Properties

Label 9025.2.a.bl
Level $9025$
Weight $2$
Character orbit 9025.a
Self dual yes
Analytic conductor $72.065$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_1 q^{3} + (\beta_{2} + 1) q^{4} + (\beta_{2} + 3) q^{6} + (2 \beta_{2} + 3) q^{7} + (\beta_{3} - \beta_1) q^{8} + \beta_{2} q^{9} + ( - 3 \beta_{2} - 4) q^{11} + (\beta_{3} + \beta_1) q^{12}+ \cdots + ( - \beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 10 q^{6} + 8 q^{7} - 2 q^{9} - 10 q^{11} - 14 q^{16} - 12 q^{17} + 6 q^{23} - 10 q^{24} - 10 q^{26} + 14 q^{28} + 4 q^{36} - 10 q^{39} + 30 q^{42} - 6 q^{43} - 20 q^{44} - 12 q^{47} + 8 q^{49}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.90211
−1.17557
1.17557
1.90211
−1.90211 −1.90211 1.61803 0 3.61803 4.23607 0.726543 0.618034 0
1.2 −1.17557 −1.17557 −0.618034 0 1.38197 −0.236068 3.07768 −1.61803 0
1.3 1.17557 1.17557 −0.618034 0 1.38197 −0.236068 −3.07768 −1.61803 0
1.4 1.90211 1.90211 1.61803 0 3.61803 4.23607 −0.726543 0.618034 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9025.2.a.bl 4
5.b even 2 1 1805.2.a.l 4
19.b odd 2 1 inner 9025.2.a.bl 4
95.d odd 2 1 1805.2.a.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1805.2.a.l 4 5.b even 2 1
1805.2.a.l 4 95.d odd 2 1
9025.2.a.bl 4 1.a even 1 1 trivial
9025.2.a.bl 4 19.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9025))\):

\( T_{2}^{4} - 5T_{2}^{2} + 5 \) Copy content Toggle raw display
\( T_{3}^{4} - 5T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 5T_{11} - 5 \) Copy content Toggle raw display
\( T_{29}^{4} - 85T_{29}^{2} + 605 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$3$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 5 T - 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 10T^{2} + 5 \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T - 29)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 85T^{2} + 605 \) Copy content Toggle raw display
$31$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$37$ \( T^{4} - 85T^{2} + 605 \) Copy content Toggle raw display
$41$ \( T^{4} - 50T^{2} + 125 \) Copy content Toggle raw display
$43$ \( (T^{2} + 3 T + 1)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 6 T - 11)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 125T^{2} + 125 \) Copy content Toggle raw display
$59$ \( T^{4} - 325 T^{2} + 25205 \) Copy content Toggle raw display
$61$ \( (T^{2} + 10 T - 55)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 170T^{2} + 4805 \) Copy content Toggle raw display
$71$ \( T^{4} - 170T^{2} + 5 \) Copy content Toggle raw display
$73$ \( (T - 1)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - 100T^{2} + 2000 \) Copy content Toggle raw display
$83$ \( (T^{2} - 22 T + 116)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 130T^{2} + 4205 \) Copy content Toggle raw display
$97$ \( T^{4} - 25T^{2} + 125 \) Copy content Toggle raw display
show more
show less