Properties

Label 9000.2.a.w
Level $9000$
Weight $2$
Character orbit 9000.a
Self dual yes
Analytic conductor $71.865$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.36025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 21x^{2} + 20x + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3000)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{7} + (\beta_{3} + 2 \beta_{2} + 1) q^{11} + ( - \beta_{3} - 2 \beta_{2} - 1) q^{13} + ( - \beta_{2} + \beta_1 - 2) q^{17} + (\beta_{3} + \beta_{2} + \beta_1) q^{19} + ( - \beta_{3} + \beta_{2} + \beta_1 - 3) q^{23} + ( - 2 \beta_{2} - 4) q^{29} + (\beta_{2} + \beta_1) q^{31} + (2 \beta_{2} - \beta_1 + 4) q^{37} + (2 \beta_{2} - \beta_1 + 2) q^{41} + (2 \beta_1 + 2) q^{43} + (2 \beta_{3} - 3 \beta_{2} - 5) q^{47} + (\beta_{3} + 4 \beta_{2} + 6) q^{49} + ( - 3 \beta_{3} - \beta_{2} + \beta_1 - 2) q^{53} + ( - 2 \beta_{2} + \beta_1 + 2) q^{59} + (\beta_{3} - 3 \beta_{2} - 2 \beta_1 + 6) q^{61} + (2 \beta_{3} + 4 \beta_{2} + 8) q^{67} + ( - 2 \beta_{3} + 2 \beta_{2} + 6) q^{71} - 8 \beta_{2} q^{73} + ( - \beta_{3} - 8 \beta_{2} + \beta_1 - 5) q^{77} + ( - \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 2) q^{79} + (\beta_{3} + 5 \beta_{2} - 2) q^{83} + (\beta_{3} - 6 \beta_{2} + 3) q^{89} + (\beta_{3} + 8 \beta_{2} - \beta_1 + 5) q^{91} + (8 \beta_{2} + 2 \beta_1 + 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{7} - q^{11} + q^{13} - 5 q^{17} - 2 q^{19} - 12 q^{23} - 12 q^{29} - q^{31} + 11 q^{37} + 3 q^{41} + 10 q^{43} - 16 q^{47} + 15 q^{49} - 2 q^{53} + 13 q^{59} + 27 q^{61} + 22 q^{67} + 22 q^{71} + 16 q^{73} - 2 q^{77} + 13 q^{79} - 19 q^{83} + 23 q^{89} + 2 q^{91} + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 21x^{2} + 20x + 80 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu^{2} - 13\nu - 32 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} - 2\nu^{2} + 13\nu + 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 4\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{3} - 8\beta_{2} + 13\beta _1 - 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.12577
−1.67742
3.29545
3.50774
0 0 0 0 0 −4.12577 0 0 0
1.2 0 0 0 0 0 −1.67742 0 0 0
1.3 0 0 0 0 0 3.29545 0 0 0
1.4 0 0 0 0 0 3.50774 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9000.2.a.w 4
3.b odd 2 1 3000.2.a.m yes 4
5.b even 2 1 9000.2.a.v 4
12.b even 2 1 6000.2.a.be 4
15.d odd 2 1 3000.2.a.l 4
15.e even 4 2 3000.2.f.f 8
60.h even 2 1 6000.2.a.bj 4
60.l odd 4 2 6000.2.f.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3000.2.a.l 4 15.d odd 2 1
3000.2.a.m yes 4 3.b odd 2 1
3000.2.f.f 8 15.e even 4 2
6000.2.a.be 4 12.b even 2 1
6000.2.a.bj 4 60.h even 2 1
6000.2.f.r 8 60.l odd 4 2
9000.2.a.v 4 5.b even 2 1
9000.2.a.w 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9000))\):

\( T_{7}^{4} - T_{7}^{3} - 21T_{7}^{2} + 20T_{7} + 80 \) Copy content Toggle raw display
\( T_{11}^{4} + T_{11}^{3} - 27T_{11}^{2} + 22T_{11} + 44 \) Copy content Toggle raw display
\( T_{13}^{4} - T_{13}^{3} - 27T_{13}^{2} - 22T_{13} + 44 \) Copy content Toggle raw display
\( T_{17}^{4} + 5T_{17}^{3} - 17T_{17}^{2} - 30T_{17} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 80 \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 44 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{3} + \cdots + 44 \) Copy content Toggle raw display
$17$ \( T^{4} + 5 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 79 \) Copy content Toggle raw display
$23$ \( T^{4} + 12 T^{3} + \cdots - 505 \) Copy content Toggle raw display
$29$ \( (T^{2} + 6 T + 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + T^{3} + \cdots + 80 \) Copy content Toggle raw display
$37$ \( T^{4} - 11 T^{3} + \cdots - 100 \) Copy content Toggle raw display
$41$ \( T^{4} - 3 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$43$ \( T^{4} - 10 T^{3} + \cdots + 656 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots - 3195 \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 10845 \) Copy content Toggle raw display
$59$ \( T^{4} - 13 T^{3} + \cdots - 436 \) Copy content Toggle raw display
$61$ \( T^{4} - 27 T^{3} + \cdots - 7596 \) Copy content Toggle raw display
$67$ \( T^{4} - 22 T^{3} + \cdots - 3376 \) Copy content Toggle raw display
$71$ \( T^{4} - 22 T^{3} + \cdots - 3376 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 64)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 13 T^{3} + \cdots + 1436 \) Copy content Toggle raw display
$83$ \( T^{4} + 19 T^{3} + \cdots - 436 \) Copy content Toggle raw display
$89$ \( T^{4} - 23 T^{3} + \cdots - 500 \) Copy content Toggle raw display
$97$ \( T^{4} - 10 T^{3} + \cdots + 176 \) Copy content Toggle raw display
show more
show less