Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [9025,2,Mod(1,9025)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9025.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 9025.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 1805) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.90211 | −1.90211 | 1.61803 | 0 | 3.61803 | 4.23607 | 0.726543 | 0.618034 | 0 | ||||||||||||||||||||||||||||||
1.2 | −1.17557 | −1.17557 | −0.618034 | 0 | 1.38197 | −0.236068 | 3.07768 | −1.61803 | 0 | |||||||||||||||||||||||||||||||
1.3 | 1.17557 | 1.17557 | −0.618034 | 0 | 1.38197 | −0.236068 | −3.07768 | −1.61803 | 0 | |||||||||||||||||||||||||||||||
1.4 | 1.90211 | 1.90211 | 1.61803 | 0 | 3.61803 | 4.23607 | −0.726543 | 0.618034 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 9025.2.a.bl | 4 | |
5.b | even | 2 | 1 | 1805.2.a.l | ✓ | 4 | |
19.b | odd | 2 | 1 | inner | 9025.2.a.bl | 4 | |
95.d | odd | 2 | 1 | 1805.2.a.l | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1805.2.a.l | ✓ | 4 | 5.b | even | 2 | 1 | |
1805.2.a.l | ✓ | 4 | 95.d | odd | 2 | 1 | |
9025.2.a.bl | 4 | 1.a | even | 1 | 1 | trivial | |
9025.2.a.bl | 4 | 19.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|
|