Properties

Label 9000.2.a.r.1.4
Level $9000$
Weight $2$
Character 9000.1
Self dual yes
Analytic conductor $71.865$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.54336\) of defining polynomial
Character \(\chi\) \(=\) 9000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.11525 q^{7} +O(q^{10})\) \(q+2.11525 q^{7} +4.99442 q^{11} -6.32279 q^{13} +3.75836 q^{17} +1.90770 q^{19} +9.35131 q^{23} -7.22705 q^{29} +0.994424 q^{31} +6.37984 q^{37} -4.18247 q^{41} -1.45664 q^{43} +2.78501 q^{47} -2.52573 q^{49} +1.52786 q^{53} -1.47771 q^{59} +8.79148 q^{61} +12.0811 q^{67} +12.3798 q^{71} -9.09362 q^{73} +10.5644 q^{77} -8.91328 q^{79} +12.1964 q^{83} -3.08328 q^{89} -13.3743 q^{91} -10.1382 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{7} - 4 q^{13} + 4 q^{17} + 14 q^{23} - 10 q^{29} - 16 q^{31} - 2 q^{41} - 12 q^{43} + 16 q^{47} + 2 q^{49} + 24 q^{53} - 8 q^{59} + 6 q^{61} + 16 q^{67} + 24 q^{71} - 4 q^{73} + 32 q^{77} - 48 q^{79} + 2 q^{83} - 10 q^{89} - 8 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.11525 0.799488 0.399744 0.916627i \(-0.369099\pi\)
0.399744 + 0.916627i \(0.369099\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.99442 1.50588 0.752938 0.658092i \(-0.228636\pi\)
0.752938 + 0.658092i \(0.228636\pi\)
\(12\) 0 0
\(13\) −6.32279 −1.75363 −0.876813 0.480831i \(-0.840335\pi\)
−0.876813 + 0.480831i \(0.840335\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.75836 0.911535 0.455768 0.890099i \(-0.349365\pi\)
0.455768 + 0.890099i \(0.349365\pi\)
\(18\) 0 0
\(19\) 1.90770 0.437656 0.218828 0.975763i \(-0.429777\pi\)
0.218828 + 0.975763i \(0.429777\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 9.35131 1.94988 0.974942 0.222460i \(-0.0714086\pi\)
0.974942 + 0.222460i \(0.0714086\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.22705 −1.34203 −0.671014 0.741444i \(-0.734141\pi\)
−0.671014 + 0.741444i \(0.734141\pi\)
\(30\) 0 0
\(31\) 0.994424 0.178604 0.0893019 0.996005i \(-0.471536\pi\)
0.0893019 + 0.996005i \(0.471536\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.37984 1.04884 0.524419 0.851460i \(-0.324282\pi\)
0.524419 + 0.851460i \(0.324282\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.18247 −0.653192 −0.326596 0.945164i \(-0.605902\pi\)
−0.326596 + 0.945164i \(0.605902\pi\)
\(42\) 0 0
\(43\) −1.45664 −0.222135 −0.111068 0.993813i \(-0.535427\pi\)
−0.111068 + 0.993813i \(0.535427\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.78501 0.406235 0.203117 0.979154i \(-0.434893\pi\)
0.203117 + 0.979154i \(0.434893\pi\)
\(48\) 0 0
\(49\) −2.52573 −0.360819
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.52786 0.209868 0.104934 0.994479i \(-0.466537\pi\)
0.104934 + 0.994479i \(0.466537\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.47771 −0.192382 −0.0961908 0.995363i \(-0.530666\pi\)
−0.0961908 + 0.995363i \(0.530666\pi\)
\(60\) 0 0
\(61\) 8.79148 1.12563 0.562817 0.826582i \(-0.309718\pi\)
0.562817 + 0.826582i \(0.309718\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0811 1.47595 0.737974 0.674830i \(-0.235783\pi\)
0.737974 + 0.674830i \(0.235783\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3798 1.46922 0.734608 0.678492i \(-0.237366\pi\)
0.734608 + 0.678492i \(0.237366\pi\)
\(72\) 0 0
\(73\) −9.09362 −1.06433 −0.532164 0.846642i \(-0.678621\pi\)
−0.532164 + 0.846642i \(0.678621\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5644 1.20393
\(78\) 0 0
\(79\) −8.91328 −1.00282 −0.501411 0.865209i \(-0.667186\pi\)
−0.501411 + 0.865209i \(0.667186\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.1964 1.33873 0.669364 0.742935i \(-0.266567\pi\)
0.669364 + 0.742935i \(0.266567\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.08328 −0.326827 −0.163413 0.986558i \(-0.552250\pi\)
−0.163413 + 0.986558i \(0.552250\pi\)
\(90\) 0 0
\(91\) −13.3743 −1.40200
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.1382 −1.02938 −0.514689 0.857377i \(-0.672093\pi\)
−0.514689 + 0.857377i \(0.672093\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.5202 −1.14630 −0.573149 0.819451i \(-0.694278\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(102\) 0 0
\(103\) 6.20639 0.611534 0.305767 0.952106i \(-0.401087\pi\)
0.305767 + 0.952106i \(0.401087\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.7168 1.22938 0.614690 0.788769i \(-0.289281\pi\)
0.614690 + 0.788769i \(0.289281\pi\)
\(108\) 0 0
\(109\) 0.381966 0.0365857 0.0182929 0.999833i \(-0.494177\pi\)
0.0182929 + 0.999833i \(0.494177\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.31164 −0.781893 −0.390947 0.920413i \(-0.627852\pi\)
−0.390947 + 0.920413i \(0.627852\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.94985 0.728761
\(120\) 0 0
\(121\) 13.9443 1.26766
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.3017 −0.914130 −0.457065 0.889433i \(-0.651099\pi\)
−0.457065 + 0.889433i \(0.651099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.08672 −0.269688 −0.134844 0.990867i \(-0.543053\pi\)
−0.134844 + 0.990867i \(0.543053\pi\)
\(132\) 0 0
\(133\) 4.03526 0.349901
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.1053 −1.37596 −0.687982 0.725728i \(-0.741503\pi\)
−0.687982 + 0.725728i \(0.741503\pi\)
\(138\) 0 0
\(139\) 15.5477 1.31874 0.659370 0.751819i \(-0.270823\pi\)
0.659370 + 0.751819i \(0.270823\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −31.5787 −2.64074
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.2636 1.25044 0.625222 0.780447i \(-0.285008\pi\)
0.625222 + 0.780447i \(0.285008\pi\)
\(150\) 0 0
\(151\) −16.1313 −1.31275 −0.656373 0.754436i \(-0.727910\pi\)
−0.656373 + 0.754436i \(0.727910\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.241644 0.0192853 0.00964264 0.999954i \(-0.496931\pi\)
0.00964264 + 0.999954i \(0.496931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.7803 1.55891
\(162\) 0 0
\(163\) −0.314742 −0.0246525 −0.0123263 0.999924i \(-0.503924\pi\)
−0.0123263 + 0.999924i \(0.503924\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.71813 0.597247 0.298623 0.954371i \(-0.403473\pi\)
0.298623 + 0.954371i \(0.403473\pi\)
\(168\) 0 0
\(169\) 26.9777 2.07521
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.7472 1.04518 0.522590 0.852584i \(-0.324966\pi\)
0.522590 + 0.852584i \(0.324966\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.29311 −0.0966518 −0.0483259 0.998832i \(-0.515389\pi\)
−0.0483259 + 0.998832i \(0.515389\pi\)
\(180\) 0 0
\(181\) −18.4589 −1.37204 −0.686018 0.727585i \(-0.740643\pi\)
−0.686018 + 0.727585i \(0.740643\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.7708 1.37266
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.90770 −0.427466 −0.213733 0.976892i \(-0.568562\pi\)
−0.213733 + 0.976892i \(0.568562\pi\)
\(192\) 0 0
\(193\) 20.8520 1.50096 0.750479 0.660894i \(-0.229823\pi\)
0.750479 + 0.660894i \(0.229823\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4735 1.38743 0.693713 0.720252i \(-0.255974\pi\)
0.693713 + 0.720252i \(0.255974\pi\)
\(198\) 0 0
\(199\) −23.1989 −1.64452 −0.822262 0.569109i \(-0.807288\pi\)
−0.822262 + 0.569109i \(0.807288\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.2870 −1.07294
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.52786 0.659056
\(210\) 0 0
\(211\) 23.7323 1.63380 0.816900 0.576780i \(-0.195691\pi\)
0.816900 + 0.576780i \(0.195691\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.10345 0.142792
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −23.7633 −1.59849
\(222\) 0 0
\(223\) −10.6314 −0.711931 −0.355966 0.934499i \(-0.615848\pi\)
−0.355966 + 0.934499i \(0.615848\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 25.0243 1.66092 0.830459 0.557079i \(-0.188078\pi\)
0.830459 + 0.557079i \(0.188078\pi\)
\(228\) 0 0
\(229\) 11.8962 0.786126 0.393063 0.919511i \(-0.371415\pi\)
0.393063 + 0.919511i \(0.371415\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0347 −1.05047 −0.525235 0.850957i \(-0.676023\pi\)
−0.525235 + 0.850957i \(0.676023\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.0867 0.717141 0.358570 0.933503i \(-0.383264\pi\)
0.358570 + 0.933503i \(0.383264\pi\)
\(240\) 0 0
\(241\) 6.56473 0.422872 0.211436 0.977392i \(-0.432186\pi\)
0.211436 + 0.977392i \(0.432186\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0620 −0.767486
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.22918 −0.0775849 −0.0387924 0.999247i \(-0.512351\pi\)
−0.0387924 + 0.999247i \(0.512351\pi\)
\(252\) 0 0
\(253\) 46.7044 2.93628
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.52786 0.344819 0.172409 0.985025i \(-0.444845\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(258\) 0 0
\(259\) 13.4949 0.838534
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.91631 0.426478 0.213239 0.977000i \(-0.431599\pi\)
0.213239 + 0.977000i \(0.431599\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.94427 −0.179515 −0.0897577 0.995964i \(-0.528609\pi\)
−0.0897577 + 0.995964i \(0.528609\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.81408 −0.169082 −0.0845410 0.996420i \(-0.526942\pi\)
−0.0845410 + 0.996420i \(0.526942\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.59393 0.154741 0.0773705 0.997002i \(-0.475348\pi\)
0.0773705 + 0.997002i \(0.475348\pi\)
\(282\) 0 0
\(283\) 17.6090 1.04675 0.523374 0.852103i \(-0.324673\pi\)
0.523374 + 0.852103i \(0.324673\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.84695 −0.522219
\(288\) 0 0
\(289\) −2.87476 −0.169103
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.7392 −1.03634 −0.518168 0.855279i \(-0.673386\pi\)
−0.518168 + 0.855279i \(0.673386\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −59.1264 −3.41937
\(300\) 0 0
\(301\) −3.08115 −0.177594
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.4770 0.712102 0.356051 0.934466i \(-0.384123\pi\)
0.356051 + 0.934466i \(0.384123\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −20.2262 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(312\) 0 0
\(313\) −12.6456 −0.714771 −0.357385 0.933957i \(-0.616332\pi\)
−0.357385 + 0.933957i \(0.616332\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.67852 0.375103 0.187552 0.982255i \(-0.439945\pi\)
0.187552 + 0.982255i \(0.439945\pi\)
\(318\) 0 0
\(319\) −36.0949 −2.02093
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.16982 0.398939
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.89097 0.324780
\(330\) 0 0
\(331\) 27.2628 1.49850 0.749250 0.662288i \(-0.230414\pi\)
0.749250 + 0.662288i \(0.230414\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.3835 1.60062 0.800310 0.599587i \(-0.204668\pi\)
0.800310 + 0.599587i \(0.204668\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.96658 0.268955
\(342\) 0 0
\(343\) −20.1493 −1.08796
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.5007 0.832119 0.416059 0.909337i \(-0.363411\pi\)
0.416059 + 0.909337i \(0.363411\pi\)
\(348\) 0 0
\(349\) 5.98540 0.320391 0.160196 0.987085i \(-0.448787\pi\)
0.160196 + 0.987085i \(0.448787\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.8841 1.21800 0.608998 0.793171i \(-0.291572\pi\)
0.608998 + 0.793171i \(0.291572\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.3525 −0.599161 −0.299580 0.954071i \(-0.596847\pi\)
−0.299580 + 0.954071i \(0.596847\pi\)
\(360\) 0 0
\(361\) −15.3607 −0.808457
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.8123 0.929794 0.464897 0.885365i \(-0.346091\pi\)
0.464897 + 0.885365i \(0.346091\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.23181 0.167787
\(372\) 0 0
\(373\) −13.0366 −0.675008 −0.337504 0.941324i \(-0.609583\pi\)
−0.337504 + 0.941324i \(0.609583\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 45.6951 2.35342
\(378\) 0 0
\(379\) −31.2800 −1.60675 −0.803373 0.595476i \(-0.796964\pi\)
−0.803373 + 0.595476i \(0.796964\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.3291 0.681084 0.340542 0.940229i \(-0.389389\pi\)
0.340542 + 0.940229i \(0.389389\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.66950 −0.135349 −0.0676746 0.997707i \(-0.521558\pi\)
−0.0676746 + 0.997707i \(0.521558\pi\)
\(390\) 0 0
\(391\) 35.1456 1.77739
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.9572 1.25257 0.626284 0.779595i \(-0.284575\pi\)
0.626284 + 0.779595i \(0.284575\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.3039 1.41343 0.706716 0.707498i \(-0.250176\pi\)
0.706716 + 0.707498i \(0.250176\pi\)
\(402\) 0 0
\(403\) −6.28754 −0.313204
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 31.8636 1.57942
\(408\) 0 0
\(409\) −14.5647 −0.720180 −0.360090 0.932918i \(-0.617254\pi\)
−0.360090 + 0.932918i \(0.617254\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.12572 −0.153807
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −28.4610 −1.39041 −0.695205 0.718811i \(-0.744686\pi\)
−0.695205 + 0.718811i \(0.744686\pi\)
\(420\) 0 0
\(421\) −20.5443 −1.00127 −0.500633 0.865660i \(-0.666899\pi\)
−0.500633 + 0.865660i \(0.666899\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.5961 0.899931
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.9753 −1.39569 −0.697845 0.716249i \(-0.745857\pi\)
−0.697845 + 0.716249i \(0.745857\pi\)
\(432\) 0 0
\(433\) −20.9002 −1.00440 −0.502199 0.864752i \(-0.667476\pi\)
−0.502199 + 0.864752i \(0.667476\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.8395 0.853379
\(438\) 0 0
\(439\) −30.2546 −1.44397 −0.721987 0.691907i \(-0.756771\pi\)
−0.721987 + 0.691907i \(0.756771\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.09346 0.289509 0.144754 0.989468i \(-0.453761\pi\)
0.144754 + 0.989468i \(0.453761\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.3135 0.911459 0.455730 0.890118i \(-0.349378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(450\) 0 0
\(451\) −20.8890 −0.983626
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.1289 −0.614143 −0.307071 0.951686i \(-0.599349\pi\)
−0.307071 + 0.951686i \(0.599349\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.28409 0.292679 0.146340 0.989234i \(-0.453251\pi\)
0.146340 + 0.989234i \(0.453251\pi\)
\(462\) 0 0
\(463\) −0.705730 −0.0327981 −0.0163990 0.999866i \(-0.505220\pi\)
−0.0163990 + 0.999866i \(0.505220\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.1190 −0.468251 −0.234126 0.972206i \(-0.575223\pi\)
−0.234126 + 0.972206i \(0.575223\pi\)
\(468\) 0 0
\(469\) 25.5546 1.18000
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.27507 −0.334508
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.0533 1.32748 0.663739 0.747964i \(-0.268969\pi\)
0.663739 + 0.747964i \(0.268969\pi\)
\(480\) 0 0
\(481\) −40.3384 −1.83927
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.59798 0.344297 0.172149 0.985071i \(-0.444929\pi\)
0.172149 + 0.985071i \(0.444929\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.6822 0.527208 0.263604 0.964631i \(-0.415089\pi\)
0.263604 + 0.964631i \(0.415089\pi\)
\(492\) 0 0
\(493\) −27.1618 −1.22331
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 26.1864 1.17462
\(498\) 0 0
\(499\) 4.21754 0.188803 0.0944015 0.995534i \(-0.469906\pi\)
0.0944015 + 0.995534i \(0.469906\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.12640 0.362338 0.181169 0.983452i \(-0.442012\pi\)
0.181169 + 0.983452i \(0.442012\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.8190 0.922787 0.461394 0.887196i \(-0.347350\pi\)
0.461394 + 0.887196i \(0.347350\pi\)
\(510\) 0 0
\(511\) −19.2352 −0.850917
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 13.9095 0.611739
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.7390 −0.689539 −0.344769 0.938687i \(-0.612043\pi\)
−0.344769 + 0.938687i \(0.612043\pi\)
\(522\) 0 0
\(523\) −39.6698 −1.73464 −0.867319 0.497753i \(-0.834159\pi\)
−0.867319 + 0.497753i \(0.834159\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.73740 0.162804
\(528\) 0 0
\(529\) 64.4471 2.80205
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 26.4449 1.14546
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.6146 −0.543349
\(540\) 0 0
\(541\) 10.1162 0.434930 0.217465 0.976068i \(-0.430221\pi\)
0.217465 + 0.976068i \(0.430221\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.91575 0.167425 0.0837127 0.996490i \(-0.473322\pi\)
0.0837127 + 0.996490i \(0.473322\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.7870 −0.587348
\(552\) 0 0
\(553\) −18.8538 −0.801744
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.9095 −1.09782 −0.548910 0.835881i \(-0.684957\pi\)
−0.548910 + 0.835881i \(0.684957\pi\)
\(558\) 0 0
\(559\) 9.21002 0.389542
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.7156 1.29451 0.647254 0.762275i \(-0.275917\pi\)
0.647254 + 0.762275i \(0.275917\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.3448 0.517519 0.258760 0.965942i \(-0.416686\pi\)
0.258760 + 0.965942i \(0.416686\pi\)
\(570\) 0 0
\(571\) 33.9368 1.42021 0.710104 0.704096i \(-0.248648\pi\)
0.710104 + 0.704096i \(0.248648\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 45.2207 1.88256 0.941280 0.337626i \(-0.109624\pi\)
0.941280 + 0.337626i \(0.109624\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 25.7984 1.07030
\(582\) 0 0
\(583\) 7.63080 0.316035
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.6710 1.55485 0.777424 0.628976i \(-0.216526\pi\)
0.777424 + 0.628976i \(0.216526\pi\)
\(588\) 0 0
\(589\) 1.89706 0.0781671
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.19524 0.254408 0.127204 0.991877i \(-0.459400\pi\)
0.127204 + 0.991877i \(0.459400\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.03100 0.164702 0.0823510 0.996603i \(-0.473757\pi\)
0.0823510 + 0.996603i \(0.473757\pi\)
\(600\) 0 0
\(601\) 42.2631 1.72395 0.861974 0.506953i \(-0.169228\pi\)
0.861974 + 0.506953i \(0.169228\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −30.9920 −1.25793 −0.628963 0.777436i \(-0.716520\pi\)
−0.628963 + 0.777436i \(0.716520\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.6090 −0.712384
\(612\) 0 0
\(613\) 6.63443 0.267962 0.133981 0.990984i \(-0.457224\pi\)
0.133981 + 0.990984i \(0.457224\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.2862 0.856951 0.428475 0.903553i \(-0.359051\pi\)
0.428475 + 0.903553i \(0.359051\pi\)
\(618\) 0 0
\(619\) 17.4244 0.700346 0.350173 0.936685i \(-0.386123\pi\)
0.350173 + 0.936685i \(0.386123\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.52189 −0.261294
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 23.9777 0.956053
\(630\) 0 0
\(631\) 11.5148 0.458396 0.229198 0.973380i \(-0.426390\pi\)
0.229198 + 0.973380i \(0.426390\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.9697 0.632742
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 45.2710 1.78810 0.894048 0.447970i \(-0.147853\pi\)
0.894048 + 0.447970i \(0.147853\pi\)
\(642\) 0 0
\(643\) 23.6449 0.932464 0.466232 0.884662i \(-0.345611\pi\)
0.466232 + 0.884662i \(0.345611\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.6264 −0.968165 −0.484082 0.875022i \(-0.660846\pi\)
−0.484082 + 0.875022i \(0.660846\pi\)
\(648\) 0 0
\(649\) −7.38032 −0.289703
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.93000 0.310325 0.155163 0.987889i \(-0.450410\pi\)
0.155163 + 0.987889i \(0.450410\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.3575 0.793017 0.396508 0.918031i \(-0.370222\pi\)
0.396508 + 0.918031i \(0.370222\pi\)
\(660\) 0 0
\(661\) −39.5617 −1.53877 −0.769385 0.638785i \(-0.779437\pi\)
−0.769385 + 0.638785i \(0.779437\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −67.5824 −2.61680
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 43.9084 1.69506
\(672\) 0 0
\(673\) −1.46282 −0.0563874 −0.0281937 0.999602i \(-0.508976\pi\)
−0.0281937 + 0.999602i \(0.508976\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.0148 −0.500199 −0.250099 0.968220i \(-0.580463\pi\)
−0.250099 + 0.968220i \(0.580463\pi\)
\(678\) 0 0
\(679\) −21.4448 −0.822975
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.11337 0.0808660 0.0404330 0.999182i \(-0.487126\pi\)
0.0404330 + 0.999182i \(0.487126\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.66037 −0.368031
\(690\) 0 0
\(691\) −6.92443 −0.263418 −0.131709 0.991288i \(-0.542046\pi\)
−0.131709 + 0.991288i \(0.542046\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −15.7192 −0.595408
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.65310 −0.0624369 −0.0312185 0.999513i \(-0.509939\pi\)
−0.0312185 + 0.999513i \(0.509939\pi\)
\(702\) 0 0
\(703\) 12.1708 0.459031
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.3680 −0.916452
\(708\) 0 0
\(709\) −1.67982 −0.0630870 −0.0315435 0.999502i \(-0.510042\pi\)
−0.0315435 + 0.999502i \(0.510042\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.29917 0.348257
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.2441 1.87379 0.936895 0.349611i \(-0.113686\pi\)
0.936895 + 0.349611i \(0.113686\pi\)
\(720\) 0 0
\(721\) 13.1280 0.488914
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.2324 0.676203 0.338101 0.941110i \(-0.390215\pi\)
0.338101 + 0.941110i \(0.390215\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.47456 −0.202484
\(732\) 0 0
\(733\) 51.5137 1.90270 0.951350 0.308112i \(-0.0996971\pi\)
0.951350 + 0.308112i \(0.0996971\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.3384 2.22259
\(738\) 0 0
\(739\) −13.3261 −0.490207 −0.245103 0.969497i \(-0.578822\pi\)
−0.245103 + 0.969497i \(0.578822\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.9448 0.878448 0.439224 0.898378i \(-0.355253\pi\)
0.439224 + 0.898378i \(0.355253\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.8992 0.982875
\(750\) 0 0
\(751\) 0.0607894 0.00221823 0.00110912 0.999999i \(-0.499647\pi\)
0.00110912 + 0.999999i \(0.499647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29.3402 −1.06639 −0.533194 0.845993i \(-0.679008\pi\)
−0.533194 + 0.845993i \(0.679008\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −33.1931 −1.20325 −0.601625 0.798779i \(-0.705480\pi\)
−0.601625 + 0.798779i \(0.705480\pi\)
\(762\) 0 0
\(763\) 0.807952 0.0292498
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.34326 0.337366
\(768\) 0 0
\(769\) 7.90557 0.285082 0.142541 0.989789i \(-0.454473\pi\)
0.142541 + 0.989789i \(0.454473\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.7151 −0.996843 −0.498421 0.866935i \(-0.666087\pi\)
−0.498421 + 0.866935i \(0.666087\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.97890 −0.285874
\(780\) 0 0
\(781\) 61.8302 2.21246
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 17.1468 0.611217 0.305609 0.952157i \(-0.401140\pi\)
0.305609 + 0.952157i \(0.401140\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.5812 −0.625114
\(792\) 0 0
\(793\) −55.5867 −1.97394
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.0575 −0.745896 −0.372948 0.927852i \(-0.621653\pi\)
−0.372948 + 0.927852i \(0.621653\pi\)
\(798\) 0 0
\(799\) 10.4670 0.370297
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −45.4174 −1.60274
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −38.8466 −1.36577 −0.682887 0.730524i \(-0.739276\pi\)
−0.682887 + 0.730524i \(0.739276\pi\)
\(810\) 0 0
\(811\) 31.2820 1.09846 0.549229 0.835672i \(-0.314921\pi\)
0.549229 + 0.835672i \(0.314921\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.77883 −0.0972189
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.50658 −0.296882 −0.148441 0.988921i \(-0.547425\pi\)
−0.148441 + 0.988921i \(0.547425\pi\)
\(822\) 0 0
\(823\) 44.6746 1.55726 0.778630 0.627483i \(-0.215915\pi\)
0.778630 + 0.627483i \(0.215915\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.6536 −0.926836 −0.463418 0.886140i \(-0.653377\pi\)
−0.463418 + 0.886140i \(0.653377\pi\)
\(828\) 0 0
\(829\) 4.21967 0.146555 0.0732776 0.997312i \(-0.476654\pi\)
0.0732776 + 0.997312i \(0.476654\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.49261 −0.328899
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.1897 −0.593453 −0.296726 0.954963i \(-0.595895\pi\)
−0.296726 + 0.954963i \(0.595895\pi\)
\(840\) 0 0
\(841\) 23.2302 0.801041
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 29.4956 1.01348
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 59.6599 2.04511
\(852\) 0 0
\(853\) −28.2243 −0.966381 −0.483191 0.875515i \(-0.660522\pi\)
−0.483191 + 0.875515i \(0.660522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −51.2310 −1.75002 −0.875008 0.484108i \(-0.839144\pi\)
−0.875008 + 0.484108i \(0.839144\pi\)
\(858\) 0 0
\(859\) −53.1686 −1.81409 −0.907044 0.421036i \(-0.861667\pi\)
−0.907044 + 0.421036i \(0.861667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.8953 −0.915526 −0.457763 0.889074i \(-0.651349\pi\)
−0.457763 + 0.889074i \(0.651349\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −44.5167 −1.51012
\(870\) 0 0
\(871\) −76.3866 −2.58826
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.7008 −0.530178 −0.265089 0.964224i \(-0.585401\pi\)
−0.265089 + 0.964224i \(0.585401\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.32804 −0.0784336 −0.0392168 0.999231i \(-0.512486\pi\)
−0.0392168 + 0.999231i \(0.512486\pi\)
\(882\) 0 0
\(883\) 45.0863 1.51727 0.758637 0.651514i \(-0.225866\pi\)
0.758637 + 0.651514i \(0.225866\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.9907 1.54422 0.772108 0.635491i \(-0.219202\pi\)
0.772108 + 0.635491i \(0.219202\pi\)
\(888\) 0 0
\(889\) −21.7907 −0.730836
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.31296 0.177791
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.18675 −0.239691
\(900\) 0 0
\(901\) 5.74226 0.191302
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −41.9462 −1.39280 −0.696401 0.717653i \(-0.745216\pi\)
−0.696401 + 0.717653i \(0.745216\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38.6141 1.27934 0.639671 0.768649i \(-0.279071\pi\)
0.639671 + 0.768649i \(0.279071\pi\)
\(912\) 0 0
\(913\) 60.9140 2.01596
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.52918 −0.215613
\(918\) 0 0
\(919\) −46.7156 −1.54100 −0.770502 0.637437i \(-0.779995\pi\)
−0.770502 + 0.637437i \(0.779995\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −78.2751 −2.57646
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.49036 0.180133 0.0900665 0.995936i \(-0.471292\pi\)
0.0900665 + 0.995936i \(0.471292\pi\)
\(930\) 0 0
\(931\) −4.81834 −0.157915
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17.6902 −0.577912 −0.288956 0.957342i \(-0.593308\pi\)
−0.288956 + 0.957342i \(0.593308\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41.0472 −1.33810 −0.669050 0.743217i \(-0.733299\pi\)
−0.669050 + 0.743217i \(0.733299\pi\)
\(942\) 0 0
\(943\) −39.1116 −1.27365
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.6027 0.864472 0.432236 0.901760i \(-0.357725\pi\)
0.432236 + 0.901760i \(0.357725\pi\)
\(948\) 0 0
\(949\) 57.4970 1.86643
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.1029 −0.715984 −0.357992 0.933725i \(-0.616539\pi\)
−0.357992 + 0.933725i \(0.616539\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.0666 −1.10007
\(960\) 0 0
\(961\) −30.0111 −0.968101
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.05390 −0.0338912 −0.0169456 0.999856i \(-0.505394\pi\)
−0.0169456 + 0.999856i \(0.505394\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.47456 0.0473210 0.0236605 0.999720i \(-0.492468\pi\)
0.0236605 + 0.999720i \(0.492468\pi\)
\(972\) 0 0
\(973\) 32.8872 1.05432
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.53670 −0.177135 −0.0885674 0.996070i \(-0.528229\pi\)
−0.0885674 + 0.996070i \(0.528229\pi\)
\(978\) 0 0
\(979\) −15.3992 −0.492160
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.18145 −0.133368 −0.0666838 0.997774i \(-0.521242\pi\)
−0.0666838 + 0.997774i \(0.521242\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.6215 −0.433138
\(990\) 0 0
\(991\) −21.5056 −0.683147 −0.341573 0.939855i \(-0.610960\pi\)
−0.341573 + 0.939855i \(0.610960\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.3446 0.834341 0.417171 0.908828i \(-0.363022\pi\)
0.417171 + 0.908828i \(0.363022\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9000.2.a.r.1.4 4
3.2 odd 2 1000.2.a.e.1.3 4
5.4 even 2 9000.2.a.ba.1.1 4
12.11 even 2 2000.2.a.r.1.2 4
15.2 even 4 1000.2.c.d.249.4 8
15.8 even 4 1000.2.c.d.249.5 8
15.14 odd 2 1000.2.a.h.1.2 yes 4
24.5 odd 2 8000.2.a.br.1.2 4
24.11 even 2 8000.2.a.bb.1.3 4
60.23 odd 4 2000.2.c.j.1249.4 8
60.47 odd 4 2000.2.c.j.1249.5 8
60.59 even 2 2000.2.a.m.1.3 4
120.29 odd 2 8000.2.a.ba.1.3 4
120.59 even 2 8000.2.a.bq.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.e.1.3 4 3.2 odd 2
1000.2.a.h.1.2 yes 4 15.14 odd 2
1000.2.c.d.249.4 8 15.2 even 4
1000.2.c.d.249.5 8 15.8 even 4
2000.2.a.m.1.3 4 60.59 even 2
2000.2.a.r.1.2 4 12.11 even 2
2000.2.c.j.1249.4 8 60.23 odd 4
2000.2.c.j.1249.5 8 60.47 odd 4
8000.2.a.ba.1.3 4 120.29 odd 2
8000.2.a.bb.1.3 4 24.11 even 2
8000.2.a.bq.1.2 4 120.59 even 2
8000.2.a.br.1.2 4 24.5 odd 2
9000.2.a.r.1.4 4 1.1 even 1 trivial
9000.2.a.ba.1.1 4 5.4 even 2