Properties

Label 9025.2.a.cv.1.18
Level 90259025
Weight 22
Character 9025.1
Self dual yes
Analytic conductor 72.06572.065
Analytic rank 00
Dimension 4040
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 9025=52192 9025 = 5^{2} \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,48,0,20,0,0,52,0,20,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 72.064987824272.0649878242
Analytic rank: 00
Dimension: 4040
Twist minimal: no (minimal twist has level 1805)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.18
Character χ\chi == 9025.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.717155q21.56975q31.48569q4+1.12576q6+2.51917q7+2.49978q80.535883q95.85392q11+2.33216q12+0.791698q131.80664q14+1.17865q16+0.651447q17+0.384311q183.95447q21+4.19817q224.88134q233.92403q240.567770q26+5.55045q273.74270q284.83251q296.73907q315.84483q32+9.18920q330.467189q34+0.796155q360.741957q371.24277q39+8.04494q41+2.83597q420.761041q43+8.69710q44+3.50068q46+11.3005q471.85018q480.653781q491.02261q511.17622q5212.8983q533.98054q54+6.29737q56+3.46566q582.14576q596.75915q61+4.83296q621.34998q63+1.83436q646.59008q6613.8808q670.967847q68+7.66249q696.05037q711.33959q72+11.1309q73+0.532098q7414.7470q77+0.891258q78+15.7669q797.10518q815.76948q82+3.26719q83+5.87511q84+0.545785q86+7.58584q8714.6335q88+1.07484q89+1.99442q91+7.25215q92+10.5787q938.10419q94+9.17493q9610.1175q97+0.468863q98+3.13702q99+O(q100)q-0.717155 q^{2} -1.56975 q^{3} -1.48569 q^{4} +1.12576 q^{6} +2.51917 q^{7} +2.49978 q^{8} -0.535883 q^{9} -5.85392 q^{11} +2.33216 q^{12} +0.791698 q^{13} -1.80664 q^{14} +1.17865 q^{16} +0.651447 q^{17} +0.384311 q^{18} -3.95447 q^{21} +4.19817 q^{22} -4.88134 q^{23} -3.92403 q^{24} -0.567770 q^{26} +5.55045 q^{27} -3.74270 q^{28} -4.83251 q^{29} -6.73907 q^{31} -5.84483 q^{32} +9.18920 q^{33} -0.467189 q^{34} +0.796155 q^{36} -0.741957 q^{37} -1.24277 q^{39} +8.04494 q^{41} +2.83597 q^{42} -0.761041 q^{43} +8.69710 q^{44} +3.50068 q^{46} +11.3005 q^{47} -1.85018 q^{48} -0.653781 q^{49} -1.02261 q^{51} -1.17622 q^{52} -12.8983 q^{53} -3.98054 q^{54} +6.29737 q^{56} +3.46566 q^{58} -2.14576 q^{59} -6.75915 q^{61} +4.83296 q^{62} -1.34998 q^{63} +1.83436 q^{64} -6.59008 q^{66} -13.8808 q^{67} -0.967847 q^{68} +7.66249 q^{69} -6.05037 q^{71} -1.33959 q^{72} +11.1309 q^{73} +0.532098 q^{74} -14.7470 q^{77} +0.891258 q^{78} +15.7669 q^{79} -7.10518 q^{81} -5.76948 q^{82} +3.26719 q^{83} +5.87511 q^{84} +0.545785 q^{86} +7.58584 q^{87} -14.6335 q^{88} +1.07484 q^{89} +1.99442 q^{91} +7.25215 q^{92} +10.5787 q^{93} -8.10419 q^{94} +9.17493 q^{96} -10.1175 q^{97} +0.468863 q^{98} +3.13702 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 40q+48q4+20q6+52q9+20q11+40q16+92q24+76q26+156q36+80q39+48q44+72q49+32q54+80q61+72q64+16q66+100q74+40q81++128q99+O(q100) 40 q + 48 q^{4} + 20 q^{6} + 52 q^{9} + 20 q^{11} + 40 q^{16} + 92 q^{24} + 76 q^{26} + 156 q^{36} + 80 q^{39} + 48 q^{44} + 72 q^{49} + 32 q^{54} + 80 q^{61} + 72 q^{64} + 16 q^{66} + 100 q^{74} + 40 q^{81}+ \cdots + 128 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.717155 −0.507105 −0.253553 0.967322i 0.581599π-0.581599\pi
−0.253553 + 0.967322i 0.581599π0.581599\pi
33 −1.56975 −0.906296 −0.453148 0.891435i 0.649699π-0.649699\pi
−0.453148 + 0.891435i 0.649699π0.649699\pi
44 −1.48569 −0.742844
55 0 0
66 1.12576 0.459588
77 2.51917 0.952157 0.476078 0.879403i 0.342058π-0.342058\pi
0.476078 + 0.879403i 0.342058π0.342058\pi
88 2.49978 0.883806
99 −0.535883 −0.178628
1010 0 0
1111 −5.85392 −1.76502 −0.882512 0.470290i 0.844149π-0.844149\pi
−0.882512 + 0.470290i 0.844149π0.844149\pi
1212 2.33216 0.673237
1313 0.791698 0.219577 0.109789 0.993955i 0.464983π-0.464983\pi
0.109789 + 0.993955i 0.464983π0.464983\pi
1414 −1.80664 −0.482844
1515 0 0
1616 1.17865 0.294661
1717 0.651447 0.157999 0.0789996 0.996875i 0.474827π-0.474827\pi
0.0789996 + 0.996875i 0.474827π0.474827\pi
1818 0.384311 0.0905831
1919 0 0
2020 0 0
2121 −3.95447 −0.862936
2222 4.19817 0.895053
2323 −4.88134 −1.01783 −0.508915 0.860817i 0.669953π-0.669953\pi
−0.508915 + 0.860817i 0.669953π0.669953\pi
2424 −3.92403 −0.800990
2525 0 0
2626 −0.567770 −0.111349
2727 5.55045 1.06819
2828 −3.74270 −0.707304
2929 −4.83251 −0.897375 −0.448687 0.893689i 0.648108π-0.648108\pi
−0.448687 + 0.893689i 0.648108π0.648108\pi
3030 0 0
3131 −6.73907 −1.21037 −0.605186 0.796084i 0.706901π-0.706901\pi
−0.605186 + 0.796084i 0.706901π0.706901\pi
3232 −5.84483 −1.03323
3333 9.18920 1.59963
3434 −0.467189 −0.0801222
3535 0 0
3636 0.796155 0.132693
3737 −0.741957 −0.121977 −0.0609885 0.998138i 0.519425π-0.519425\pi
−0.0609885 + 0.998138i 0.519425π0.519425\pi
3838 0 0
3939 −1.24277 −0.199002
4040 0 0
4141 8.04494 1.25641 0.628205 0.778048i 0.283790π-0.283790\pi
0.628205 + 0.778048i 0.283790π0.283790\pi
4242 2.83597 0.437600
4343 −0.761041 −0.116058 −0.0580289 0.998315i 0.518482π-0.518482\pi
−0.0580289 + 0.998315i 0.518482π0.518482\pi
4444 8.69710 1.31114
4545 0 0
4646 3.50068 0.516147
4747 11.3005 1.64834 0.824171 0.566342i 0.191642π-0.191642\pi
0.824171 + 0.566342i 0.191642π0.191642\pi
4848 −1.85018 −0.267050
4949 −0.653781 −0.0933973
5050 0 0
5151 −1.02261 −0.143194
5252 −1.17622 −0.163112
5353 −12.8983 −1.77172 −0.885860 0.463953i 0.846431π-0.846431\pi
−0.885860 + 0.463953i 0.846431π0.846431\pi
5454 −3.98054 −0.541683
5555 0 0
5656 6.29737 0.841522
5757 0 0
5858 3.46566 0.455064
5959 −2.14576 −0.279354 −0.139677 0.990197i 0.544606π-0.544606\pi
−0.139677 + 0.990197i 0.544606π0.544606\pi
6060 0 0
6161 −6.75915 −0.865421 −0.432710 0.901533i 0.642443π-0.642443\pi
−0.432710 + 0.901533i 0.642443π0.642443\pi
6262 4.83296 0.613787
6363 −1.34998 −0.170082
6464 1.83436 0.229295
6565 0 0
6666 −6.59008 −0.811183
6767 −13.8808 −1.69581 −0.847903 0.530152i 0.822135π-0.822135\pi
−0.847903 + 0.530152i 0.822135π0.822135\pi
6868 −0.967847 −0.117369
6969 7.66249 0.922455
7070 0 0
7171 −6.05037 −0.718046 −0.359023 0.933329i 0.616890π-0.616890\pi
−0.359023 + 0.933329i 0.616890π0.616890\pi
7272 −1.33959 −0.157872
7373 11.1309 1.30277 0.651387 0.758746i 0.274188π-0.274188\pi
0.651387 + 0.758746i 0.274188π0.274188\pi
7474 0.532098 0.0618552
7575 0 0
7676 0 0
7777 −14.7470 −1.68058
7878 0.891258 0.100915
7979 15.7669 1.77391 0.886955 0.461856i 0.152816π-0.152816\pi
0.886955 + 0.461856i 0.152816π0.152816\pi
8080 0 0
8181 −7.10518 −0.789464
8282 −5.76948 −0.637132
8383 3.26719 0.358621 0.179310 0.983793i 0.442613π-0.442613\pi
0.179310 + 0.983793i 0.442613π0.442613\pi
8484 5.87511 0.641027
8585 0 0
8686 0.545785 0.0588535
8787 7.58584 0.813287
8888 −14.6335 −1.55994
8989 1.07484 0.113932 0.0569662 0.998376i 0.481857π-0.481857\pi
0.0569662 + 0.998376i 0.481857π0.481857\pi
9090 0 0
9191 1.99442 0.209072
9292 7.25215 0.756089
9393 10.5787 1.09696
9494 −8.10419 −0.835883
9595 0 0
9696 9.17493 0.936412
9797 −10.1175 −1.02728 −0.513641 0.858005i 0.671704π-0.671704\pi
−0.513641 + 0.858005i 0.671704π0.671704\pi
9898 0.468863 0.0473623
9999 3.13702 0.315282
100100 0 0
101101 5.63114 0.560320 0.280160 0.959953i 0.409613π-0.409613\pi
0.280160 + 0.959953i 0.409613π0.409613\pi
102102 0.733370 0.0726145
103103 −0.459634 −0.0452891 −0.0226446 0.999744i 0.507209π-0.507209\pi
−0.0226446 + 0.999744i 0.507209π0.507209\pi
104104 1.97907 0.194064
105105 0 0
106106 9.25010 0.898449
107107 5.11103 0.494102 0.247051 0.969002i 0.420538π-0.420538\pi
0.247051 + 0.969002i 0.420538π0.420538\pi
108108 −8.24624 −0.793495
109109 −10.1536 −0.972537 −0.486269 0.873809i 0.661642π-0.661642\pi
−0.486269 + 0.873809i 0.661642π0.661642\pi
110110 0 0
111111 1.16469 0.110547
112112 2.96921 0.280564
113113 −5.61000 −0.527745 −0.263872 0.964558i 0.585000π-0.585000\pi
−0.263872 + 0.964558i 0.585000π0.585000\pi
114114 0 0
115115 0 0
116116 7.17960 0.666609
117117 −0.424257 −0.0392226
118118 1.53884 0.141662
119119 1.64111 0.150440
120120 0 0
121121 23.2684 2.11531
122122 4.84736 0.438860
123123 −12.6286 −1.13868
124124 10.0122 0.899118
125125 0 0
126126 0.968146 0.0862493
127127 −10.8609 −0.963747 −0.481873 0.876241i 0.660044π-0.660044\pi
−0.481873 + 0.876241i 0.660044π0.660044\pi
128128 10.3741 0.916953
129129 1.19465 0.105183
130130 0 0
131131 16.3484 1.42837 0.714184 0.699958i 0.246798π-0.246798\pi
0.714184 + 0.699958i 0.246798π0.246798\pi
132132 −13.6523 −1.18828
133133 0 0
134134 9.95467 0.859952
135135 0 0
136136 1.62847 0.139641
137137 18.3333 1.56632 0.783162 0.621818i 0.213606π-0.213606\pi
0.783162 + 0.621818i 0.213606π0.213606\pi
138138 −5.49519 −0.467782
139139 −9.37358 −0.795057 −0.397529 0.917590i 0.630132π-0.630132\pi
−0.397529 + 0.917590i 0.630132π0.630132\pi
140140 0 0
141141 −17.7389 −1.49389
142142 4.33905 0.364125
143143 −4.63454 −0.387559
144144 −0.631616 −0.0526347
145145 0 0
146146 −7.98258 −0.660643
147147 1.02627 0.0846456
148148 1.10232 0.0906099
149149 −7.69847 −0.630683 −0.315342 0.948978i 0.602119π-0.602119\pi
−0.315342 + 0.948978i 0.602119π0.602119\pi
150150 0 0
151151 −0.167275 −0.0136126 −0.00680631 0.999977i 0.502167π-0.502167\pi
−0.00680631 + 0.999977i 0.502167π0.502167\pi
152152 0 0
153153 −0.349100 −0.0282230
154154 10.5759 0.852231
155155 0 0
156156 1.84637 0.147828
157157 −14.8860 −1.18803 −0.594016 0.804453i 0.702458π-0.702458\pi
−0.594016 + 0.804453i 0.702458π0.702458\pi
158158 −11.3073 −0.899559
159159 20.2471 1.60570
160160 0 0
161161 −12.2969 −0.969133
162162 5.09552 0.400342
163163 −18.7516 −1.46874 −0.734369 0.678751i 0.762522π-0.762522\pi
−0.734369 + 0.678751i 0.762522π0.762522\pi
164164 −11.9523 −0.933316
165165 0 0
166166 −2.34308 −0.181859
167167 −11.1787 −0.865036 −0.432518 0.901625i 0.642375π-0.642375\pi
−0.432518 + 0.901625i 0.642375π0.642375\pi
168168 −9.88530 −0.762668
169169 −12.3732 −0.951786
170170 0 0
171171 0 0
172172 1.13067 0.0862128
173173 −5.09894 −0.387665 −0.193833 0.981035i 0.562092π-0.562092\pi
−0.193833 + 0.981035i 0.562092π0.562092\pi
174174 −5.44022 −0.412422
175175 0 0
176176 −6.89970 −0.520084
177177 3.36831 0.253178
178178 −0.770825 −0.0577757
179179 0.474937 0.0354984 0.0177492 0.999842i 0.494350π-0.494350\pi
0.0177492 + 0.999842i 0.494350π0.494350\pi
180180 0 0
181181 −1.41389 −0.105093 −0.0525466 0.998618i 0.516734π-0.516734\pi
−0.0525466 + 0.998618i 0.516734π0.516734\pi
182182 −1.43031 −0.106022
183183 10.6102 0.784327
184184 −12.2023 −0.899564
185185 0 0
186186 −7.58654 −0.556272
187187 −3.81352 −0.278872
188188 −16.7890 −1.22446
189189 13.9825 1.01708
190190 0 0
191191 12.6109 0.912496 0.456248 0.889853i 0.349193π-0.349193\pi
0.456248 + 0.889853i 0.349193π0.349193\pi
192192 −2.87949 −0.207809
193193 −12.6096 −0.907660 −0.453830 0.891088i 0.649943π-0.649943\pi
−0.453830 + 0.891088i 0.649943π0.649943\pi
194194 7.25585 0.520940
195195 0 0
196196 0.971315 0.0693796
197197 −1.50078 −0.106926 −0.0534631 0.998570i 0.517026π-0.517026\pi
−0.0534631 + 0.998570i 0.517026π0.517026\pi
198198 −2.24973 −0.159881
199199 −15.6650 −1.11046 −0.555231 0.831696i 0.687370π-0.687370\pi
−0.555231 + 0.831696i 0.687370π0.687370\pi
200200 0 0
201201 21.7893 1.53690
202202 −4.03841 −0.284141
203203 −12.1739 −0.854441
204204 1.51928 0.106371
205205 0 0
206206 0.329629 0.0229664
207207 2.61583 0.181813
208208 0.933131 0.0647010
209209 0 0
210210 0 0
211211 17.8162 1.22652 0.613259 0.789882i 0.289858π-0.289858\pi
0.613259 + 0.789882i 0.289858π0.289858\pi
212212 19.1629 1.31611
213213 9.49757 0.650763
214214 −3.66540 −0.250562
215215 0 0
216216 13.8749 0.944068
217217 −16.9769 −1.15246
218218 7.28170 0.493179
219219 −17.4727 −1.18070
220220 0 0
221221 0.515749 0.0346930
222222 −0.835262 −0.0560591
223223 −18.4288 −1.23408 −0.617041 0.786931i 0.711669π-0.711669\pi
−0.617041 + 0.786931i 0.711669π0.711669\pi
224224 −14.7241 −0.983797
225225 0 0
226226 4.02325 0.267622
227227 4.13839 0.274674 0.137337 0.990524i 0.456146π-0.456146\pi
0.137337 + 0.990524i 0.456146π0.456146\pi
228228 0 0
229229 −1.37089 −0.0905907 −0.0452953 0.998974i 0.514423π-0.514423\pi
−0.0452953 + 0.998974i 0.514423π0.514423\pi
230230 0 0
231231 23.1492 1.52310
232232 −12.0802 −0.793105
233233 1.01441 0.0664564 0.0332282 0.999448i 0.489421π-0.489421\pi
0.0332282 + 0.999448i 0.489421π0.489421\pi
234234 0.304258 0.0198900
235235 0 0
236236 3.18793 0.207517
237237 −24.7500 −1.60769
238238 −1.17693 −0.0762889
239239 5.54538 0.358701 0.179351 0.983785i 0.442600π-0.442600\pi
0.179351 + 0.983785i 0.442600π0.442600\pi
240240 0 0
241241 −25.0078 −1.61089 −0.805445 0.592670i 0.798074π-0.798074\pi
−0.805445 + 0.592670i 0.798074π0.798074\pi
242242 −16.6871 −1.07268
243243 −5.49800 −0.352697
244244 10.0420 0.642873
245245 0 0
246246 9.05664 0.577430
247247 0 0
248248 −16.8462 −1.06973
249249 −5.12867 −0.325016
250250 0 0
251251 10.9588 0.691713 0.345857 0.938287i 0.387588π-0.387588\pi
0.345857 + 0.938287i 0.387588π0.387588\pi
252252 2.00565 0.126344
253253 28.5750 1.79649
254254 7.78894 0.488721
255255 0 0
256256 −11.1086 −0.694287
257257 −15.0295 −0.937514 −0.468757 0.883327i 0.655298π-0.655298\pi
−0.468757 + 0.883327i 0.655298π0.655298\pi
258258 −0.856746 −0.0533387
259259 −1.86912 −0.116141
260260 0 0
261261 2.58966 0.160296
262262 −11.7244 −0.724334
263263 14.8709 0.916980 0.458490 0.888700i 0.348390π-0.348390\pi
0.458490 + 0.888700i 0.348390π0.348390\pi
264264 22.9710 1.41377
265265 0 0
266266 0 0
267267 −1.68722 −0.103256
268268 20.6225 1.25972
269269 3.34506 0.203952 0.101976 0.994787i 0.467484π-0.467484\pi
0.101976 + 0.994787i 0.467484π0.467484\pi
270270 0 0
271271 9.34209 0.567492 0.283746 0.958900i 0.408423π-0.408423\pi
0.283746 + 0.958900i 0.408423π0.408423\pi
272272 0.767825 0.0465562
273273 −3.13074 −0.189481
274274 −13.1479 −0.794291
275275 0 0
276276 −11.3841 −0.685240
277277 −2.79175 −0.167740 −0.0838700 0.996477i 0.526728π-0.526728\pi
−0.0838700 + 0.996477i 0.526728π0.526728\pi
278278 6.72232 0.403178
279279 3.61135 0.216206
280280 0 0
281281 27.7534 1.65563 0.827816 0.561000i 0.189583π-0.189583\pi
0.827816 + 0.561000i 0.189583π0.189583\pi
282282 12.7215 0.757557
283283 1.13648 0.0675569 0.0337784 0.999429i 0.489246π-0.489246\pi
0.0337784 + 0.999429i 0.489246π0.489246\pi
284284 8.98896 0.533396
285285 0 0
286286 3.32368 0.196533
287287 20.2666 1.19630
288288 3.13215 0.184563
289289 −16.5756 −0.975036
290290 0 0
291291 15.8820 0.931021
292292 −16.5370 −0.967757
293293 −25.0362 −1.46263 −0.731314 0.682041i 0.761092π-0.761092\pi
−0.731314 + 0.682041i 0.761092π0.761092\pi
294294 −0.735997 −0.0429242
295295 0 0
296296 −1.85473 −0.107804
297297 −32.4919 −1.88537
298298 5.52100 0.319823
299299 −3.86454 −0.223492
300300 0 0
301301 −1.91719 −0.110505
302302 0.119962 0.00690304
303303 −8.83949 −0.507816
304304 0 0
305305 0 0
306306 0.250359 0.0143120
307307 −18.8926 −1.07826 −0.539130 0.842223i 0.681247π-0.681247\pi
−0.539130 + 0.842223i 0.681247π0.681247\pi
308308 21.9095 1.24841
309309 0.721512 0.0410454
310310 0 0
311311 13.9570 0.791430 0.395715 0.918373i 0.370497π-0.370497\pi
0.395715 + 0.918373i 0.370497π0.370497\pi
312312 −3.10665 −0.175879
313313 0.212626 0.0120183 0.00600917 0.999982i 0.498087π-0.498087\pi
0.00600917 + 0.999982i 0.498087π0.498087\pi
314314 10.6756 0.602457
315315 0 0
316316 −23.4246 −1.31774
317317 7.50284 0.421402 0.210701 0.977551i 0.432425π-0.432425\pi
0.210701 + 0.977551i 0.432425π0.432425\pi
318318 −14.5203 −0.814261
319319 28.2891 1.58389
320320 0 0
321321 −8.02305 −0.447803
322322 8.81881 0.491453
323323 0 0
324324 10.5561 0.586449
325325 0 0
326326 13.4478 0.744805
327327 15.9386 0.881406
328328 20.1106 1.11042
329329 28.4678 1.56948
330330 0 0
331331 3.22616 0.177326 0.0886629 0.996062i 0.471741π-0.471741\pi
0.0886629 + 0.996062i 0.471741π0.471741\pi
332332 −4.85403 −0.266399
333333 0.397602 0.0217885
334334 8.01688 0.438664
335335 0 0
336336 −4.66092 −0.254274
337337 34.5994 1.88475 0.942375 0.334560i 0.108588π-0.108588\pi
0.942375 + 0.334560i 0.108588π0.108588\pi
338338 8.87352 0.482656
339339 8.80631 0.478293
340340 0 0
341341 39.4500 2.13634
342342 0 0
343343 −19.2812 −1.04109
344344 −1.90244 −0.102572
345345 0 0
346346 3.65673 0.196587
347347 0.0848311 0.00455397 0.00227698 0.999997i 0.499275π-0.499275\pi
0.00227698 + 0.999997i 0.499275π0.499275\pi
348348 −11.2702 −0.604145
349349 −17.8090 −0.953295 −0.476648 0.879094i 0.658148π-0.658148\pi
−0.476648 + 0.879094i 0.658148π0.658148\pi
350350 0 0
351351 4.39428 0.234549
352352 34.2152 1.82368
353353 15.1330 0.805451 0.402725 0.915321i 0.368063π-0.368063\pi
0.402725 + 0.915321i 0.368063π0.368063\pi
354354 −2.41560 −0.128388
355355 0 0
356356 −1.59687 −0.0846340
357357 −2.57613 −0.136343
358358 −0.340603 −0.0180015
359359 9.00023 0.475014 0.237507 0.971386i 0.423670π-0.423670\pi
0.237507 + 0.971386i 0.423670π0.423670\pi
360360 0 0
361361 0 0
362362 1.01398 0.0532934
363363 −36.5256 −1.91710
364364 −2.96309 −0.155308
365365 0 0
366366 −7.60915 −0.397737
367367 −5.86064 −0.305923 −0.152962 0.988232i 0.548881π-0.548881\pi
−0.152962 + 0.988232i 0.548881π0.548881\pi
368368 −5.75337 −0.299915
369369 −4.31115 −0.224429
370370 0 0
371371 −32.4931 −1.68696
372372 −15.7166 −0.814867
373373 24.6228 1.27492 0.637460 0.770484i 0.279985π-0.279985\pi
0.637460 + 0.770484i 0.279985π0.279985\pi
374374 2.73489 0.141418
375375 0 0
376376 28.2487 1.45681
377377 −3.82589 −0.197043
378378 −10.0277 −0.515767
379379 2.67753 0.137536 0.0687679 0.997633i 0.478093π-0.478093\pi
0.0687679 + 0.997633i 0.478093π0.478093\pi
380380 0 0
381381 17.0489 0.873440
382382 −9.04401 −0.462732
383383 27.8484 1.42299 0.711494 0.702692i 0.248019π-0.248019\pi
0.711494 + 0.702692i 0.248019π0.248019\pi
384384 −16.2848 −0.831031
385385 0 0
386386 9.04306 0.460280
387387 0.407829 0.0207311
388388 15.0315 0.763110
389389 14.8564 0.753249 0.376624 0.926366i 0.377085π-0.377085\pi
0.376624 + 0.926366i 0.377085π0.377085\pi
390390 0 0
391391 −3.17994 −0.160816
392392 −1.63431 −0.0825451
393393 −25.6630 −1.29452
394394 1.07629 0.0542229
395395 0 0
396396 −4.66063 −0.234205
397397 −11.1189 −0.558043 −0.279022 0.960285i 0.590010π-0.590010\pi
−0.279022 + 0.960285i 0.590010π0.590010\pi
398398 11.2342 0.563121
399399 0 0
400400 0 0
401401 −28.4510 −1.42078 −0.710388 0.703810i 0.751481π-0.751481\pi
−0.710388 + 0.703810i 0.751481π0.751481\pi
402402 −15.6263 −0.779371
403403 −5.33531 −0.265771
404404 −8.36612 −0.416230
405405 0 0
406406 8.73059 0.433292
407407 4.34336 0.215292
408408 −2.55630 −0.126556
409409 −15.8493 −0.783695 −0.391847 0.920030i 0.628164π-0.628164\pi
−0.391847 + 0.920030i 0.628164π0.628164\pi
410410 0 0
411411 −28.7788 −1.41955
412412 0.682873 0.0336428
413413 −5.40554 −0.265989
414414 −1.87595 −0.0921981
415415 0 0
416416 −4.62734 −0.226874
417417 14.7142 0.720557
418418 0 0
419419 −10.2300 −0.499769 −0.249885 0.968276i 0.580393π-0.580393\pi
−0.249885 + 0.968276i 0.580393π0.580393\pi
420420 0 0
421421 31.1606 1.51868 0.759338 0.650696i 0.225523π-0.225523\pi
0.759338 + 0.650696i 0.225523π0.225523\pi
422422 −12.7770 −0.621974
423423 −6.05572 −0.294439
424424 −32.2430 −1.56586
425425 0 0
426426 −6.81123 −0.330005
427427 −17.0275 −0.824016
428428 −7.59340 −0.367041
429429 7.27506 0.351243
430430 0 0
431431 −9.60728 −0.462767 −0.231383 0.972863i 0.574325π-0.574325\pi
−0.231383 + 0.972863i 0.574325π0.574325\pi
432432 6.54202 0.314753
433433 20.8460 1.00179 0.500897 0.865507i 0.333004π-0.333004\pi
0.500897 + 0.865507i 0.333004π0.333004\pi
434434 12.1751 0.584421
435435 0 0
436436 15.0851 0.722443
437437 0 0
438438 12.5307 0.598738
439439 1.11124 0.0530364 0.0265182 0.999648i 0.491558π-0.491558\pi
0.0265182 + 0.999648i 0.491558π0.491558\pi
440440 0 0
441441 0.350350 0.0166833
442442 −0.369872 −0.0175930
443443 28.7487 1.36589 0.682947 0.730468i 0.260698π-0.260698\pi
0.682947 + 0.730468i 0.260698π0.260698\pi
444444 −1.73036 −0.0821194
445445 0 0
446446 13.2163 0.625810
447447 12.0847 0.571586
448448 4.62107 0.218325
449449 −31.9695 −1.50873 −0.754367 0.656452i 0.772056π-0.772056\pi
−0.754367 + 0.656452i 0.772056π0.772056\pi
450450 0 0
451451 −47.0945 −2.21759
452452 8.33472 0.392032
453453 0.262580 0.0123371
454454 −2.96787 −0.139289
455455 0 0
456456 0 0
457457 12.0035 0.561498 0.280749 0.959781i 0.409417π-0.409417\pi
0.280749 + 0.959781i 0.409417π0.409417\pi
458458 0.983138 0.0459390
459459 3.61583 0.168772
460460 0 0
461461 −33.9752 −1.58238 −0.791191 0.611569i 0.790539π-0.790539\pi
−0.791191 + 0.611569i 0.790539π0.790539\pi
462462 −16.6015 −0.772374
463463 24.1005 1.12004 0.560022 0.828478i 0.310793π-0.310793\pi
0.560022 + 0.828478i 0.310793π0.310793\pi
464464 −5.69582 −0.264422
465465 0 0
466466 −0.727492 −0.0337004
467467 −0.621098 −0.0287410 −0.0143705 0.999897i 0.504574π-0.504574\pi
−0.0143705 + 0.999897i 0.504574π0.504574\pi
468468 0.630314 0.0291363
469469 −34.9680 −1.61467
470470 0 0
471471 23.3673 1.07671
472472 −5.36393 −0.246895
473473 4.45508 0.204845
474474 17.7496 0.815267
475475 0 0
476476 −2.43817 −0.111753
477477 6.91199 0.316478
478478 −3.97690 −0.181899
479479 31.0733 1.41978 0.709888 0.704314i 0.248745π-0.248745\pi
0.709888 + 0.704314i 0.248745π0.248745\pi
480480 0 0
481481 −0.587405 −0.0267834
482482 17.9344 0.816892
483483 19.3031 0.878322
484484 −34.5696 −1.57134
485485 0 0
486486 3.94292 0.178855
487487 37.2206 1.68663 0.843313 0.537423i 0.180602π-0.180602\pi
0.843313 + 0.537423i 0.180602π0.180602\pi
488488 −16.8964 −0.764864
489489 29.4353 1.33111
490490 0 0
491491 38.5493 1.73971 0.869853 0.493310i 0.164213π-0.164213\pi
0.869853 + 0.493310i 0.164213π0.164213\pi
492492 18.7621 0.845861
493493 −3.14813 −0.141784
494494 0 0
495495 0 0
496496 −7.94298 −0.356650
497497 −15.2419 −0.683693
498498 3.67806 0.164818
499499 −5.38788 −0.241194 −0.120597 0.992702i 0.538481π-0.538481\pi
−0.120597 + 0.992702i 0.538481π0.538481\pi
500500 0 0
501501 17.5478 0.783978
502502 −7.85916 −0.350771
503503 26.5719 1.18478 0.592392 0.805650i 0.298184π-0.298184\pi
0.592392 + 0.805650i 0.298184π0.298184\pi
504504 −3.37465 −0.150319
505505 0 0
506506 −20.4927 −0.911012
507507 19.4229 0.862600
508508 16.1359 0.715914
509509 28.1487 1.24767 0.623836 0.781556i 0.285573π-0.285573\pi
0.623836 + 0.781556i 0.285573π0.285573\pi
510510 0 0
511511 28.0406 1.24044
512512 −12.7817 −0.564876
513513 0 0
514514 10.7785 0.475418
515515 0 0
516516 −1.77487 −0.0781343
517517 −66.1520 −2.90936
518518 1.34045 0.0588958
519519 8.00406 0.351339
520520 0 0
521521 9.50660 0.416492 0.208246 0.978077i 0.433225π-0.433225\pi
0.208246 + 0.978077i 0.433225π0.433225\pi
522522 −1.85719 −0.0812869
523523 −17.3457 −0.758473 −0.379237 0.925300i 0.623813π-0.623813\pi
−0.379237 + 0.925300i 0.623813π0.623813\pi
524524 −24.2887 −1.06106
525525 0 0
526526 −10.6648 −0.465006
527527 −4.39015 −0.191238
528528 10.8308 0.471350
529529 0.827475 0.0359772
530530 0 0
531531 1.14988 0.0499004
532532 0 0
533533 6.36916 0.275879
534534 1.21000 0.0523619
535535 0 0
536536 −34.6989 −1.49876
537537 −0.745532 −0.0321721
538538 −2.39893 −0.103425
539539 3.82718 0.164848
540540 0 0
541541 −18.5619 −0.798039 −0.399020 0.916942i 0.630649π-0.630649\pi
−0.399020 + 0.916942i 0.630649π0.630649\pi
542542 −6.69973 −0.287778
543543 2.21945 0.0952456
544544 −3.80760 −0.163249
545545 0 0
546546 2.24523 0.0960870
547547 5.56689 0.238023 0.119011 0.992893i 0.462027π-0.462027\pi
0.119011 + 0.992893i 0.462027π0.462027\pi
548548 −27.2376 −1.16353
549549 3.62211 0.154588
550550 0 0
551551 0 0
552552 19.1545 0.815271
553553 39.7194 1.68904
554554 2.00212 0.0850618
555555 0 0
556556 13.9262 0.590603
557557 25.5819 1.08394 0.541970 0.840398i 0.317679π-0.317679\pi
0.541970 + 0.840398i 0.317679π0.317679\pi
558558 −2.58990 −0.109639
559559 −0.602515 −0.0254837
560560 0 0
561561 5.98628 0.252741
562562 −19.9035 −0.839580
563563 12.8773 0.542712 0.271356 0.962479i 0.412528π-0.412528\pi
0.271356 + 0.962479i 0.412528π0.412528\pi
564564 26.3545 1.10972
565565 0 0
566566 −0.815034 −0.0342585
567567 −17.8992 −0.751694
568568 −15.1246 −0.634614
569569 11.4205 0.478773 0.239387 0.970924i 0.423054π-0.423054\pi
0.239387 + 0.970924i 0.423054π0.423054\pi
570570 0 0
571571 11.1881 0.468208 0.234104 0.972212i 0.424784π-0.424784\pi
0.234104 + 0.972212i 0.424784π0.424784\pi
572572 6.88547 0.287896
573573 −19.7960 −0.826991
574574 −14.5343 −0.606650
575575 0 0
576576 −0.983004 −0.0409585
577577 0.256987 0.0106985 0.00534924 0.999986i 0.498297π-0.498297\pi
0.00534924 + 0.999986i 0.498297π0.498297\pi
578578 11.8873 0.494446
579579 19.7940 0.822609
580580 0 0
581581 8.23061 0.341463
582582 −11.3899 −0.472126
583583 75.5057 3.12713
584584 27.8248 1.15140
585585 0 0
586586 17.9548 0.741706
587587 2.50510 0.103397 0.0516983 0.998663i 0.483537π-0.483537\pi
0.0516983 + 0.998663i 0.483537π0.483537\pi
588588 −1.52472 −0.0628785
589589 0 0
590590 0 0
591591 2.35585 0.0969068
592592 −0.874504 −0.0359419
593593 −27.9054 −1.14594 −0.572969 0.819577i 0.694209π-0.694209\pi
−0.572969 + 0.819577i 0.694209π0.694209\pi
594594 23.3018 0.956083
595595 0 0
596596 11.4375 0.468499
597597 24.5901 1.00641
598598 2.77148 0.113334
599599 33.3364 1.36209 0.681045 0.732242i 0.261526π-0.261526\pi
0.681045 + 0.732242i 0.261526π0.261526\pi
600600 0 0
601601 33.2223 1.35516 0.677582 0.735447i 0.263028π-0.263028\pi
0.677582 + 0.735447i 0.263028π0.263028\pi
602602 1.37493 0.0560378
603603 7.43847 0.302918
604604 0.248518 0.0101121
605605 0 0
606606 6.33929 0.257516
607607 20.6372 0.837640 0.418820 0.908069i 0.362444π-0.362444\pi
0.418820 + 0.908069i 0.362444π0.362444\pi
608608 0 0
609609 19.1100 0.774377
610610 0 0
611611 8.94655 0.361938
612612 0.518653 0.0209653
613613 27.6480 1.11669 0.558346 0.829608i 0.311436π-0.311436\pi
0.558346 + 0.829608i 0.311436π0.311436\pi
614614 13.5490 0.546791
615615 0 0
616616 −36.8643 −1.48531
617617 19.4964 0.784896 0.392448 0.919774i 0.371628π-0.371628\pi
0.392448 + 0.919774i 0.371628π0.371628\pi
618618 −0.517436 −0.0208143
619619 26.9685 1.08396 0.541978 0.840392i 0.317675π-0.317675\pi
0.541978 + 0.840392i 0.317675π0.317675\pi
620620 0 0
621621 −27.0937 −1.08723
622622 −10.0094 −0.401338
623623 2.70770 0.108482
624624 −1.46478 −0.0586382
625625 0 0
626626 −0.152486 −0.00609456
627627 0 0
628628 22.1159 0.882522
629629 −0.483346 −0.0192723
630630 0 0
631631 −0.601618 −0.0239500 −0.0119750 0.999928i 0.503812π-0.503812\pi
−0.0119750 + 0.999928i 0.503812π0.503812\pi
632632 39.4137 1.56779
633633 −27.9670 −1.11159
634634 −5.38070 −0.213695
635635 0 0
636636 −30.0809 −1.19279
637637 −0.517597 −0.0205079
638638 −20.2877 −0.803198
639639 3.24229 0.128263
640640 0 0
641641 7.42208 0.293154 0.146577 0.989199i 0.453174π-0.453174\pi
0.146577 + 0.989199i 0.453174π0.453174\pi
642642 5.75377 0.227083
643643 6.20548 0.244720 0.122360 0.992486i 0.460954π-0.460954\pi
0.122360 + 0.992486i 0.460954π0.460954\pi
644644 18.2694 0.719915
645645 0 0
646646 0 0
647647 24.3051 0.955530 0.477765 0.878488i 0.341447π-0.341447\pi
0.477765 + 0.878488i 0.341447π0.341447\pi
648648 −17.7614 −0.697733
649649 12.5611 0.493067
650650 0 0
651651 26.6494 1.04447
652652 27.8590 1.09104
653653 −1.38625 −0.0542483 −0.0271242 0.999632i 0.508635π-0.508635\pi
−0.0271242 + 0.999632i 0.508635π0.508635\pi
654654 −11.4305 −0.446966
655655 0 0
656656 9.48214 0.370215
657657 −5.96486 −0.232711
658658 −20.4158 −0.795892
659659 −30.4152 −1.18481 −0.592405 0.805641i 0.701821π-0.701821\pi
−0.592405 + 0.805641i 0.701821π0.701821\pi
660660 0 0
661661 −18.4422 −0.717317 −0.358659 0.933469i 0.616766π-0.616766\pi
−0.358659 + 0.933469i 0.616766π0.616766\pi
662662 −2.31366 −0.0899228
663663 −0.809598 −0.0314422
664664 8.16726 0.316951
665665 0 0
666666 −0.285143 −0.0110490
667667 23.5891 0.913374
668668 16.6081 0.642587
669669 28.9286 1.11844
670670 0 0
671671 39.5675 1.52749
672672 23.1132 0.891611
673673 −28.6496 −1.10436 −0.552181 0.833724i 0.686204π-0.686204\pi
−0.552181 + 0.833724i 0.686204π0.686204\pi
674674 −24.8131 −0.955767
675675 0 0
676676 18.3827 0.707028
677677 5.02624 0.193174 0.0965870 0.995325i 0.469207π-0.469207\pi
0.0965870 + 0.995325i 0.469207π0.469207\pi
678678 −6.31549 −0.242545
679679 −25.4878 −0.978133
680680 0 0
681681 −6.49624 −0.248936
682682 −28.2918 −1.08335
683683 −12.9236 −0.494509 −0.247254 0.968951i 0.579528π-0.579528\pi
−0.247254 + 0.968951i 0.579528π0.579528\pi
684684 0 0
685685 0 0
686686 13.8276 0.527940
687687 2.15195 0.0821020
688688 −0.896998 −0.0341977
689689 −10.2116 −0.389030
690690 0 0
691691 24.0901 0.916432 0.458216 0.888841i 0.348489π-0.348489\pi
0.458216 + 0.888841i 0.348489π0.348489\pi
692692 7.57544 0.287975
693693 7.90268 0.300198
694694 −0.0608371 −0.00230934
695695 0 0
696696 18.9629 0.718788
697697 5.24086 0.198512
698698 12.7718 0.483421
699699 −1.59238 −0.0602292
700700 0 0
701701 −6.98543 −0.263836 −0.131918 0.991261i 0.542114π-0.542114\pi
−0.131918 + 0.991261i 0.542114π0.542114\pi
702702 −3.15138 −0.118941
703703 0 0
704704 −10.7382 −0.404712
705705 0 0
706706 −10.8527 −0.408448
707707 14.1858 0.533512
708708 −5.00426 −0.188072
709709 −0.256274 −0.00962456 −0.00481228 0.999988i 0.501532π-0.501532\pi
−0.00481228 + 0.999988i 0.501532π0.501532\pi
710710 0 0
711711 −8.44919 −0.316869
712712 2.68685 0.100694
713713 32.8957 1.23195
714714 1.84748 0.0691404
715715 0 0
716716 −0.705608 −0.0263698
717717 −8.70487 −0.325089
718718 −6.45456 −0.240882
719719 18.5286 0.690999 0.345500 0.938419i 0.387709π-0.387709\pi
0.345500 + 0.938419i 0.387709π0.387709\pi
720720 0 0
721721 −1.15790 −0.0431224
722722 0 0
723723 39.2559 1.45994
724724 2.10059 0.0780679
725725 0 0
726726 26.1945 0.972170
727727 −35.1390 −1.30323 −0.651617 0.758548i 0.725909π-0.725909\pi
−0.651617 + 0.758548i 0.725909π0.725909\pi
728728 4.98561 0.184779
729729 29.9460 1.10911
730730 0 0
731731 −0.495778 −0.0183370
732732 −15.7634 −0.582633
733733 34.9872 1.29228 0.646142 0.763217i 0.276382π-0.276382\pi
0.646142 + 0.763217i 0.276382π0.276382\pi
734734 4.20299 0.155135
735735 0 0
736736 28.5306 1.05165
737737 81.2569 2.99314
738738 3.09176 0.113809
739739 −4.73129 −0.174043 −0.0870216 0.996206i 0.527735π-0.527735\pi
−0.0870216 + 0.996206i 0.527735π0.527735\pi
740740 0 0
741741 0 0
742742 23.3026 0.855464
743743 −6.77084 −0.248398 −0.124199 0.992257i 0.539636π-0.539636\pi
−0.124199 + 0.992257i 0.539636π0.539636\pi
744744 26.4443 0.969496
745745 0 0
746746 −17.6584 −0.646519
747747 −1.75083 −0.0640596
748748 5.66570 0.207159
749749 12.8756 0.470463
750750 0 0
751751 2.77014 0.101084 0.0505419 0.998722i 0.483905π-0.483905\pi
0.0505419 + 0.998722i 0.483905π0.483905\pi
752752 13.3192 0.485702
753753 −17.2026 −0.626897
754754 2.74376 0.0999217
755755 0 0
756756 −20.7737 −0.755532
757757 1.03606 0.0376561 0.0188280 0.999823i 0.494006π-0.494006\pi
0.0188280 + 0.999823i 0.494006π0.494006\pi
758758 −1.92021 −0.0697451
759759 −44.8556 −1.62815
760760 0 0
761761 32.4025 1.17459 0.587296 0.809373i 0.300193π-0.300193\pi
0.587296 + 0.809373i 0.300193π0.300193\pi
762762 −12.2267 −0.442926
763763 −25.5786 −0.926008
764764 −18.7359 −0.677842
765765 0 0
766766 −19.9717 −0.721605
767767 −1.69879 −0.0613399
768768 17.4377 0.629230
769769 48.0188 1.73160 0.865801 0.500388i 0.166809π-0.166809\pi
0.865801 + 0.500388i 0.166809π0.166809\pi
770770 0 0
771771 23.5925 0.849665
772772 18.7340 0.674250
773773 10.6208 0.382004 0.191002 0.981590i 0.438826π-0.438826\pi
0.191002 + 0.981590i 0.438826π0.438826\pi
774774 −0.292477 −0.0105129
775775 0 0
776776 −25.2916 −0.907917
777777 2.93405 0.105258
778778 −10.6543 −0.381976
779779 0 0
780780 0 0
781781 35.4184 1.26737
782782 2.28051 0.0815508
783783 −26.8226 −0.958562
784784 −0.770576 −0.0275206
785785 0 0
786786 18.4043 0.656461
787787 −26.1251 −0.931259 −0.465629 0.884980i 0.654172π-0.654172\pi
−0.465629 + 0.884980i 0.654172π0.654172\pi
788788 2.22969 0.0794295
789789 −23.3436 −0.831055
790790 0 0
791791 −14.1326 −0.502496
792792 7.84185 0.278648
793793 −5.35120 −0.190027
794794 7.97400 0.282987
795795 0 0
796796 23.2733 0.824899
797797 −23.4923 −0.832139 −0.416069 0.909333i 0.636593π-0.636593\pi
−0.416069 + 0.909333i 0.636593π0.636593\pi
798798 0 0
799799 7.36165 0.260437
800800 0 0
801801 −0.575987 −0.0203515
802802 20.4038 0.720483
803803 −65.1594 −2.29943
804804 −32.3722 −1.14168
805805 0 0
806806 3.82624 0.134774
807807 −5.25091 −0.184841
808808 14.0766 0.495214
809809 18.6786 0.656706 0.328353 0.944555i 0.393506π-0.393506\pi
0.328353 + 0.944555i 0.393506π0.393506\pi
810810 0 0
811811 16.1813 0.568202 0.284101 0.958794i 0.408305π-0.408305\pi
0.284101 + 0.958794i 0.408305π0.408305\pi
812812 18.0866 0.634717
813813 −14.6648 −0.514315
814814 −3.11486 −0.109176
815815 0 0
816816 −1.20529 −0.0421937
817817 0 0
818818 11.3664 0.397416
819819 −1.06878 −0.0373461
820820 0 0
821821 31.3762 1.09504 0.547519 0.836793i 0.315572π-0.315572\pi
0.547519 + 0.836793i 0.315572π0.315572\pi
822822 20.6389 0.719863
823823 −12.2385 −0.426608 −0.213304 0.976986i 0.568422π-0.568422\pi
−0.213304 + 0.976986i 0.568422π0.568422\pi
824824 −1.14899 −0.0400268
825825 0 0
826826 3.87661 0.134885
827827 −6.21619 −0.216158 −0.108079 0.994142i 0.534470π-0.534470\pi
−0.108079 + 0.994142i 0.534470π0.534470\pi
828828 −3.88630 −0.135058
829829 52.2819 1.81583 0.907913 0.419158i 0.137675π-0.137675\pi
0.907913 + 0.419158i 0.137675π0.137675\pi
830830 0 0
831831 4.38235 0.152022
832832 1.45226 0.0503481
833833 −0.425904 −0.0147567
834834 −10.5524 −0.365398
835835 0 0
836836 0 0
837837 −37.4049 −1.29290
838838 7.33651 0.253436
839839 −44.5398 −1.53768 −0.768842 0.639439i 0.779167π-0.779167\pi
−0.768842 + 0.639439i 0.779167π0.779167\pi
840840 0 0
841841 −5.64685 −0.194719
842842 −22.3470 −0.770129
843843 −43.5660 −1.50049
844844 −26.4693 −0.911112
845845 0 0
846846 4.34290 0.149312
847847 58.6171 2.01411
848848 −15.2025 −0.522057
849849 −1.78399 −0.0612265
850850 0 0
851851 3.62174 0.124152
852852 −14.1104 −0.483415
853853 40.0057 1.36977 0.684885 0.728651i 0.259852π-0.259852\pi
0.684885 + 0.728651i 0.259852π0.259852\pi
854854 12.2113 0.417863
855855 0 0
856856 12.7765 0.436690
857857 −27.8347 −0.950817 −0.475408 0.879765i 0.657700π-0.657700\pi
−0.475408 + 0.879765i 0.657700π0.657700\pi
858858 −5.21735 −0.178117
859859 −1.48811 −0.0507737 −0.0253869 0.999678i 0.508082π-0.508082\pi
−0.0253869 + 0.999678i 0.508082π0.508082\pi
860860 0 0
861861 −31.8135 −1.08420
862862 6.88991 0.234671
863863 13.3429 0.454196 0.227098 0.973872i 0.427076π-0.427076\pi
0.227098 + 0.973872i 0.427076π0.427076\pi
864864 −32.4415 −1.10368
865865 0 0
866866 −14.9498 −0.508015
867867 26.0196 0.883671
868868 25.2223 0.856102
869869 −92.2979 −3.13099
870870 0 0
871871 −10.9894 −0.372361
872872 −25.3817 −0.859534
873873 5.42182 0.183501
874874 0 0
875875 0 0
876876 25.9590 0.877074
877877 −0.167258 −0.00564790 −0.00282395 0.999996i 0.500899π-0.500899\pi
−0.00282395 + 0.999996i 0.500899π0.500899\pi
878878 −0.796928 −0.0268950
879879 39.3005 1.32557
880880 0 0
881881 −28.5156 −0.960715 −0.480357 0.877073i 0.659493π-0.659493\pi
−0.480357 + 0.877073i 0.659493π0.659493\pi
882882 −0.251255 −0.00846021
883883 −34.8335 −1.17224 −0.586121 0.810224i 0.699346π-0.699346\pi
−0.586121 + 0.810224i 0.699346π0.699346\pi
884884 −0.766242 −0.0257715
885885 0 0
886886 −20.6173 −0.692652
887887 25.7718 0.865332 0.432666 0.901554i 0.357573π-0.357573\pi
0.432666 + 0.901554i 0.357573π0.357573\pi
888888 2.91146 0.0977023
889889 −27.3604 −0.917638
890890 0 0
891891 41.5932 1.39342
892892 27.3794 0.916731
893893 0 0
894894 −8.66659 −0.289854
895895 0 0
896896 26.1342 0.873083
897897 6.06637 0.202550
898898 22.9271 0.765088
899899 32.5666 1.08616
900900 0 0
901901 −8.40257 −0.279930
902902 33.7741 1.12455
903903 3.00951 0.100150
904904 −14.0238 −0.466424
905905 0 0
906906 −0.188310 −0.00625619
907907 −23.4162 −0.777521 −0.388761 0.921339i 0.627097π-0.627097\pi
−0.388761 + 0.921339i 0.627097π0.627097\pi
908908 −6.14835 −0.204040
909909 −3.01763 −0.100089
910910 0 0
911911 −7.45626 −0.247037 −0.123518 0.992342i 0.539418π-0.539418\pi
−0.123518 + 0.992342i 0.539418π0.539418\pi
912912 0 0
913913 −19.1259 −0.632974
914914 −8.60834 −0.284739
915915 0 0
916916 2.03671 0.0672948
917917 41.1845 1.36003
918918 −2.59311 −0.0855854
919919 40.0009 1.31951 0.659754 0.751481i 0.270660π-0.270660\pi
0.659754 + 0.751481i 0.270660π0.270660\pi
920920 0 0
921921 29.6567 0.977223
922922 24.3655 0.802434
923923 −4.79006 −0.157667
924924 −34.3924 −1.13143
925925 0 0
926926 −17.2838 −0.567981
927927 0.246310 0.00808989
928928 28.2452 0.927194
929929 −20.1755 −0.661936 −0.330968 0.943642i 0.607375π-0.607375\pi
−0.330968 + 0.943642i 0.607375π0.607375\pi
930930 0 0
931931 0 0
932932 −1.50710 −0.0493667
933933 −21.9090 −0.717270
934934 0.445424 0.0145747
935935 0 0
936936 −1.06055 −0.0346652
937937 34.1398 1.11530 0.557649 0.830077i 0.311703π-0.311703\pi
0.557649 + 0.830077i 0.311703π0.311703\pi
938938 25.0775 0.818810
939939 −0.333770 −0.0108922
940940 0 0
941941 26.7549 0.872184 0.436092 0.899902i 0.356362π-0.356362\pi
0.436092 + 0.899902i 0.356362π0.356362\pi
942942 −16.7580 −0.546005
943943 −39.2701 −1.27881
944944 −2.52909 −0.0823149
945945 0 0
946946 −3.19498 −0.103878
947947 15.6563 0.508763 0.254381 0.967104i 0.418128π-0.418128\pi
0.254381 + 0.967104i 0.418128π0.418128\pi
948948 36.7708 1.19426
949949 8.81230 0.286060
950950 0 0
951951 −11.7776 −0.381915
952952 4.10241 0.132960
953953 −13.5072 −0.437541 −0.218771 0.975776i 0.570205π-0.570205\pi
−0.218771 + 0.975776i 0.570205π0.570205\pi
954954 −4.95697 −0.160488
955955 0 0
956956 −8.23871 −0.266459
957957 −44.4069 −1.43547
958958 −22.2844 −0.719977
959959 46.1848 1.49139
960960 0 0
961961 14.4151 0.465003
962962 0.421261 0.0135820
963963 −2.73892 −0.0882603
964964 37.1537 1.19664
965965 0 0
966966 −13.8433 −0.445402
967967 −21.9060 −0.704450 −0.352225 0.935915i 0.614575π-0.614575\pi
−0.352225 + 0.935915i 0.614575π0.614575\pi
968968 58.1659 1.86952
969969 0 0
970970 0 0
971971 −30.9663 −0.993756 −0.496878 0.867821i 0.665520π-0.665520\pi
−0.496878 + 0.867821i 0.665520π0.665520\pi
972972 8.16832 0.261999
973973 −23.6137 −0.757019
974974 −26.6929 −0.855297
975975 0 0
976976 −7.96664 −0.255006
977977 9.89768 0.316655 0.158327 0.987387i 0.449390π-0.449390\pi
0.158327 + 0.987387i 0.449390π0.449390\pi
978978 −21.1097 −0.675014
979979 −6.29201 −0.201093
980980 0 0
981981 5.44113 0.173722
982982 −27.6459 −0.882215
983983 −10.3096 −0.328827 −0.164413 0.986392i 0.552573π-0.552573\pi
−0.164413 + 0.986392i 0.552573π0.552573\pi
984984 −31.5686 −1.00637
985985 0 0
986986 2.25770 0.0718997
987987 −44.6873 −1.42241
988988 0 0
989989 3.71490 0.118127
990990 0 0
991991 20.4090 0.648314 0.324157 0.946003i 0.394919π-0.394919\pi
0.324157 + 0.946003i 0.394919π0.394919\pi
992992 39.3887 1.25059
993993 −5.06426 −0.160710
994994 10.9308 0.346704
995995 0 0
996996 7.61961 0.241437
997997 47.0764 1.49092 0.745462 0.666549i 0.232229π-0.232229\pi
0.745462 + 0.666549i 0.232229π0.232229\pi
998998 3.86394 0.122311
999999 −4.11820 −0.130294
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cv.1.18 40
5.2 odd 4 1805.2.b.m.1084.18 yes 40
5.3 odd 4 1805.2.b.m.1084.23 yes 40
5.4 even 2 inner 9025.2.a.cv.1.23 40
19.18 odd 2 inner 9025.2.a.cv.1.24 40
95.18 even 4 1805.2.b.m.1084.17 40
95.37 even 4 1805.2.b.m.1084.24 yes 40
95.94 odd 2 inner 9025.2.a.cv.1.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.m.1084.17 40 95.18 even 4
1805.2.b.m.1084.18 yes 40 5.2 odd 4
1805.2.b.m.1084.23 yes 40 5.3 odd 4
1805.2.b.m.1084.24 yes 40 95.37 even 4
9025.2.a.cv.1.17 40 95.94 odd 2 inner
9025.2.a.cv.1.18 40 1.1 even 1 trivial
9025.2.a.cv.1.23 40 5.4 even 2 inner
9025.2.a.cv.1.24 40 19.18 odd 2 inner