Properties

Label 9025.2.a.cv.1.18
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9025,2,Mod(1,9025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 9025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.717155 q^{2} -1.56975 q^{3} -1.48569 q^{4} +1.12576 q^{6} +2.51917 q^{7} +2.49978 q^{8} -0.535883 q^{9} -5.85392 q^{11} +2.33216 q^{12} +0.791698 q^{13} -1.80664 q^{14} +1.17865 q^{16} +0.651447 q^{17} +0.384311 q^{18} -3.95447 q^{21} +4.19817 q^{22} -4.88134 q^{23} -3.92403 q^{24} -0.567770 q^{26} +5.55045 q^{27} -3.74270 q^{28} -4.83251 q^{29} -6.73907 q^{31} -5.84483 q^{32} +9.18920 q^{33} -0.467189 q^{34} +0.796155 q^{36} -0.741957 q^{37} -1.24277 q^{39} +8.04494 q^{41} +2.83597 q^{42} -0.761041 q^{43} +8.69710 q^{44} +3.50068 q^{46} +11.3005 q^{47} -1.85018 q^{48} -0.653781 q^{49} -1.02261 q^{51} -1.17622 q^{52} -12.8983 q^{53} -3.98054 q^{54} +6.29737 q^{56} +3.46566 q^{58} -2.14576 q^{59} -6.75915 q^{61} +4.83296 q^{62} -1.34998 q^{63} +1.83436 q^{64} -6.59008 q^{66} -13.8808 q^{67} -0.967847 q^{68} +7.66249 q^{69} -6.05037 q^{71} -1.33959 q^{72} +11.1309 q^{73} +0.532098 q^{74} -14.7470 q^{77} +0.891258 q^{78} +15.7669 q^{79} -7.10518 q^{81} -5.76948 q^{82} +3.26719 q^{83} +5.87511 q^{84} +0.545785 q^{86} +7.58584 q^{87} -14.6335 q^{88} +1.07484 q^{89} +1.99442 q^{91} +7.25215 q^{92} +10.5787 q^{93} -8.10419 q^{94} +9.17493 q^{96} -10.1175 q^{97} +0.468863 q^{98} +3.13702 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 48 q^{4} + 20 q^{6} + 52 q^{9} + 20 q^{11} + 40 q^{16} + 92 q^{24} + 76 q^{26} + 156 q^{36} + 80 q^{39} + 48 q^{44} + 72 q^{49} + 32 q^{54} + 80 q^{61} + 72 q^{64} + 16 q^{66} + 100 q^{74} + 40 q^{81}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.717155 −0.507105 −0.253553 0.967322i \(-0.581599\pi\)
−0.253553 + 0.967322i \(0.581599\pi\)
\(3\) −1.56975 −0.906296 −0.453148 0.891435i \(-0.649699\pi\)
−0.453148 + 0.891435i \(0.649699\pi\)
\(4\) −1.48569 −0.742844
\(5\) 0 0
\(6\) 1.12576 0.459588
\(7\) 2.51917 0.952157 0.476078 0.879403i \(-0.342058\pi\)
0.476078 + 0.879403i \(0.342058\pi\)
\(8\) 2.49978 0.883806
\(9\) −0.535883 −0.178628
\(10\) 0 0
\(11\) −5.85392 −1.76502 −0.882512 0.470290i \(-0.844149\pi\)
−0.882512 + 0.470290i \(0.844149\pi\)
\(12\) 2.33216 0.673237
\(13\) 0.791698 0.219577 0.109789 0.993955i \(-0.464983\pi\)
0.109789 + 0.993955i \(0.464983\pi\)
\(14\) −1.80664 −0.482844
\(15\) 0 0
\(16\) 1.17865 0.294661
\(17\) 0.651447 0.157999 0.0789996 0.996875i \(-0.474827\pi\)
0.0789996 + 0.996875i \(0.474827\pi\)
\(18\) 0.384311 0.0905831
\(19\) 0 0
\(20\) 0 0
\(21\) −3.95447 −0.862936
\(22\) 4.19817 0.895053
\(23\) −4.88134 −1.01783 −0.508915 0.860817i \(-0.669953\pi\)
−0.508915 + 0.860817i \(0.669953\pi\)
\(24\) −3.92403 −0.800990
\(25\) 0 0
\(26\) −0.567770 −0.111349
\(27\) 5.55045 1.06819
\(28\) −3.74270 −0.707304
\(29\) −4.83251 −0.897375 −0.448687 0.893689i \(-0.648108\pi\)
−0.448687 + 0.893689i \(0.648108\pi\)
\(30\) 0 0
\(31\) −6.73907 −1.21037 −0.605186 0.796084i \(-0.706901\pi\)
−0.605186 + 0.796084i \(0.706901\pi\)
\(32\) −5.84483 −1.03323
\(33\) 9.18920 1.59963
\(34\) −0.467189 −0.0801222
\(35\) 0 0
\(36\) 0.796155 0.132693
\(37\) −0.741957 −0.121977 −0.0609885 0.998138i \(-0.519425\pi\)
−0.0609885 + 0.998138i \(0.519425\pi\)
\(38\) 0 0
\(39\) −1.24277 −0.199002
\(40\) 0 0
\(41\) 8.04494 1.25641 0.628205 0.778048i \(-0.283790\pi\)
0.628205 + 0.778048i \(0.283790\pi\)
\(42\) 2.83597 0.437600
\(43\) −0.761041 −0.116058 −0.0580289 0.998315i \(-0.518482\pi\)
−0.0580289 + 0.998315i \(0.518482\pi\)
\(44\) 8.69710 1.31114
\(45\) 0 0
\(46\) 3.50068 0.516147
\(47\) 11.3005 1.64834 0.824171 0.566342i \(-0.191642\pi\)
0.824171 + 0.566342i \(0.191642\pi\)
\(48\) −1.85018 −0.267050
\(49\) −0.653781 −0.0933973
\(50\) 0 0
\(51\) −1.02261 −0.143194
\(52\) −1.17622 −0.163112
\(53\) −12.8983 −1.77172 −0.885860 0.463953i \(-0.846431\pi\)
−0.885860 + 0.463953i \(0.846431\pi\)
\(54\) −3.98054 −0.541683
\(55\) 0 0
\(56\) 6.29737 0.841522
\(57\) 0 0
\(58\) 3.46566 0.455064
\(59\) −2.14576 −0.279354 −0.139677 0.990197i \(-0.544606\pi\)
−0.139677 + 0.990197i \(0.544606\pi\)
\(60\) 0 0
\(61\) −6.75915 −0.865421 −0.432710 0.901533i \(-0.642443\pi\)
−0.432710 + 0.901533i \(0.642443\pi\)
\(62\) 4.83296 0.613787
\(63\) −1.34998 −0.170082
\(64\) 1.83436 0.229295
\(65\) 0 0
\(66\) −6.59008 −0.811183
\(67\) −13.8808 −1.69581 −0.847903 0.530152i \(-0.822135\pi\)
−0.847903 + 0.530152i \(0.822135\pi\)
\(68\) −0.967847 −0.117369
\(69\) 7.66249 0.922455
\(70\) 0 0
\(71\) −6.05037 −0.718046 −0.359023 0.933329i \(-0.616890\pi\)
−0.359023 + 0.933329i \(0.616890\pi\)
\(72\) −1.33959 −0.157872
\(73\) 11.1309 1.30277 0.651387 0.758746i \(-0.274188\pi\)
0.651387 + 0.758746i \(0.274188\pi\)
\(74\) 0.532098 0.0618552
\(75\) 0 0
\(76\) 0 0
\(77\) −14.7470 −1.68058
\(78\) 0.891258 0.100915
\(79\) 15.7669 1.77391 0.886955 0.461856i \(-0.152816\pi\)
0.886955 + 0.461856i \(0.152816\pi\)
\(80\) 0 0
\(81\) −7.10518 −0.789464
\(82\) −5.76948 −0.637132
\(83\) 3.26719 0.358621 0.179310 0.983793i \(-0.442613\pi\)
0.179310 + 0.983793i \(0.442613\pi\)
\(84\) 5.87511 0.641027
\(85\) 0 0
\(86\) 0.545785 0.0588535
\(87\) 7.58584 0.813287
\(88\) −14.6335 −1.55994
\(89\) 1.07484 0.113932 0.0569662 0.998376i \(-0.481857\pi\)
0.0569662 + 0.998376i \(0.481857\pi\)
\(90\) 0 0
\(91\) 1.99442 0.209072
\(92\) 7.25215 0.756089
\(93\) 10.5787 1.09696
\(94\) −8.10419 −0.835883
\(95\) 0 0
\(96\) 9.17493 0.936412
\(97\) −10.1175 −1.02728 −0.513641 0.858005i \(-0.671704\pi\)
−0.513641 + 0.858005i \(0.671704\pi\)
\(98\) 0.468863 0.0473623
\(99\) 3.13702 0.315282
\(100\) 0 0
\(101\) 5.63114 0.560320 0.280160 0.959953i \(-0.409613\pi\)
0.280160 + 0.959953i \(0.409613\pi\)
\(102\) 0.733370 0.0726145
\(103\) −0.459634 −0.0452891 −0.0226446 0.999744i \(-0.507209\pi\)
−0.0226446 + 0.999744i \(0.507209\pi\)
\(104\) 1.97907 0.194064
\(105\) 0 0
\(106\) 9.25010 0.898449
\(107\) 5.11103 0.494102 0.247051 0.969002i \(-0.420538\pi\)
0.247051 + 0.969002i \(0.420538\pi\)
\(108\) −8.24624 −0.793495
\(109\) −10.1536 −0.972537 −0.486269 0.873809i \(-0.661642\pi\)
−0.486269 + 0.873809i \(0.661642\pi\)
\(110\) 0 0
\(111\) 1.16469 0.110547
\(112\) 2.96921 0.280564
\(113\) −5.61000 −0.527745 −0.263872 0.964558i \(-0.585000\pi\)
−0.263872 + 0.964558i \(0.585000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.17960 0.666609
\(117\) −0.424257 −0.0392226
\(118\) 1.53884 0.141662
\(119\) 1.64111 0.150440
\(120\) 0 0
\(121\) 23.2684 2.11531
\(122\) 4.84736 0.438860
\(123\) −12.6286 −1.13868
\(124\) 10.0122 0.899118
\(125\) 0 0
\(126\) 0.968146 0.0862493
\(127\) −10.8609 −0.963747 −0.481873 0.876241i \(-0.660044\pi\)
−0.481873 + 0.876241i \(0.660044\pi\)
\(128\) 10.3741 0.916953
\(129\) 1.19465 0.105183
\(130\) 0 0
\(131\) 16.3484 1.42837 0.714184 0.699958i \(-0.246798\pi\)
0.714184 + 0.699958i \(0.246798\pi\)
\(132\) −13.6523 −1.18828
\(133\) 0 0
\(134\) 9.95467 0.859952
\(135\) 0 0
\(136\) 1.62847 0.139641
\(137\) 18.3333 1.56632 0.783162 0.621818i \(-0.213606\pi\)
0.783162 + 0.621818i \(0.213606\pi\)
\(138\) −5.49519 −0.467782
\(139\) −9.37358 −0.795057 −0.397529 0.917590i \(-0.630132\pi\)
−0.397529 + 0.917590i \(0.630132\pi\)
\(140\) 0 0
\(141\) −17.7389 −1.49389
\(142\) 4.33905 0.364125
\(143\) −4.63454 −0.387559
\(144\) −0.631616 −0.0526347
\(145\) 0 0
\(146\) −7.98258 −0.660643
\(147\) 1.02627 0.0846456
\(148\) 1.10232 0.0906099
\(149\) −7.69847 −0.630683 −0.315342 0.948978i \(-0.602119\pi\)
−0.315342 + 0.948978i \(0.602119\pi\)
\(150\) 0 0
\(151\) −0.167275 −0.0136126 −0.00680631 0.999977i \(-0.502167\pi\)
−0.00680631 + 0.999977i \(0.502167\pi\)
\(152\) 0 0
\(153\) −0.349100 −0.0282230
\(154\) 10.5759 0.852231
\(155\) 0 0
\(156\) 1.84637 0.147828
\(157\) −14.8860 −1.18803 −0.594016 0.804453i \(-0.702458\pi\)
−0.594016 + 0.804453i \(0.702458\pi\)
\(158\) −11.3073 −0.899559
\(159\) 20.2471 1.60570
\(160\) 0 0
\(161\) −12.2969 −0.969133
\(162\) 5.09552 0.400342
\(163\) −18.7516 −1.46874 −0.734369 0.678751i \(-0.762522\pi\)
−0.734369 + 0.678751i \(0.762522\pi\)
\(164\) −11.9523 −0.933316
\(165\) 0 0
\(166\) −2.34308 −0.181859
\(167\) −11.1787 −0.865036 −0.432518 0.901625i \(-0.642375\pi\)
−0.432518 + 0.901625i \(0.642375\pi\)
\(168\) −9.88530 −0.762668
\(169\) −12.3732 −0.951786
\(170\) 0 0
\(171\) 0 0
\(172\) 1.13067 0.0862128
\(173\) −5.09894 −0.387665 −0.193833 0.981035i \(-0.562092\pi\)
−0.193833 + 0.981035i \(0.562092\pi\)
\(174\) −5.44022 −0.412422
\(175\) 0 0
\(176\) −6.89970 −0.520084
\(177\) 3.36831 0.253178
\(178\) −0.770825 −0.0577757
\(179\) 0.474937 0.0354984 0.0177492 0.999842i \(-0.494350\pi\)
0.0177492 + 0.999842i \(0.494350\pi\)
\(180\) 0 0
\(181\) −1.41389 −0.105093 −0.0525466 0.998618i \(-0.516734\pi\)
−0.0525466 + 0.998618i \(0.516734\pi\)
\(182\) −1.43031 −0.106022
\(183\) 10.6102 0.784327
\(184\) −12.2023 −0.899564
\(185\) 0 0
\(186\) −7.58654 −0.556272
\(187\) −3.81352 −0.278872
\(188\) −16.7890 −1.22446
\(189\) 13.9825 1.01708
\(190\) 0 0
\(191\) 12.6109 0.912496 0.456248 0.889853i \(-0.349193\pi\)
0.456248 + 0.889853i \(0.349193\pi\)
\(192\) −2.87949 −0.207809
\(193\) −12.6096 −0.907660 −0.453830 0.891088i \(-0.649943\pi\)
−0.453830 + 0.891088i \(0.649943\pi\)
\(194\) 7.25585 0.520940
\(195\) 0 0
\(196\) 0.971315 0.0693796
\(197\) −1.50078 −0.106926 −0.0534631 0.998570i \(-0.517026\pi\)
−0.0534631 + 0.998570i \(0.517026\pi\)
\(198\) −2.24973 −0.159881
\(199\) −15.6650 −1.11046 −0.555231 0.831696i \(-0.687370\pi\)
−0.555231 + 0.831696i \(0.687370\pi\)
\(200\) 0 0
\(201\) 21.7893 1.53690
\(202\) −4.03841 −0.284141
\(203\) −12.1739 −0.854441
\(204\) 1.51928 0.106371
\(205\) 0 0
\(206\) 0.329629 0.0229664
\(207\) 2.61583 0.181813
\(208\) 0.933131 0.0647010
\(209\) 0 0
\(210\) 0 0
\(211\) 17.8162 1.22652 0.613259 0.789882i \(-0.289858\pi\)
0.613259 + 0.789882i \(0.289858\pi\)
\(212\) 19.1629 1.31611
\(213\) 9.49757 0.650763
\(214\) −3.66540 −0.250562
\(215\) 0 0
\(216\) 13.8749 0.944068
\(217\) −16.9769 −1.15246
\(218\) 7.28170 0.493179
\(219\) −17.4727 −1.18070
\(220\) 0 0
\(221\) 0.515749 0.0346930
\(222\) −0.835262 −0.0560591
\(223\) −18.4288 −1.23408 −0.617041 0.786931i \(-0.711669\pi\)
−0.617041 + 0.786931i \(0.711669\pi\)
\(224\) −14.7241 −0.983797
\(225\) 0 0
\(226\) 4.02325 0.267622
\(227\) 4.13839 0.274674 0.137337 0.990524i \(-0.456146\pi\)
0.137337 + 0.990524i \(0.456146\pi\)
\(228\) 0 0
\(229\) −1.37089 −0.0905907 −0.0452953 0.998974i \(-0.514423\pi\)
−0.0452953 + 0.998974i \(0.514423\pi\)
\(230\) 0 0
\(231\) 23.1492 1.52310
\(232\) −12.0802 −0.793105
\(233\) 1.01441 0.0664564 0.0332282 0.999448i \(-0.489421\pi\)
0.0332282 + 0.999448i \(0.489421\pi\)
\(234\) 0.304258 0.0198900
\(235\) 0 0
\(236\) 3.18793 0.207517
\(237\) −24.7500 −1.60769
\(238\) −1.17693 −0.0762889
\(239\) 5.54538 0.358701 0.179351 0.983785i \(-0.442600\pi\)
0.179351 + 0.983785i \(0.442600\pi\)
\(240\) 0 0
\(241\) −25.0078 −1.61089 −0.805445 0.592670i \(-0.798074\pi\)
−0.805445 + 0.592670i \(0.798074\pi\)
\(242\) −16.6871 −1.07268
\(243\) −5.49800 −0.352697
\(244\) 10.0420 0.642873
\(245\) 0 0
\(246\) 9.05664 0.577430
\(247\) 0 0
\(248\) −16.8462 −1.06973
\(249\) −5.12867 −0.325016
\(250\) 0 0
\(251\) 10.9588 0.691713 0.345857 0.938287i \(-0.387588\pi\)
0.345857 + 0.938287i \(0.387588\pi\)
\(252\) 2.00565 0.126344
\(253\) 28.5750 1.79649
\(254\) 7.78894 0.488721
\(255\) 0 0
\(256\) −11.1086 −0.694287
\(257\) −15.0295 −0.937514 −0.468757 0.883327i \(-0.655298\pi\)
−0.468757 + 0.883327i \(0.655298\pi\)
\(258\) −0.856746 −0.0533387
\(259\) −1.86912 −0.116141
\(260\) 0 0
\(261\) 2.58966 0.160296
\(262\) −11.7244 −0.724334
\(263\) 14.8709 0.916980 0.458490 0.888700i \(-0.348390\pi\)
0.458490 + 0.888700i \(0.348390\pi\)
\(264\) 22.9710 1.41377
\(265\) 0 0
\(266\) 0 0
\(267\) −1.68722 −0.103256
\(268\) 20.6225 1.25972
\(269\) 3.34506 0.203952 0.101976 0.994787i \(-0.467484\pi\)
0.101976 + 0.994787i \(0.467484\pi\)
\(270\) 0 0
\(271\) 9.34209 0.567492 0.283746 0.958900i \(-0.408423\pi\)
0.283746 + 0.958900i \(0.408423\pi\)
\(272\) 0.767825 0.0465562
\(273\) −3.13074 −0.189481
\(274\) −13.1479 −0.794291
\(275\) 0 0
\(276\) −11.3841 −0.685240
\(277\) −2.79175 −0.167740 −0.0838700 0.996477i \(-0.526728\pi\)
−0.0838700 + 0.996477i \(0.526728\pi\)
\(278\) 6.72232 0.403178
\(279\) 3.61135 0.216206
\(280\) 0 0
\(281\) 27.7534 1.65563 0.827816 0.561000i \(-0.189583\pi\)
0.827816 + 0.561000i \(0.189583\pi\)
\(282\) 12.7215 0.757557
\(283\) 1.13648 0.0675569 0.0337784 0.999429i \(-0.489246\pi\)
0.0337784 + 0.999429i \(0.489246\pi\)
\(284\) 8.98896 0.533396
\(285\) 0 0
\(286\) 3.32368 0.196533
\(287\) 20.2666 1.19630
\(288\) 3.13215 0.184563
\(289\) −16.5756 −0.975036
\(290\) 0 0
\(291\) 15.8820 0.931021
\(292\) −16.5370 −0.967757
\(293\) −25.0362 −1.46263 −0.731314 0.682041i \(-0.761092\pi\)
−0.731314 + 0.682041i \(0.761092\pi\)
\(294\) −0.735997 −0.0429242
\(295\) 0 0
\(296\) −1.85473 −0.107804
\(297\) −32.4919 −1.88537
\(298\) 5.52100 0.319823
\(299\) −3.86454 −0.223492
\(300\) 0 0
\(301\) −1.91719 −0.110505
\(302\) 0.119962 0.00690304
\(303\) −8.83949 −0.507816
\(304\) 0 0
\(305\) 0 0
\(306\) 0.250359 0.0143120
\(307\) −18.8926 −1.07826 −0.539130 0.842223i \(-0.681247\pi\)
−0.539130 + 0.842223i \(0.681247\pi\)
\(308\) 21.9095 1.24841
\(309\) 0.721512 0.0410454
\(310\) 0 0
\(311\) 13.9570 0.791430 0.395715 0.918373i \(-0.370497\pi\)
0.395715 + 0.918373i \(0.370497\pi\)
\(312\) −3.10665 −0.175879
\(313\) 0.212626 0.0120183 0.00600917 0.999982i \(-0.498087\pi\)
0.00600917 + 0.999982i \(0.498087\pi\)
\(314\) 10.6756 0.602457
\(315\) 0 0
\(316\) −23.4246 −1.31774
\(317\) 7.50284 0.421402 0.210701 0.977551i \(-0.432425\pi\)
0.210701 + 0.977551i \(0.432425\pi\)
\(318\) −14.5203 −0.814261
\(319\) 28.2891 1.58389
\(320\) 0 0
\(321\) −8.02305 −0.447803
\(322\) 8.81881 0.491453
\(323\) 0 0
\(324\) 10.5561 0.586449
\(325\) 0 0
\(326\) 13.4478 0.744805
\(327\) 15.9386 0.881406
\(328\) 20.1106 1.11042
\(329\) 28.4678 1.56948
\(330\) 0 0
\(331\) 3.22616 0.177326 0.0886629 0.996062i \(-0.471741\pi\)
0.0886629 + 0.996062i \(0.471741\pi\)
\(332\) −4.85403 −0.266399
\(333\) 0.397602 0.0217885
\(334\) 8.01688 0.438664
\(335\) 0 0
\(336\) −4.66092 −0.254274
\(337\) 34.5994 1.88475 0.942375 0.334560i \(-0.108588\pi\)
0.942375 + 0.334560i \(0.108588\pi\)
\(338\) 8.87352 0.482656
\(339\) 8.80631 0.478293
\(340\) 0 0
\(341\) 39.4500 2.13634
\(342\) 0 0
\(343\) −19.2812 −1.04109
\(344\) −1.90244 −0.102572
\(345\) 0 0
\(346\) 3.65673 0.196587
\(347\) 0.0848311 0.00455397 0.00227698 0.999997i \(-0.499275\pi\)
0.00227698 + 0.999997i \(0.499275\pi\)
\(348\) −11.2702 −0.604145
\(349\) −17.8090 −0.953295 −0.476648 0.879094i \(-0.658148\pi\)
−0.476648 + 0.879094i \(0.658148\pi\)
\(350\) 0 0
\(351\) 4.39428 0.234549
\(352\) 34.2152 1.82368
\(353\) 15.1330 0.805451 0.402725 0.915321i \(-0.368063\pi\)
0.402725 + 0.915321i \(0.368063\pi\)
\(354\) −2.41560 −0.128388
\(355\) 0 0
\(356\) −1.59687 −0.0846340
\(357\) −2.57613 −0.136343
\(358\) −0.340603 −0.0180015
\(359\) 9.00023 0.475014 0.237507 0.971386i \(-0.423670\pi\)
0.237507 + 0.971386i \(0.423670\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 1.01398 0.0532934
\(363\) −36.5256 −1.91710
\(364\) −2.96309 −0.155308
\(365\) 0 0
\(366\) −7.60915 −0.397737
\(367\) −5.86064 −0.305923 −0.152962 0.988232i \(-0.548881\pi\)
−0.152962 + 0.988232i \(0.548881\pi\)
\(368\) −5.75337 −0.299915
\(369\) −4.31115 −0.224429
\(370\) 0 0
\(371\) −32.4931 −1.68696
\(372\) −15.7166 −0.814867
\(373\) 24.6228 1.27492 0.637460 0.770484i \(-0.279985\pi\)
0.637460 + 0.770484i \(0.279985\pi\)
\(374\) 2.73489 0.141418
\(375\) 0 0
\(376\) 28.2487 1.45681
\(377\) −3.82589 −0.197043
\(378\) −10.0277 −0.515767
\(379\) 2.67753 0.137536 0.0687679 0.997633i \(-0.478093\pi\)
0.0687679 + 0.997633i \(0.478093\pi\)
\(380\) 0 0
\(381\) 17.0489 0.873440
\(382\) −9.04401 −0.462732
\(383\) 27.8484 1.42299 0.711494 0.702692i \(-0.248019\pi\)
0.711494 + 0.702692i \(0.248019\pi\)
\(384\) −16.2848 −0.831031
\(385\) 0 0
\(386\) 9.04306 0.460280
\(387\) 0.407829 0.0207311
\(388\) 15.0315 0.763110
\(389\) 14.8564 0.753249 0.376624 0.926366i \(-0.377085\pi\)
0.376624 + 0.926366i \(0.377085\pi\)
\(390\) 0 0
\(391\) −3.17994 −0.160816
\(392\) −1.63431 −0.0825451
\(393\) −25.6630 −1.29452
\(394\) 1.07629 0.0542229
\(395\) 0 0
\(396\) −4.66063 −0.234205
\(397\) −11.1189 −0.558043 −0.279022 0.960285i \(-0.590010\pi\)
−0.279022 + 0.960285i \(0.590010\pi\)
\(398\) 11.2342 0.563121
\(399\) 0 0
\(400\) 0 0
\(401\) −28.4510 −1.42078 −0.710388 0.703810i \(-0.751481\pi\)
−0.710388 + 0.703810i \(0.751481\pi\)
\(402\) −15.6263 −0.779371
\(403\) −5.33531 −0.265771
\(404\) −8.36612 −0.416230
\(405\) 0 0
\(406\) 8.73059 0.433292
\(407\) 4.34336 0.215292
\(408\) −2.55630 −0.126556
\(409\) −15.8493 −0.783695 −0.391847 0.920030i \(-0.628164\pi\)
−0.391847 + 0.920030i \(0.628164\pi\)
\(410\) 0 0
\(411\) −28.7788 −1.41955
\(412\) 0.682873 0.0336428
\(413\) −5.40554 −0.265989
\(414\) −1.87595 −0.0921981
\(415\) 0 0
\(416\) −4.62734 −0.226874
\(417\) 14.7142 0.720557
\(418\) 0 0
\(419\) −10.2300 −0.499769 −0.249885 0.968276i \(-0.580393\pi\)
−0.249885 + 0.968276i \(0.580393\pi\)
\(420\) 0 0
\(421\) 31.1606 1.51868 0.759338 0.650696i \(-0.225523\pi\)
0.759338 + 0.650696i \(0.225523\pi\)
\(422\) −12.7770 −0.621974
\(423\) −6.05572 −0.294439
\(424\) −32.2430 −1.56586
\(425\) 0 0
\(426\) −6.81123 −0.330005
\(427\) −17.0275 −0.824016
\(428\) −7.59340 −0.367041
\(429\) 7.27506 0.351243
\(430\) 0 0
\(431\) −9.60728 −0.462767 −0.231383 0.972863i \(-0.574325\pi\)
−0.231383 + 0.972863i \(0.574325\pi\)
\(432\) 6.54202 0.314753
\(433\) 20.8460 1.00179 0.500897 0.865507i \(-0.333004\pi\)
0.500897 + 0.865507i \(0.333004\pi\)
\(434\) 12.1751 0.584421
\(435\) 0 0
\(436\) 15.0851 0.722443
\(437\) 0 0
\(438\) 12.5307 0.598738
\(439\) 1.11124 0.0530364 0.0265182 0.999648i \(-0.491558\pi\)
0.0265182 + 0.999648i \(0.491558\pi\)
\(440\) 0 0
\(441\) 0.350350 0.0166833
\(442\) −0.369872 −0.0175930
\(443\) 28.7487 1.36589 0.682947 0.730468i \(-0.260698\pi\)
0.682947 + 0.730468i \(0.260698\pi\)
\(444\) −1.73036 −0.0821194
\(445\) 0 0
\(446\) 13.2163 0.625810
\(447\) 12.0847 0.571586
\(448\) 4.62107 0.218325
\(449\) −31.9695 −1.50873 −0.754367 0.656452i \(-0.772056\pi\)
−0.754367 + 0.656452i \(0.772056\pi\)
\(450\) 0 0
\(451\) −47.0945 −2.21759
\(452\) 8.33472 0.392032
\(453\) 0.262580 0.0123371
\(454\) −2.96787 −0.139289
\(455\) 0 0
\(456\) 0 0
\(457\) 12.0035 0.561498 0.280749 0.959781i \(-0.409417\pi\)
0.280749 + 0.959781i \(0.409417\pi\)
\(458\) 0.983138 0.0459390
\(459\) 3.61583 0.168772
\(460\) 0 0
\(461\) −33.9752 −1.58238 −0.791191 0.611569i \(-0.790539\pi\)
−0.791191 + 0.611569i \(0.790539\pi\)
\(462\) −16.6015 −0.772374
\(463\) 24.1005 1.12004 0.560022 0.828478i \(-0.310793\pi\)
0.560022 + 0.828478i \(0.310793\pi\)
\(464\) −5.69582 −0.264422
\(465\) 0 0
\(466\) −0.727492 −0.0337004
\(467\) −0.621098 −0.0287410 −0.0143705 0.999897i \(-0.504574\pi\)
−0.0143705 + 0.999897i \(0.504574\pi\)
\(468\) 0.630314 0.0291363
\(469\) −34.9680 −1.61467
\(470\) 0 0
\(471\) 23.3673 1.07671
\(472\) −5.36393 −0.246895
\(473\) 4.45508 0.204845
\(474\) 17.7496 0.815267
\(475\) 0 0
\(476\) −2.43817 −0.111753
\(477\) 6.91199 0.316478
\(478\) −3.97690 −0.181899
\(479\) 31.0733 1.41978 0.709888 0.704314i \(-0.248745\pi\)
0.709888 + 0.704314i \(0.248745\pi\)
\(480\) 0 0
\(481\) −0.587405 −0.0267834
\(482\) 17.9344 0.816892
\(483\) 19.3031 0.878322
\(484\) −34.5696 −1.57134
\(485\) 0 0
\(486\) 3.94292 0.178855
\(487\) 37.2206 1.68663 0.843313 0.537423i \(-0.180602\pi\)
0.843313 + 0.537423i \(0.180602\pi\)
\(488\) −16.8964 −0.764864
\(489\) 29.4353 1.33111
\(490\) 0 0
\(491\) 38.5493 1.73971 0.869853 0.493310i \(-0.164213\pi\)
0.869853 + 0.493310i \(0.164213\pi\)
\(492\) 18.7621 0.845861
\(493\) −3.14813 −0.141784
\(494\) 0 0
\(495\) 0 0
\(496\) −7.94298 −0.356650
\(497\) −15.2419 −0.683693
\(498\) 3.67806 0.164818
\(499\) −5.38788 −0.241194 −0.120597 0.992702i \(-0.538481\pi\)
−0.120597 + 0.992702i \(0.538481\pi\)
\(500\) 0 0
\(501\) 17.5478 0.783978
\(502\) −7.85916 −0.350771
\(503\) 26.5719 1.18478 0.592392 0.805650i \(-0.298184\pi\)
0.592392 + 0.805650i \(0.298184\pi\)
\(504\) −3.37465 −0.150319
\(505\) 0 0
\(506\) −20.4927 −0.911012
\(507\) 19.4229 0.862600
\(508\) 16.1359 0.715914
\(509\) 28.1487 1.24767 0.623836 0.781556i \(-0.285573\pi\)
0.623836 + 0.781556i \(0.285573\pi\)
\(510\) 0 0
\(511\) 28.0406 1.24044
\(512\) −12.7817 −0.564876
\(513\) 0 0
\(514\) 10.7785 0.475418
\(515\) 0 0
\(516\) −1.77487 −0.0781343
\(517\) −66.1520 −2.90936
\(518\) 1.34045 0.0588958
\(519\) 8.00406 0.351339
\(520\) 0 0
\(521\) 9.50660 0.416492 0.208246 0.978077i \(-0.433225\pi\)
0.208246 + 0.978077i \(0.433225\pi\)
\(522\) −1.85719 −0.0812869
\(523\) −17.3457 −0.758473 −0.379237 0.925300i \(-0.623813\pi\)
−0.379237 + 0.925300i \(0.623813\pi\)
\(524\) −24.2887 −1.06106
\(525\) 0 0
\(526\) −10.6648 −0.465006
\(527\) −4.39015 −0.191238
\(528\) 10.8308 0.471350
\(529\) 0.827475 0.0359772
\(530\) 0 0
\(531\) 1.14988 0.0499004
\(532\) 0 0
\(533\) 6.36916 0.275879
\(534\) 1.21000 0.0523619
\(535\) 0 0
\(536\) −34.6989 −1.49876
\(537\) −0.745532 −0.0321721
\(538\) −2.39893 −0.103425
\(539\) 3.82718 0.164848
\(540\) 0 0
\(541\) −18.5619 −0.798039 −0.399020 0.916942i \(-0.630649\pi\)
−0.399020 + 0.916942i \(0.630649\pi\)
\(542\) −6.69973 −0.287778
\(543\) 2.21945 0.0952456
\(544\) −3.80760 −0.163249
\(545\) 0 0
\(546\) 2.24523 0.0960870
\(547\) 5.56689 0.238023 0.119011 0.992893i \(-0.462027\pi\)
0.119011 + 0.992893i \(0.462027\pi\)
\(548\) −27.2376 −1.16353
\(549\) 3.62211 0.154588
\(550\) 0 0
\(551\) 0 0
\(552\) 19.1545 0.815271
\(553\) 39.7194 1.68904
\(554\) 2.00212 0.0850618
\(555\) 0 0
\(556\) 13.9262 0.590603
\(557\) 25.5819 1.08394 0.541970 0.840398i \(-0.317679\pi\)
0.541970 + 0.840398i \(0.317679\pi\)
\(558\) −2.58990 −0.109639
\(559\) −0.602515 −0.0254837
\(560\) 0 0
\(561\) 5.98628 0.252741
\(562\) −19.9035 −0.839580
\(563\) 12.8773 0.542712 0.271356 0.962479i \(-0.412528\pi\)
0.271356 + 0.962479i \(0.412528\pi\)
\(564\) 26.3545 1.10972
\(565\) 0 0
\(566\) −0.815034 −0.0342585
\(567\) −17.8992 −0.751694
\(568\) −15.1246 −0.634614
\(569\) 11.4205 0.478773 0.239387 0.970924i \(-0.423054\pi\)
0.239387 + 0.970924i \(0.423054\pi\)
\(570\) 0 0
\(571\) 11.1881 0.468208 0.234104 0.972212i \(-0.424784\pi\)
0.234104 + 0.972212i \(0.424784\pi\)
\(572\) 6.88547 0.287896
\(573\) −19.7960 −0.826991
\(574\) −14.5343 −0.606650
\(575\) 0 0
\(576\) −0.983004 −0.0409585
\(577\) 0.256987 0.0106985 0.00534924 0.999986i \(-0.498297\pi\)
0.00534924 + 0.999986i \(0.498297\pi\)
\(578\) 11.8873 0.494446
\(579\) 19.7940 0.822609
\(580\) 0 0
\(581\) 8.23061 0.341463
\(582\) −11.3899 −0.472126
\(583\) 75.5057 3.12713
\(584\) 27.8248 1.15140
\(585\) 0 0
\(586\) 17.9548 0.741706
\(587\) 2.50510 0.103397 0.0516983 0.998663i \(-0.483537\pi\)
0.0516983 + 0.998663i \(0.483537\pi\)
\(588\) −1.52472 −0.0628785
\(589\) 0 0
\(590\) 0 0
\(591\) 2.35585 0.0969068
\(592\) −0.874504 −0.0359419
\(593\) −27.9054 −1.14594 −0.572969 0.819577i \(-0.694209\pi\)
−0.572969 + 0.819577i \(0.694209\pi\)
\(594\) 23.3018 0.956083
\(595\) 0 0
\(596\) 11.4375 0.468499
\(597\) 24.5901 1.00641
\(598\) 2.77148 0.113334
\(599\) 33.3364 1.36209 0.681045 0.732242i \(-0.261526\pi\)
0.681045 + 0.732242i \(0.261526\pi\)
\(600\) 0 0
\(601\) 33.2223 1.35516 0.677582 0.735447i \(-0.263028\pi\)
0.677582 + 0.735447i \(0.263028\pi\)
\(602\) 1.37493 0.0560378
\(603\) 7.43847 0.302918
\(604\) 0.248518 0.0101121
\(605\) 0 0
\(606\) 6.33929 0.257516
\(607\) 20.6372 0.837640 0.418820 0.908069i \(-0.362444\pi\)
0.418820 + 0.908069i \(0.362444\pi\)
\(608\) 0 0
\(609\) 19.1100 0.774377
\(610\) 0 0
\(611\) 8.94655 0.361938
\(612\) 0.518653 0.0209653
\(613\) 27.6480 1.11669 0.558346 0.829608i \(-0.311436\pi\)
0.558346 + 0.829608i \(0.311436\pi\)
\(614\) 13.5490 0.546791
\(615\) 0 0
\(616\) −36.8643 −1.48531
\(617\) 19.4964 0.784896 0.392448 0.919774i \(-0.371628\pi\)
0.392448 + 0.919774i \(0.371628\pi\)
\(618\) −0.517436 −0.0208143
\(619\) 26.9685 1.08396 0.541978 0.840392i \(-0.317675\pi\)
0.541978 + 0.840392i \(0.317675\pi\)
\(620\) 0 0
\(621\) −27.0937 −1.08723
\(622\) −10.0094 −0.401338
\(623\) 2.70770 0.108482
\(624\) −1.46478 −0.0586382
\(625\) 0 0
\(626\) −0.152486 −0.00609456
\(627\) 0 0
\(628\) 22.1159 0.882522
\(629\) −0.483346 −0.0192723
\(630\) 0 0
\(631\) −0.601618 −0.0239500 −0.0119750 0.999928i \(-0.503812\pi\)
−0.0119750 + 0.999928i \(0.503812\pi\)
\(632\) 39.4137 1.56779
\(633\) −27.9670 −1.11159
\(634\) −5.38070 −0.213695
\(635\) 0 0
\(636\) −30.0809 −1.19279
\(637\) −0.517597 −0.0205079
\(638\) −20.2877 −0.803198
\(639\) 3.24229 0.128263
\(640\) 0 0
\(641\) 7.42208 0.293154 0.146577 0.989199i \(-0.453174\pi\)
0.146577 + 0.989199i \(0.453174\pi\)
\(642\) 5.75377 0.227083
\(643\) 6.20548 0.244720 0.122360 0.992486i \(-0.460954\pi\)
0.122360 + 0.992486i \(0.460954\pi\)
\(644\) 18.2694 0.719915
\(645\) 0 0
\(646\) 0 0
\(647\) 24.3051 0.955530 0.477765 0.878488i \(-0.341447\pi\)
0.477765 + 0.878488i \(0.341447\pi\)
\(648\) −17.7614 −0.697733
\(649\) 12.5611 0.493067
\(650\) 0 0
\(651\) 26.6494 1.04447
\(652\) 27.8590 1.09104
\(653\) −1.38625 −0.0542483 −0.0271242 0.999632i \(-0.508635\pi\)
−0.0271242 + 0.999632i \(0.508635\pi\)
\(654\) −11.4305 −0.446966
\(655\) 0 0
\(656\) 9.48214 0.370215
\(657\) −5.96486 −0.232711
\(658\) −20.4158 −0.795892
\(659\) −30.4152 −1.18481 −0.592405 0.805641i \(-0.701821\pi\)
−0.592405 + 0.805641i \(0.701821\pi\)
\(660\) 0 0
\(661\) −18.4422 −0.717317 −0.358659 0.933469i \(-0.616766\pi\)
−0.358659 + 0.933469i \(0.616766\pi\)
\(662\) −2.31366 −0.0899228
\(663\) −0.809598 −0.0314422
\(664\) 8.16726 0.316951
\(665\) 0 0
\(666\) −0.285143 −0.0110490
\(667\) 23.5891 0.913374
\(668\) 16.6081 0.642587
\(669\) 28.9286 1.11844
\(670\) 0 0
\(671\) 39.5675 1.52749
\(672\) 23.1132 0.891611
\(673\) −28.6496 −1.10436 −0.552181 0.833724i \(-0.686204\pi\)
−0.552181 + 0.833724i \(0.686204\pi\)
\(674\) −24.8131 −0.955767
\(675\) 0 0
\(676\) 18.3827 0.707028
\(677\) 5.02624 0.193174 0.0965870 0.995325i \(-0.469207\pi\)
0.0965870 + 0.995325i \(0.469207\pi\)
\(678\) −6.31549 −0.242545
\(679\) −25.4878 −0.978133
\(680\) 0 0
\(681\) −6.49624 −0.248936
\(682\) −28.2918 −1.08335
\(683\) −12.9236 −0.494509 −0.247254 0.968951i \(-0.579528\pi\)
−0.247254 + 0.968951i \(0.579528\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.8276 0.527940
\(687\) 2.15195 0.0821020
\(688\) −0.896998 −0.0341977
\(689\) −10.2116 −0.389030
\(690\) 0 0
\(691\) 24.0901 0.916432 0.458216 0.888841i \(-0.348489\pi\)
0.458216 + 0.888841i \(0.348489\pi\)
\(692\) 7.57544 0.287975
\(693\) 7.90268 0.300198
\(694\) −0.0608371 −0.00230934
\(695\) 0 0
\(696\) 18.9629 0.718788
\(697\) 5.24086 0.198512
\(698\) 12.7718 0.483421
\(699\) −1.59238 −0.0602292
\(700\) 0 0
\(701\) −6.98543 −0.263836 −0.131918 0.991261i \(-0.542114\pi\)
−0.131918 + 0.991261i \(0.542114\pi\)
\(702\) −3.15138 −0.118941
\(703\) 0 0
\(704\) −10.7382 −0.404712
\(705\) 0 0
\(706\) −10.8527 −0.408448
\(707\) 14.1858 0.533512
\(708\) −5.00426 −0.188072
\(709\) −0.256274 −0.00962456 −0.00481228 0.999988i \(-0.501532\pi\)
−0.00481228 + 0.999988i \(0.501532\pi\)
\(710\) 0 0
\(711\) −8.44919 −0.316869
\(712\) 2.68685 0.100694
\(713\) 32.8957 1.23195
\(714\) 1.84748 0.0691404
\(715\) 0 0
\(716\) −0.705608 −0.0263698
\(717\) −8.70487 −0.325089
\(718\) −6.45456 −0.240882
\(719\) 18.5286 0.690999 0.345500 0.938419i \(-0.387709\pi\)
0.345500 + 0.938419i \(0.387709\pi\)
\(720\) 0 0
\(721\) −1.15790 −0.0431224
\(722\) 0 0
\(723\) 39.2559 1.45994
\(724\) 2.10059 0.0780679
\(725\) 0 0
\(726\) 26.1945 0.972170
\(727\) −35.1390 −1.30323 −0.651617 0.758548i \(-0.725909\pi\)
−0.651617 + 0.758548i \(0.725909\pi\)
\(728\) 4.98561 0.184779
\(729\) 29.9460 1.10911
\(730\) 0 0
\(731\) −0.495778 −0.0183370
\(732\) −15.7634 −0.582633
\(733\) 34.9872 1.29228 0.646142 0.763217i \(-0.276382\pi\)
0.646142 + 0.763217i \(0.276382\pi\)
\(734\) 4.20299 0.155135
\(735\) 0 0
\(736\) 28.5306 1.05165
\(737\) 81.2569 2.99314
\(738\) 3.09176 0.113809
\(739\) −4.73129 −0.174043 −0.0870216 0.996206i \(-0.527735\pi\)
−0.0870216 + 0.996206i \(0.527735\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 23.3026 0.855464
\(743\) −6.77084 −0.248398 −0.124199 0.992257i \(-0.539636\pi\)
−0.124199 + 0.992257i \(0.539636\pi\)
\(744\) 26.4443 0.969496
\(745\) 0 0
\(746\) −17.6584 −0.646519
\(747\) −1.75083 −0.0640596
\(748\) 5.66570 0.207159
\(749\) 12.8756 0.470463
\(750\) 0 0
\(751\) 2.77014 0.101084 0.0505419 0.998722i \(-0.483905\pi\)
0.0505419 + 0.998722i \(0.483905\pi\)
\(752\) 13.3192 0.485702
\(753\) −17.2026 −0.626897
\(754\) 2.74376 0.0999217
\(755\) 0 0
\(756\) −20.7737 −0.755532
\(757\) 1.03606 0.0376561 0.0188280 0.999823i \(-0.494006\pi\)
0.0188280 + 0.999823i \(0.494006\pi\)
\(758\) −1.92021 −0.0697451
\(759\) −44.8556 −1.62815
\(760\) 0 0
\(761\) 32.4025 1.17459 0.587296 0.809373i \(-0.300193\pi\)
0.587296 + 0.809373i \(0.300193\pi\)
\(762\) −12.2267 −0.442926
\(763\) −25.5786 −0.926008
\(764\) −18.7359 −0.677842
\(765\) 0 0
\(766\) −19.9717 −0.721605
\(767\) −1.69879 −0.0613399
\(768\) 17.4377 0.629230
\(769\) 48.0188 1.73160 0.865801 0.500388i \(-0.166809\pi\)
0.865801 + 0.500388i \(0.166809\pi\)
\(770\) 0 0
\(771\) 23.5925 0.849665
\(772\) 18.7340 0.674250
\(773\) 10.6208 0.382004 0.191002 0.981590i \(-0.438826\pi\)
0.191002 + 0.981590i \(0.438826\pi\)
\(774\) −0.292477 −0.0105129
\(775\) 0 0
\(776\) −25.2916 −0.907917
\(777\) 2.93405 0.105258
\(778\) −10.6543 −0.381976
\(779\) 0 0
\(780\) 0 0
\(781\) 35.4184 1.26737
\(782\) 2.28051 0.0815508
\(783\) −26.8226 −0.958562
\(784\) −0.770576 −0.0275206
\(785\) 0 0
\(786\) 18.4043 0.656461
\(787\) −26.1251 −0.931259 −0.465629 0.884980i \(-0.654172\pi\)
−0.465629 + 0.884980i \(0.654172\pi\)
\(788\) 2.22969 0.0794295
\(789\) −23.3436 −0.831055
\(790\) 0 0
\(791\) −14.1326 −0.502496
\(792\) 7.84185 0.278648
\(793\) −5.35120 −0.190027
\(794\) 7.97400 0.282987
\(795\) 0 0
\(796\) 23.2733 0.824899
\(797\) −23.4923 −0.832139 −0.416069 0.909333i \(-0.636593\pi\)
−0.416069 + 0.909333i \(0.636593\pi\)
\(798\) 0 0
\(799\) 7.36165 0.260437
\(800\) 0 0
\(801\) −0.575987 −0.0203515
\(802\) 20.4038 0.720483
\(803\) −65.1594 −2.29943
\(804\) −32.3722 −1.14168
\(805\) 0 0
\(806\) 3.82624 0.134774
\(807\) −5.25091 −0.184841
\(808\) 14.0766 0.495214
\(809\) 18.6786 0.656706 0.328353 0.944555i \(-0.393506\pi\)
0.328353 + 0.944555i \(0.393506\pi\)
\(810\) 0 0
\(811\) 16.1813 0.568202 0.284101 0.958794i \(-0.408305\pi\)
0.284101 + 0.958794i \(0.408305\pi\)
\(812\) 18.0866 0.634717
\(813\) −14.6648 −0.514315
\(814\) −3.11486 −0.109176
\(815\) 0 0
\(816\) −1.20529 −0.0421937
\(817\) 0 0
\(818\) 11.3664 0.397416
\(819\) −1.06878 −0.0373461
\(820\) 0 0
\(821\) 31.3762 1.09504 0.547519 0.836793i \(-0.315572\pi\)
0.547519 + 0.836793i \(0.315572\pi\)
\(822\) 20.6389 0.719863
\(823\) −12.2385 −0.426608 −0.213304 0.976986i \(-0.568422\pi\)
−0.213304 + 0.976986i \(0.568422\pi\)
\(824\) −1.14899 −0.0400268
\(825\) 0 0
\(826\) 3.87661 0.134885
\(827\) −6.21619 −0.216158 −0.108079 0.994142i \(-0.534470\pi\)
−0.108079 + 0.994142i \(0.534470\pi\)
\(828\) −3.88630 −0.135058
\(829\) 52.2819 1.81583 0.907913 0.419158i \(-0.137675\pi\)
0.907913 + 0.419158i \(0.137675\pi\)
\(830\) 0 0
\(831\) 4.38235 0.152022
\(832\) 1.45226 0.0503481
\(833\) −0.425904 −0.0147567
\(834\) −10.5524 −0.365398
\(835\) 0 0
\(836\) 0 0
\(837\) −37.4049 −1.29290
\(838\) 7.33651 0.253436
\(839\) −44.5398 −1.53768 −0.768842 0.639439i \(-0.779167\pi\)
−0.768842 + 0.639439i \(0.779167\pi\)
\(840\) 0 0
\(841\) −5.64685 −0.194719
\(842\) −22.3470 −0.770129
\(843\) −43.5660 −1.50049
\(844\) −26.4693 −0.911112
\(845\) 0 0
\(846\) 4.34290 0.149312
\(847\) 58.6171 2.01411
\(848\) −15.2025 −0.522057
\(849\) −1.78399 −0.0612265
\(850\) 0 0
\(851\) 3.62174 0.124152
\(852\) −14.1104 −0.483415
\(853\) 40.0057 1.36977 0.684885 0.728651i \(-0.259852\pi\)
0.684885 + 0.728651i \(0.259852\pi\)
\(854\) 12.2113 0.417863
\(855\) 0 0
\(856\) 12.7765 0.436690
\(857\) −27.8347 −0.950817 −0.475408 0.879765i \(-0.657700\pi\)
−0.475408 + 0.879765i \(0.657700\pi\)
\(858\) −5.21735 −0.178117
\(859\) −1.48811 −0.0507737 −0.0253869 0.999678i \(-0.508082\pi\)
−0.0253869 + 0.999678i \(0.508082\pi\)
\(860\) 0 0
\(861\) −31.8135 −1.08420
\(862\) 6.88991 0.234671
\(863\) 13.3429 0.454196 0.227098 0.973872i \(-0.427076\pi\)
0.227098 + 0.973872i \(0.427076\pi\)
\(864\) −32.4415 −1.10368
\(865\) 0 0
\(866\) −14.9498 −0.508015
\(867\) 26.0196 0.883671
\(868\) 25.2223 0.856102
\(869\) −92.2979 −3.13099
\(870\) 0 0
\(871\) −10.9894 −0.372361
\(872\) −25.3817 −0.859534
\(873\) 5.42182 0.183501
\(874\) 0 0
\(875\) 0 0
\(876\) 25.9590 0.877074
\(877\) −0.167258 −0.00564790 −0.00282395 0.999996i \(-0.500899\pi\)
−0.00282395 + 0.999996i \(0.500899\pi\)
\(878\) −0.796928 −0.0268950
\(879\) 39.3005 1.32557
\(880\) 0 0
\(881\) −28.5156 −0.960715 −0.480357 0.877073i \(-0.659493\pi\)
−0.480357 + 0.877073i \(0.659493\pi\)
\(882\) −0.251255 −0.00846021
\(883\) −34.8335 −1.17224 −0.586121 0.810224i \(-0.699346\pi\)
−0.586121 + 0.810224i \(0.699346\pi\)
\(884\) −0.766242 −0.0257715
\(885\) 0 0
\(886\) −20.6173 −0.692652
\(887\) 25.7718 0.865332 0.432666 0.901554i \(-0.357573\pi\)
0.432666 + 0.901554i \(0.357573\pi\)
\(888\) 2.91146 0.0977023
\(889\) −27.3604 −0.917638
\(890\) 0 0
\(891\) 41.5932 1.39342
\(892\) 27.3794 0.916731
\(893\) 0 0
\(894\) −8.66659 −0.289854
\(895\) 0 0
\(896\) 26.1342 0.873083
\(897\) 6.06637 0.202550
\(898\) 22.9271 0.765088
\(899\) 32.5666 1.08616
\(900\) 0 0
\(901\) −8.40257 −0.279930
\(902\) 33.7741 1.12455
\(903\) 3.00951 0.100150
\(904\) −14.0238 −0.466424
\(905\) 0 0
\(906\) −0.188310 −0.00625619
\(907\) −23.4162 −0.777521 −0.388761 0.921339i \(-0.627097\pi\)
−0.388761 + 0.921339i \(0.627097\pi\)
\(908\) −6.14835 −0.204040
\(909\) −3.01763 −0.100089
\(910\) 0 0
\(911\) −7.45626 −0.247037 −0.123518 0.992342i \(-0.539418\pi\)
−0.123518 + 0.992342i \(0.539418\pi\)
\(912\) 0 0
\(913\) −19.1259 −0.632974
\(914\) −8.60834 −0.284739
\(915\) 0 0
\(916\) 2.03671 0.0672948
\(917\) 41.1845 1.36003
\(918\) −2.59311 −0.0855854
\(919\) 40.0009 1.31951 0.659754 0.751481i \(-0.270660\pi\)
0.659754 + 0.751481i \(0.270660\pi\)
\(920\) 0 0
\(921\) 29.6567 0.977223
\(922\) 24.3655 0.802434
\(923\) −4.79006 −0.157667
\(924\) −34.3924 −1.13143
\(925\) 0 0
\(926\) −17.2838 −0.567981
\(927\) 0.246310 0.00808989
\(928\) 28.2452 0.927194
\(929\) −20.1755 −0.661936 −0.330968 0.943642i \(-0.607375\pi\)
−0.330968 + 0.943642i \(0.607375\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.50710 −0.0493667
\(933\) −21.9090 −0.717270
\(934\) 0.445424 0.0145747
\(935\) 0 0
\(936\) −1.06055 −0.0346652
\(937\) 34.1398 1.11530 0.557649 0.830077i \(-0.311703\pi\)
0.557649 + 0.830077i \(0.311703\pi\)
\(938\) 25.0775 0.818810
\(939\) −0.333770 −0.0108922
\(940\) 0 0
\(941\) 26.7549 0.872184 0.436092 0.899902i \(-0.356362\pi\)
0.436092 + 0.899902i \(0.356362\pi\)
\(942\) −16.7580 −0.546005
\(943\) −39.2701 −1.27881
\(944\) −2.52909 −0.0823149
\(945\) 0 0
\(946\) −3.19498 −0.103878
\(947\) 15.6563 0.508763 0.254381 0.967104i \(-0.418128\pi\)
0.254381 + 0.967104i \(0.418128\pi\)
\(948\) 36.7708 1.19426
\(949\) 8.81230 0.286060
\(950\) 0 0
\(951\) −11.7776 −0.381915
\(952\) 4.10241 0.132960
\(953\) −13.5072 −0.437541 −0.218771 0.975776i \(-0.570205\pi\)
−0.218771 + 0.975776i \(0.570205\pi\)
\(954\) −4.95697 −0.160488
\(955\) 0 0
\(956\) −8.23871 −0.266459
\(957\) −44.4069 −1.43547
\(958\) −22.2844 −0.719977
\(959\) 46.1848 1.49139
\(960\) 0 0
\(961\) 14.4151 0.465003
\(962\) 0.421261 0.0135820
\(963\) −2.73892 −0.0882603
\(964\) 37.1537 1.19664
\(965\) 0 0
\(966\) −13.8433 −0.445402
\(967\) −21.9060 −0.704450 −0.352225 0.935915i \(-0.614575\pi\)
−0.352225 + 0.935915i \(0.614575\pi\)
\(968\) 58.1659 1.86952
\(969\) 0 0
\(970\) 0 0
\(971\) −30.9663 −0.993756 −0.496878 0.867821i \(-0.665520\pi\)
−0.496878 + 0.867821i \(0.665520\pi\)
\(972\) 8.16832 0.261999
\(973\) −23.6137 −0.757019
\(974\) −26.6929 −0.855297
\(975\) 0 0
\(976\) −7.96664 −0.255006
\(977\) 9.89768 0.316655 0.158327 0.987387i \(-0.449390\pi\)
0.158327 + 0.987387i \(0.449390\pi\)
\(978\) −21.1097 −0.675014
\(979\) −6.29201 −0.201093
\(980\) 0 0
\(981\) 5.44113 0.173722
\(982\) −27.6459 −0.882215
\(983\) −10.3096 −0.328827 −0.164413 0.986392i \(-0.552573\pi\)
−0.164413 + 0.986392i \(0.552573\pi\)
\(984\) −31.5686 −1.00637
\(985\) 0 0
\(986\) 2.25770 0.0718997
\(987\) −44.6873 −1.42241
\(988\) 0 0
\(989\) 3.71490 0.118127
\(990\) 0 0
\(991\) 20.4090 0.648314 0.324157 0.946003i \(-0.394919\pi\)
0.324157 + 0.946003i \(0.394919\pi\)
\(992\) 39.3887 1.25059
\(993\) −5.06426 −0.160710
\(994\) 10.9308 0.346704
\(995\) 0 0
\(996\) 7.61961 0.241437
\(997\) 47.0764 1.49092 0.745462 0.666549i \(-0.232229\pi\)
0.745462 + 0.666549i \(0.232229\pi\)
\(998\) 3.86394 0.122311
\(999\) −4.11820 −0.130294
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cv.1.18 40
5.2 odd 4 1805.2.b.m.1084.18 yes 40
5.3 odd 4 1805.2.b.m.1084.23 yes 40
5.4 even 2 inner 9025.2.a.cv.1.23 40
19.18 odd 2 inner 9025.2.a.cv.1.24 40
95.18 even 4 1805.2.b.m.1084.17 40
95.37 even 4 1805.2.b.m.1084.24 yes 40
95.94 odd 2 inner 9025.2.a.cv.1.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.m.1084.17 40 95.18 even 4
1805.2.b.m.1084.18 yes 40 5.2 odd 4
1805.2.b.m.1084.23 yes 40 5.3 odd 4
1805.2.b.m.1084.24 yes 40 95.37 even 4
9025.2.a.cv.1.17 40 95.94 odd 2 inner
9025.2.a.cv.1.18 40 1.1 even 1 trivial
9025.2.a.cv.1.23 40 5.4 even 2 inner
9025.2.a.cv.1.24 40 19.18 odd 2 inner