590 0.479745 0.239872 0.970804i \(-0.422894\pi\)
0.239872 + 0.970804i \(0.422894\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.23607 0.326164 0.163082 0.986613i \(-0.447856\pi\)
0.163082 + 0.986613i \(0.447856\pi\)
\(48\) 0 0
\(49\) −5.09017 −0.727167
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.61803 0.771696 0.385848 0.922562i \(-0.373909\pi\)
0.385848 + 0.922562i \(0.373909\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.8541 1.54327 0.771636 0.636064i \(-0.219439\pi\)
0.771636 + 0.636064i \(0.219439\pi\)
\(60\) 0 0
\(61\) 3.85410 0.493467 0.246734 0.969083i \(-0.420643\pi\)
0.246734 + 0.969083i \(0.420643\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52786 0.186658 0.0933292 0.995635i \(-0.470249\pi\)
0.0933292 + 0.995635i \(0.470249\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.5623 −1.25352 −0.626758 0.779214i \(-0.715618\pi\)
−0.626758 + 0.779214i \(0.715618\pi\)
\(72\) 0 0
\(73\) −0.854102 −0.0999651 −0.0499825 0.998750i \(-0.515917\pi\)
−0.0499825 + 0.998750i \(0.515917\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.38197 0.157490
\(78\) 0 0
\(79\) 0.291796 0.0328296 0.0164148 0.999865i \(-0.494775\pi\)
0.0164148 + 0.999865i \(0.494775\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.909830 0.0998668 0.0499334 0.998753i \(-0.484099\pi\)
0.0499334 + 0.998753i \(0.484099\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.0000 1.16600 0.582999 0.812473i \(-0.301879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(90\) 0 0
\(91\) 0.326238 0.0341990
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 16.7984 1.70562 0.852808 0.522224i \(-0.174898\pi\)
0.852808 + 0.522224i \(0.174898\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.944272 −0.0939586 −0.0469793 0.998896i \(-0.514959\pi\)
−0.0469793 + 0.998896i \(0.514959\pi\)
\(102\) 0 0
\(103\) 9.61803 0.947693 0.473847 0.880607i \(-0.342865\pi\)
0.473847 + 0.880607i \(0.342865\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.32624 0.708254 0.354127 0.935197i \(-0.384778\pi\)
0.354127 + 0.935197i \(0.384778\pi\)
\(108\) 0 0
\(109\) 1.94427 0.186227 0.0931137 0.995655i \(-0.470318\pi\)
0.0931137 + 0.995655i \(0.470318\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.70820 0.348838 0.174419 0.984671i \(-0.444195\pi\)
0.174419 + 0.984671i \(0.444195\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.32624 0.488255
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.4721 1.01799 0.508994 0.860770i \(-0.330018\pi\)
0.508994 + 0.860770i \(0.330018\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.6180 1.10244 0.551221 0.834359i \(-0.314162\pi\)
0.551221 + 0.834359i \(0.314162\pi\)
\(132\) 0 0
\(133\) −8.61803 −0.747278
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.0000 0.939793 0.469897 0.882721i \(-0.344291\pi\)
0.469897 + 0.882721i \(0.344291\pi\)
\(138\) 0 0
\(139\) −20.4164 −1.73170 −0.865849 0.500306i \(-0.833221\pi\)
−0.865849 + 0.500306i \(0.833221\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.236068 0.0197410
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.4164 1.18104 0.590519 0.807024i \(-0.298923\pi\)
0.590519 + 0.807024i \(0.298923\pi\)
\(150\) 0 0
\(151\) −2.18034 −0.177434 −0.0887168 0.996057i \(-0.528277\pi\)
−0.0887168 + 0.996057i \(0.528277\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.2705 −1.69757 −0.848786 0.528737i \(-0.822666\pi\)
−0.848786 + 0.528737i \(0.822666\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0344 −0.948447
\(162\) 0 0
\(163\) 7.00000 0.548282 0.274141 0.961689i \(-0.411606\pi\)
0.274141 + 0.961689i \(0.411606\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.9443 1.15642 0.578211 0.815887i \(-0.303751\pi\)
0.578211 + 0.815887i \(0.303751\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.9098 0.829459 0.414730 0.909945i \(-0.363876\pi\)
0.414730 + 0.909945i \(0.363876\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.4164 −0.778559 −0.389279 0.921120i \(-0.627276\pi\)
−0.389279 + 0.921120i \(0.627276\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.85410 0.281840
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.23607 0.161796 0.0808981 0.996722i \(-0.474221\pi\)
0.0808981 + 0.996722i \(0.474221\pi\)
\(192\) 0 0
\(193\) −21.9443 −1.57958 −0.789792 0.613375i \(-0.789811\pi\)
−0.789792 + 0.613375i \(0.789811\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.05573 0.288959 0.144479 0.989508i \(-0.453849\pi\)
0.144479 + 0.989508i \(0.453849\pi\)
\(198\) 0 0
\(199\) −23.4721 −1.66390 −0.831948 0.554854i \(-0.812774\pi\)
−0.831948 + 0.554854i \(0.812774\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.43769 0.171093
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.23607 −0.431358
\(210\) 0 0
\(211\) 17.8885 1.23150 0.615749 0.787942i \(-0.288854\pi\)
0.615749 + 0.787942i \(0.288854\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.50658 0.102273
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.909830 0.0612018
\(222\) 0 0
\(223\) −3.00000 −0.200895 −0.100447 0.994942i \(-0.532027\pi\)
−0.100447 + 0.994942i \(0.532027\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.6525 1.23801 0.619004 0.785388i \(-0.287536\pi\)
0.619004 + 0.785388i \(0.287536\pi\)
\(228\) 0 0
\(229\) 9.23607 0.610337 0.305168 0.952298i \(-0.401287\pi\)
0.305168 + 0.952298i \(0.401287\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.56231 −0.167862 −0.0839311 0.996472i \(-0.526748\pi\)
−0.0839311 + 0.996472i \(0.526748\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.56231 0.230426 0.115213 0.993341i \(-0.463245\pi\)
0.115213 + 0.993341i \(0.463245\pi\)
\(240\) 0 0
\(241\) 6.29180 0.405290 0.202645 0.979252i \(-0.435046\pi\)
0.202645 + 0.979252i \(0.435046\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.47214 −0.0936698
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.6180 −0.859563 −0.429781 0.902933i \(-0.641409\pi\)
−0.429781 + 0.902933i \(0.641409\pi\)
\(252\) 0 0
\(253\) −8.70820 −0.547480
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) −2.43769 −0.151471
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.9787 −1.41693 −0.708464 0.705747i \(-0.750612\pi\)
−0.708464 + 0.705747i \(0.750612\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 28.2148 1.72029 0.860143 0.510053i \(-0.170374\pi\)
0.860143 + 0.510053i \(0.170374\pi\)
\(270\) 0 0
\(271\) 9.50658 0.577483 0.288742 0.957407i \(-0.406763\pi\)
0.288742 + 0.957407i \(0.406763\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.0344 1.26384 0.631919 0.775035i \(-0.282268\pi\)
0.631919 + 0.775035i \(0.282268\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.90983 0.352551 0.176275 0.984341i \(-0.443595\pi\)
0.176275 + 0.984341i \(0.443595\pi\)
\(282\) 0 0
\(283\) 25.9443 1.54223 0.771113 0.636698i \(-0.219700\pi\)
0.771113 + 0.636698i \(0.219700\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.5623 0.741529
\(288\) 0 0
\(289\) −2.14590 −0.126229
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.58359 0.267776 0.133888 0.990996i \(-0.457254\pi\)
0.133888 + 0.990996i \(0.457254\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.05573 −0.118886
\(300\) 0 0
\(301\) 4.34752 0.250587
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 18.7082 1.06773 0.533867 0.845569i \(-0.320738\pi\)
0.533867 + 0.845569i \(0.320738\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.43769 −0.194934 −0.0974669 0.995239i \(-0.531074\pi\)
−0.0974669 + 0.995239i \(0.531074\pi\)
\(312\) 0 0
\(313\) −22.5066 −1.27215 −0.636073 0.771628i \(-0.719442\pi\)
−0.636073 + 0.771628i \(0.719442\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.7639 1.22238 0.611192 0.791482i \(-0.290690\pi\)
0.611192 + 0.791482i \(0.290690\pi\)
\(318\) 0 0
\(319\) 1.76393 0.0987612
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.0344 −1.33731
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.09017 0.170367
\(330\) 0 0
\(331\) −23.6180 −1.29816 −0.649082 0.760718i \(-0.724847\pi\)
−0.649082 + 0.760718i \(0.724847\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.9443 0.923013 0.461507 0.887137i \(-0.347309\pi\)
0.461507 + 0.887137i \(0.347309\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.09017 0.0590360
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.2705 0.873447 0.436723 0.899596i \(-0.356139\pi\)
0.436723 + 0.899596i \(0.356139\pi\)
\(348\) 0 0
\(349\) 34.2705 1.83446 0.917229 0.398360i \(-0.130421\pi\)
0.917229 + 0.398360i \(0.130421\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.9787 1.54238 0.771191 0.636604i \(-0.219662\pi\)
0.771191 + 0.636604i \(0.219662\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.4164 −1.55254 −0.776269 0.630401i \(-0.782890\pi\)
−0.776269 + 0.630401i \(0.782890\pi\)
\(360\) 0 0
\(361\) 19.8885 1.04677
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.61803 −0.0844607 −0.0422303 0.999108i \(-0.513446\pi\)
−0.0422303 + 0.999108i \(0.513446\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.76393 0.403083
\(372\) 0 0
\(373\) 11.9098 0.616668 0.308334 0.951278i \(-0.400229\pi\)
0.308334 + 0.951278i \(0.400229\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.416408 0.0214461
\(378\) 0 0
\(379\) 1.38197 0.0709868 0.0354934 0.999370i \(-0.488700\pi\)
0.0354934 + 0.999370i \(0.488700\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.7984 0.756162 0.378081 0.925773i \(-0.376584\pi\)
0.378081 + 0.925773i \(0.376584\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.79837 −0.395393 −0.197697 0.980263i \(-0.563346\pi\)
−0.197697 + 0.980263i \(0.563346\pi\)
\(390\) 0 0
\(391\) −33.5623 −1.69732
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −8.36068 −0.419610 −0.209805 0.977743i \(-0.567283\pi\)
−0.209805 + 0.977743i \(0.567283\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.2918 −1.16314 −0.581568 0.813498i \(-0.697561\pi\)
−0.581568 + 0.813498i \(0.697561\pi\)
\(402\) 0 0
\(403\) 0.257354 0.0128197
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.76393 −0.0874349
\(408\) 0 0
\(409\) 33.5967 1.66125 0.830626 0.556831i \(-0.187983\pi\)
0.830626 + 0.556831i \(0.187983\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.3820 0.806104
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.3262 1.13956 0.569781 0.821797i \(-0.307028\pi\)
0.569781 + 0.821797i \(0.307028\pi\)
\(420\) 0 0
\(421\) 6.58359 0.320865 0.160432 0.987047i \(-0.448711\pi\)
0.160432 + 0.987047i \(0.448711\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.32624 0.257755
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.3607 0.739898 0.369949 0.929052i \(-0.379375\pi\)
0.369949 + 0.929052i \(0.379375\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 54.3050 2.59776
\(438\) 0 0
\(439\) 2.56231 0.122292 0.0611461 0.998129i \(-0.480524\pi\)
0.0611461 + 0.998129i \(0.480524\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.14590 −0.196978 −0.0984888 0.995138i \(-0.531401\pi\)
−0.0984888 + 0.995138i \(0.531401\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.14590 −0.242850 −0.121425 0.992601i \(-0.538746\pi\)
−0.121425 + 0.992601i \(0.538746\pi\)
\(450\) 0 0
\(451\) 9.09017 0.428039
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.0344 0.937172 0.468586 0.883418i \(-0.344764\pi\)
0.468586 + 0.883418i \(0.344764\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0557 −0.934088 −0.467044 0.884234i \(-0.654681\pi\)
−0.467044 + 0.884234i \(0.654681\pi\)
\(462\) 0 0
\(463\) 37.9230 1.76243 0.881215 0.472715i \(-0.156726\pi\)
0.881215 + 0.472715i \(0.156726\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.56231 −0.303667 −0.151834 0.988406i \(-0.548518\pi\)
−0.151834 + 0.988406i \(0.548518\pi\)
\(468\) 0 0
\(469\) 2.11146 0.0974980
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.14590 0.144649
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.5967 −1.53507 −0.767537 0.641004i \(-0.778518\pi\)
−0.767537 + 0.641004i \(0.778518\pi\)
\(480\) 0 0
\(481\) −0.416408 −0.0189866
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 23.5279 1.06615 0.533075 0.846068i \(-0.321036\pi\)
0.533075 + 0.846068i \(0.321036\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.0901699 0.00406931 0.00203466 0.999998i \(-0.499352\pi\)
0.00203466 + 0.999998i \(0.499352\pi\)
\(492\) 0 0
\(493\) 6.79837 0.306183
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.5967 −0.654754
\(498\) 0 0
\(499\) −28.7771 −1.28824 −0.644120 0.764925i \(-0.722776\pi\)
−0.644120 + 0.764925i \(0.722776\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.9787 −1.33668 −0.668342 0.743854i \(-0.732996\pi\)
−0.668342 + 0.743854i \(0.732996\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −40.0689 −1.77602 −0.888011 0.459822i \(-0.847913\pi\)
−0.888011 + 0.459822i \(0.847913\pi\)
\(510\) 0 0
\(511\) −1.18034 −0.0522152
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.23607 0.0983422
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.3820 1.33106 0.665529 0.746372i \(-0.268206\pi\)
0.665529 + 0.746372i \(0.268206\pi\)
\(522\) 0 0
\(523\) −7.05573 −0.308525 −0.154263 0.988030i \(-0.549300\pi\)
−0.154263 + 0.988030i \(0.549300\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.20163 0.183026
\(528\) 0 0
\(529\) 52.8328 2.29708
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.14590 0.0929492
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.09017 −0.219249
\(540\) 0 0
\(541\) −14.5066 −0.623686 −0.311843 0.950134i \(-0.600946\pi\)
−0.311843 + 0.950134i \(0.600946\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20.7984 −0.889274 −0.444637 0.895711i \(-0.646667\pi\)
−0.444637 + 0.895711i \(0.646667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11.0000 −0.468616
\(552\) 0 0
\(553\) 0.403252 0.0171480
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.2705 1.70632 0.853158 0.521652i \(-0.174684\pi\)
0.853158 + 0.521652i \(0.174684\pi\)
\(558\) 0 0
\(559\) 0.742646 0.0314106
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.03444 −0.212176 −0.106088 0.994357i \(-0.533833\pi\)
−0.106088 + 0.994357i \(0.533833\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.7082 0.700444 0.350222 0.936667i \(-0.386106\pi\)
0.350222 + 0.936667i \(0.386106\pi\)
\(570\) 0 0
\(571\) 6.85410 0.286835 0.143418 0.989662i \(-0.454191\pi\)
0.143418 + 0.989662i \(0.454191\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 26.5967 1.10724 0.553619 0.832770i \(-0.313247\pi\)
0.553619 + 0.832770i \(0.313247\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.25735 0.0521638
\(582\) 0 0
\(583\) 5.61803 0.232675
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.36068 0.0561613 0.0280806 0.999606i \(-0.491060\pi\)
0.0280806 + 0.999606i \(0.491060\pi\)
\(588\) 0 0
\(589\) −6.79837 −0.280122
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.5410 −1.21310 −0.606552 0.795044i \(-0.707448\pi\)
−0.606552 + 0.795044i \(0.707448\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.1591 −1.27312 −0.636562 0.771225i \(-0.719644\pi\)
−0.636562 + 0.771225i \(0.719644\pi\)
\(600\) 0 0
\(601\) −5.36068 −0.218667 −0.109333 0.994005i \(-0.534872\pi\)
−0.109333 + 0.994005i \(0.534872\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −17.8885 −0.726074 −0.363037 0.931775i \(-0.618260\pi\)
−0.363037 + 0.931775i \(0.618260\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.527864 0.0213551
\(612\) 0 0
\(613\) −17.0000 −0.686624 −0.343312 0.939222i \(-0.611549\pi\)
−0.343312 + 0.939222i \(0.611549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.5279 −1.30952 −0.654761 0.755836i \(-0.727231\pi\)
−0.654761 + 0.755836i \(0.727231\pi\)
\(618\) 0 0
\(619\) −30.8328 −1.23928 −0.619638 0.784888i \(-0.712720\pi\)
−0.619638 + 0.784888i \(0.712720\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.2016 0.609040
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.79837 −0.271069
\(630\) 0 0
\(631\) −36.8885 −1.46851 −0.734255 0.678874i \(-0.762468\pi\)
−0.734255 + 0.678874i \(0.762468\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.20163 −0.0476102
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.1246 1.15035 0.575177 0.818029i \(-0.304933\pi\)
0.575177 + 0.818029i \(0.304933\pi\)
\(642\) 0 0
\(643\) −26.9443 −1.06258 −0.531289 0.847191i \(-0.678292\pi\)
−0.531289 + 0.847191i \(0.678292\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.6312 1.71532 0.857660 0.514218i \(-0.171918\pi\)
0.857660 + 0.514218i \(0.171918\pi\)
\(648\) 0 0
\(649\) 11.8541 0.465314
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.5410 −0.960364 −0.480182 0.877169i \(-0.659429\pi\)
−0.480182 + 0.877169i \(0.659429\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −28.3050 −1.10260 −0.551302 0.834306i \(-0.685869\pi\)
−0.551302 + 0.834306i \(0.685869\pi\)
\(660\) 0 0
\(661\) 32.0344 1.24600 0.622998 0.782224i \(-0.285915\pi\)
0.622998 + 0.782224i \(0.285915\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.3607 −0.594768
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.85410 0.148786
\(672\) 0 0
\(673\) −46.2492 −1.78278 −0.891388 0.453240i \(-0.850268\pi\)
−0.891388 + 0.453240i \(0.850268\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 45.0132 1.73000 0.864998 0.501775i \(-0.167320\pi\)
0.864998 + 0.501775i \(0.167320\pi\)
\(678\) 0 0
\(679\) 23.2148 0.890902
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.4721 0.974664 0.487332 0.873217i \(-0.337970\pi\)
0.487332 + 0.873217i \(0.337970\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.32624 0.0505256
\(690\) 0 0
\(691\) 36.5279 1.38959 0.694793 0.719210i \(-0.255496\pi\)
0.694793 + 0.719210i \(0.255496\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 35.0344 1.32702
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0689 0.682452 0.341226 0.939981i \(-0.389158\pi\)
0.341226 + 0.939981i \(0.389158\pi\)
\(702\) 0 0
\(703\) 11.0000 0.414873
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.30495 −0.0490778
\(708\) 0 0
\(709\) 21.1803 0.795444 0.397722 0.917506i \(-0.369801\pi\)
0.397722 + 0.917506i \(0.369801\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.49342 −0.355531
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.8197 −0.627267 −0.313634 0.949544i \(-0.601546\pi\)
−0.313634 + 0.949544i \(0.601546\pi\)
\(720\) 0 0
\(721\) 13.2918 0.495012
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.63932 −0.172063 −0.0860314 0.996292i \(-0.527419\pi\)
−0.0860314 + 0.996292i \(0.527419\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.1246 0.448445
\(732\) 0 0
\(733\) 48.7214 1.79956 0.899782 0.436339i \(-0.143725\pi\)
0.899782 + 0.436339i \(0.143725\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.52786 0.0562796
\(738\) 0 0
\(739\) 13.9656 0.513731 0.256866 0.966447i \(-0.417310\pi\)
0.256866 + 0.966447i \(0.417310\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.34752 −0.0494359 −0.0247179 0.999694i \(-0.507869\pi\)
−0.0247179 + 0.999694i \(0.507869\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.1246 0.369945
\(750\) 0 0
\(751\) 9.85410 0.359581 0.179791 0.983705i \(-0.442458\pi\)
0.179791 + 0.983705i \(0.442458\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −47.2492 −1.71730 −0.858651 0.512560i \(-0.828697\pi\)
−0.858651 + 0.512560i \(0.828697\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −52.5967 −1.90663 −0.953315 0.301977i \(-0.902354\pi\)
−0.953315 + 0.301977i \(0.902354\pi\)
\(762\) 0 0
\(763\) 2.68692 0.0972730
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.79837 0.101043
\(768\) 0 0
\(769\) 35.4164 1.27715 0.638574 0.769560i \(-0.279525\pi\)
0.638574 + 0.769560i \(0.279525\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.70820 −0.313212 −0.156606 0.987661i \(-0.550055\pi\)
−0.156606 + 0.987661i \(0.550055\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −56.6869 −2.03102
\(780\) 0 0
\(781\) −10.5623 −0.377949
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 55.6869 1.98502 0.992512 0.122146i \(-0.0389777\pi\)
0.992512 + 0.122146i \(0.0389777\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.12461 0.182210
\(792\) 0 0
\(793\) 0.909830 0.0323090
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.38197 −0.296904 −0.148452 0.988920i \(-0.547429\pi\)
−0.148452 + 0.988920i \(0.547429\pi\)
\(798\) 0 0
\(799\) 8.61803 0.304884
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.854102 −0.0301406
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.49342 0.263455 0.131727 0.991286i \(-0.457948\pi\)
0.131727 + 0.991286i \(0.457948\pi\)
\(810\) 0 0
\(811\) 28.9230 1.01562 0.507812 0.861468i \(-0.330455\pi\)
0.507812 + 0.861468i \(0.330455\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −19.6180 −0.686348
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.0689 −1.36351 −0.681757 0.731579i \(-0.738784\pi\)
−0.681757 + 0.731579i \(0.738784\pi\)
\(822\) 0 0
\(823\) 16.1115 0.561610 0.280805 0.959765i \(-0.409399\pi\)
0.280805 + 0.959765i \(0.409399\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.437694 0.0152201 0.00761006 0.999971i \(-0.497578\pi\)
0.00761006 + 0.999971i \(0.497578\pi\)
\(828\) 0 0
\(829\) 27.4853 0.954604 0.477302 0.878739i \(-0.341615\pi\)
0.477302 + 0.878739i \(0.341615\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −19.6180 −0.679725
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 35.1803 1.21456 0.607280 0.794488i \(-0.292261\pi\)
0.607280 + 0.794488i \(0.292261\pi\)
\(840\) 0 0
\(841\) −25.8885 −0.892708
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.8197 −0.474849
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.3607 0.526557
\(852\) 0 0
\(853\) −1.58359 −0.0542212 −0.0271106 0.999632i \(-0.508631\pi\)
−0.0271106 + 0.999632i \(0.508631\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −53.1033 −1.81398 −0.906988 0.421157i \(-0.861624\pi\)
−0.906988 + 0.421157i \(0.861624\pi\)
\(858\) 0 0
\(859\) 26.4164 0.901316 0.450658 0.892697i \(-0.351189\pi\)
0.450658 + 0.892697i \(0.351189\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.1591 1.50319 0.751596 0.659624i \(-0.229284\pi\)
0.751596 + 0.659624i \(0.229284\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.291796 0.00989850
\(870\) 0 0
\(871\) 0.360680 0.0122212
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.7639 1.00506 0.502528 0.864561i \(-0.332403\pi\)
0.502528 + 0.864561i \(0.332403\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.6525 1.70653 0.853263 0.521481i \(-0.174620\pi\)
0.853263 + 0.521481i \(0.174620\pi\)
\(882\) 0 0
\(883\) −39.2492 −1.32084 −0.660421 0.750896i \(-0.729622\pi\)
−0.660421 + 0.750896i \(0.729622\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −34.3050 −1.15185 −0.575924 0.817503i \(-0.695358\pi\)
−0.575924 + 0.817503i \(0.695358\pi\)
\(888\) 0 0
\(889\) 15.8541 0.531730
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.9443 −0.466627
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.92299 0.0641352
\(900\) 0 0
\(901\) 21.6525 0.721349
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −27.1803 −0.902508 −0.451254 0.892395i \(-0.649023\pi\)
−0.451254 + 0.892395i \(0.649023\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.1459 −0.667463 −0.333732 0.942668i \(-0.608308\pi\)
−0.333732 + 0.942668i \(0.608308\pi\)
\(912\) 0 0
\(913\) 0.909830 0.0301110
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 17.4377 0.575843
\(918\) 0 0
\(919\) −35.5066 −1.17125 −0.585627 0.810581i \(-0.699152\pi\)
−0.585627 + 0.810581i \(0.699152\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.49342 −0.0820720
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.56231 0.248111 0.124056 0.992275i \(-0.460410\pi\)
0.124056 + 0.992275i \(0.460410\pi\)
\(930\) 0 0
\(931\) 31.7426 1.04032
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 11.5967 0.378849 0.189425 0.981895i \(-0.439338\pi\)
0.189425 + 0.981895i \(0.439338\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0344 1.50068 0.750340 0.661052i \(-0.229890\pi\)
0.750340 + 0.661052i \(0.229890\pi\)
\(942\) 0 0
\(943\) −79.1591 −2.57777
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.58359 0.311425 0.155712 0.987802i \(-0.450233\pi\)
0.155712 + 0.987802i \(0.450233\pi\)
\(948\) 0 0
\(949\) −0.201626 −0.00654506
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 41.0344 1.32924 0.664618 0.747183i \(-0.268594\pi\)
0.664618 + 0.747183i \(0.268594\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.2016 0.490886
\(960\) 0 0
\(961\) −29.8115 −0.961662
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0557 0.644949 0.322474 0.946578i \(-0.395485\pi\)
0.322474 + 0.946578i \(0.395485\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.1246 0.613738 0.306869 0.951752i \(-0.400719\pi\)
0.306869 + 0.951752i \(0.400719\pi\)
\(972\) 0 0
\(973\) −28.2148 −0.904524
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.9230 0.477429 0.238714 0.971090i \(-0.423274\pi\)
0.238714 + 0.971090i \(0.423274\pi\)
\(978\) 0 0
\(979\) 11.0000 0.351562
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3820 0.650084 0.325042 0.945700i \(-0.394622\pi\)
0.325042 + 0.945700i \(0.394622\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.3951 −0.871114
\(990\) 0 0
\(991\) −44.2705 −1.40630 −0.703150 0.711042i \(-0.748224\pi\)
−0.703150 + 0.711042i \(0.748224\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −45.0689 −1.42735 −0.713673 0.700479i \(-0.752970\pi\)
−0.713673 + 0.700479i \(0.752970\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9000.2.a.p.1.1 2
3.2 odd 2 3000.2.a.d.1.1 2
5.4 even 2 9000.2.a.a.1.2 2
12.11 even 2 6000.2.a.p.1.2 2
15.2 even 4 3000.2.f.c.1249.3 4
15.8 even 4 3000.2.f.c.1249.2 4
15.14 odd 2 3000.2.a.e.1.2 yes 2
60.23 odd 4 6000.2.f.i.1249.3 4
60.47 odd 4 6000.2.f.i.1249.2 4
60.59 even 2 6000.2.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.d.1.1 2 3.2 odd 2
3000.2.a.e.1.2 yes 2 15.14 odd 2
3000.2.f.c.1249.2 4 15.8 even 4
3000.2.f.c.1249.3 4 15.2 even 4
6000.2.a.l.1.1 2 60.59 even 2
6000.2.a.p.1.2 2 12.11 even 2
6000.2.f.i.1249.2 4 60.47 odd 4
6000.2.f.i.1249.3 4 60.23 odd 4
9000.2.a.a.1.2 2 5.4 even 2
9000.2.a.p.1.1 2 1.1 even 1 trivial