Properties

Label 9075.2.a.cv.1.1
Level $9075$
Weight $2$
Character 9075.1
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 363)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.52434\) of defining polynomial
Character \(\chi\) \(=\) 9075.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434 q^{2} -1.00000 q^{3} +4.37228 q^{4} +2.52434 q^{6} -0.792287 q^{7} -5.98844 q^{8} +1.00000 q^{9} -4.37228 q^{12} +4.10891 q^{13} +2.00000 q^{14} +6.37228 q^{16} +5.98844 q^{17} -2.52434 q^{18} +4.25639 q^{19} +0.792287 q^{21} -2.00000 q^{23} +5.98844 q^{24} -10.3723 q^{26} -1.00000 q^{27} -3.46410 q^{28} -2.52434 q^{29} +7.37228 q^{31} -4.10891 q^{32} -15.1168 q^{34} +4.37228 q^{36} -5.00000 q^{37} -10.7446 q^{38} -4.10891 q^{39} -5.69349 q^{41} -2.00000 q^{42} +6.63325 q^{43} +5.04868 q^{46} +1.25544 q^{47} -6.37228 q^{48} -6.37228 q^{49} -5.98844 q^{51} +17.9653 q^{52} -13.1168 q^{53} +2.52434 q^{54} +4.74456 q^{56} -4.25639 q^{57} +6.37228 q^{58} -6.00000 q^{59} -2.67181 q^{61} -18.6101 q^{62} -0.792287 q^{63} -2.37228 q^{64} -16.1168 q^{67} +26.1831 q^{68} +2.00000 q^{69} +0.744563 q^{71} -5.98844 q^{72} -7.42554 q^{73} +12.6217 q^{74} +18.6101 q^{76} +10.3723 q^{78} +5.84096 q^{79} +1.00000 q^{81} +14.3723 q^{82} -8.51278 q^{83} +3.46410 q^{84} -16.7446 q^{86} +2.52434 q^{87} -6.37228 q^{89} -3.25544 q^{91} -8.74456 q^{92} -7.37228 q^{93} -3.16915 q^{94} +4.10891 q^{96} +12.4891 q^{97} +16.0858 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{4} + 4 q^{9} - 6 q^{12} + 8 q^{14} + 14 q^{16} - 8 q^{23} - 30 q^{26} - 4 q^{27} + 18 q^{31} - 26 q^{34} + 6 q^{36} - 20 q^{37} - 20 q^{38} - 8 q^{42} + 28 q^{47} - 14 q^{48} - 14 q^{49}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52434 −1.78498 −0.892488 0.451071i \(-0.851042\pi\)
−0.892488 + 0.451071i \(0.851042\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.37228 2.18614
\(5\) 0 0
\(6\) 2.52434 1.03056
\(7\) −0.792287 −0.299456 −0.149728 0.988727i \(-0.547840\pi\)
−0.149728 + 0.988727i \(0.547840\pi\)
\(8\) −5.98844 −2.11723
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) −4.37228 −1.26217
\(13\) 4.10891 1.13961 0.569804 0.821781i \(-0.307019\pi\)
0.569804 + 0.821781i \(0.307019\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 6.37228 1.59307
\(17\) 5.98844 1.45241 0.726205 0.687478i \(-0.241282\pi\)
0.726205 + 0.687478i \(0.241282\pi\)
\(18\) −2.52434 −0.594992
\(19\) 4.25639 0.976483 0.488241 0.872709i \(-0.337639\pi\)
0.488241 + 0.872709i \(0.337639\pi\)
\(20\) 0 0
\(21\) 0.792287 0.172891
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 5.98844 1.22239
\(25\) 0 0
\(26\) −10.3723 −2.03417
\(27\) −1.00000 −0.192450
\(28\) −3.46410 −0.654654
\(29\) −2.52434 −0.468758 −0.234379 0.972145i \(-0.575306\pi\)
−0.234379 + 0.972145i \(0.575306\pi\)
\(30\) 0 0
\(31\) 7.37228 1.32410 0.662050 0.749459i \(-0.269686\pi\)
0.662050 + 0.749459i \(0.269686\pi\)
\(32\) −4.10891 −0.726360
\(33\) 0 0
\(34\) −15.1168 −2.59252
\(35\) 0 0
\(36\) 4.37228 0.728714
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) −10.7446 −1.74300
\(39\) −4.10891 −0.657952
\(40\) 0 0
\(41\) −5.69349 −0.889173 −0.444587 0.895736i \(-0.646649\pi\)
−0.444587 + 0.895736i \(0.646649\pi\)
\(42\) −2.00000 −0.308607
\(43\) 6.63325 1.01156 0.505781 0.862662i \(-0.331205\pi\)
0.505781 + 0.862662i \(0.331205\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 5.04868 0.744387
\(47\) 1.25544 0.183124 0.0915622 0.995799i \(-0.470814\pi\)
0.0915622 + 0.995799i \(0.470814\pi\)
\(48\) −6.37228 −0.919760
\(49\) −6.37228 −0.910326
\(50\) 0 0
\(51\) −5.98844 −0.838549
\(52\) 17.9653 2.49134
\(53\) −13.1168 −1.80174 −0.900869 0.434092i \(-0.857069\pi\)
−0.900869 + 0.434092i \(0.857069\pi\)
\(54\) 2.52434 0.343519
\(55\) 0 0
\(56\) 4.74456 0.634019
\(57\) −4.25639 −0.563772
\(58\) 6.37228 0.836722
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −2.67181 −0.342091 −0.171045 0.985263i \(-0.554714\pi\)
−0.171045 + 0.985263i \(0.554714\pi\)
\(62\) −18.6101 −2.36349
\(63\) −0.792287 −0.0998188
\(64\) −2.37228 −0.296535
\(65\) 0 0
\(66\) 0 0
\(67\) −16.1168 −1.96899 −0.984493 0.175424i \(-0.943870\pi\)
−0.984493 + 0.175424i \(0.943870\pi\)
\(68\) 26.1831 3.17517
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 0.744563 0.0883633 0.0441817 0.999024i \(-0.485932\pi\)
0.0441817 + 0.999024i \(0.485932\pi\)
\(72\) −5.98844 −0.705744
\(73\) −7.42554 −0.869093 −0.434547 0.900649i \(-0.643091\pi\)
−0.434547 + 0.900649i \(0.643091\pi\)
\(74\) 12.6217 1.46724
\(75\) 0 0
\(76\) 18.6101 2.13473
\(77\) 0 0
\(78\) 10.3723 1.17443
\(79\) 5.84096 0.657160 0.328580 0.944476i \(-0.393430\pi\)
0.328580 + 0.944476i \(0.393430\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 14.3723 1.58715
\(83\) −8.51278 −0.934399 −0.467199 0.884152i \(-0.654737\pi\)
−0.467199 + 0.884152i \(0.654737\pi\)
\(84\) 3.46410 0.377964
\(85\) 0 0
\(86\) −16.7446 −1.80561
\(87\) 2.52434 0.270637
\(88\) 0 0
\(89\) −6.37228 −0.675460 −0.337730 0.941243i \(-0.609659\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(90\) 0 0
\(91\) −3.25544 −0.341263
\(92\) −8.74456 −0.911684
\(93\) −7.37228 −0.764470
\(94\) −3.16915 −0.326873
\(95\) 0 0
\(96\) 4.10891 0.419364
\(97\) 12.4891 1.26808 0.634039 0.773301i \(-0.281396\pi\)
0.634039 + 0.773301i \(0.281396\pi\)
\(98\) 16.0858 1.62491
\(99\) 0 0
\(100\) 0 0
\(101\) −5.34363 −0.531711 −0.265855 0.964013i \(-0.585654\pi\)
−0.265855 + 0.964013i \(0.585654\pi\)
\(102\) 15.1168 1.49679
\(103\) −8.11684 −0.799776 −0.399888 0.916564i \(-0.630951\pi\)
−0.399888 + 0.916564i \(0.630951\pi\)
\(104\) −24.6060 −2.41281
\(105\) 0 0
\(106\) 33.1113 3.21606
\(107\) 0.294954 0.0285142 0.0142571 0.999898i \(-0.495462\pi\)
0.0142571 + 0.999898i \(0.495462\pi\)
\(108\) −4.37228 −0.420723
\(109\) 9.94987 0.953025 0.476513 0.879168i \(-0.341901\pi\)
0.476513 + 0.879168i \(0.341901\pi\)
\(110\) 0 0
\(111\) 5.00000 0.474579
\(112\) −5.04868 −0.477055
\(113\) 4.37228 0.411310 0.205655 0.978625i \(-0.434068\pi\)
0.205655 + 0.978625i \(0.434068\pi\)
\(114\) 10.7446 1.00632
\(115\) 0 0
\(116\) −11.0371 −1.02477
\(117\) 4.10891 0.379869
\(118\) 15.1460 1.39430
\(119\) −4.74456 −0.434933
\(120\) 0 0
\(121\) 0 0
\(122\) 6.74456 0.610624
\(123\) 5.69349 0.513364
\(124\) 32.2337 2.89467
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) −19.6974 −1.74786 −0.873929 0.486053i \(-0.838436\pi\)
−0.873929 + 0.486053i \(0.838436\pi\)
\(128\) 14.2063 1.25567
\(129\) −6.63325 −0.584025
\(130\) 0 0
\(131\) 6.63325 0.579550 0.289775 0.957095i \(-0.406420\pi\)
0.289775 + 0.957095i \(0.406420\pi\)
\(132\) 0 0
\(133\) −3.37228 −0.292414
\(134\) 40.6844 3.51459
\(135\) 0 0
\(136\) −35.8614 −3.07509
\(137\) −0.744563 −0.0636123 −0.0318061 0.999494i \(-0.510126\pi\)
−0.0318061 + 0.999494i \(0.510126\pi\)
\(138\) −5.04868 −0.429772
\(139\) −10.3923 −0.881464 −0.440732 0.897639i \(-0.645281\pi\)
−0.440732 + 0.897639i \(0.645281\pi\)
\(140\) 0 0
\(141\) −1.25544 −0.105727
\(142\) −1.87953 −0.157726
\(143\) 0 0
\(144\) 6.37228 0.531023
\(145\) 0 0
\(146\) 18.7446 1.55131
\(147\) 6.37228 0.525577
\(148\) −21.8614 −1.79700
\(149\) −5.98844 −0.490592 −0.245296 0.969448i \(-0.578885\pi\)
−0.245296 + 0.969448i \(0.578885\pi\)
\(150\) 0 0
\(151\) 2.17448 0.176957 0.0884784 0.996078i \(-0.471800\pi\)
0.0884784 + 0.996078i \(0.471800\pi\)
\(152\) −25.4891 −2.06744
\(153\) 5.98844 0.484137
\(154\) 0 0
\(155\) 0 0
\(156\) −17.9653 −1.43838
\(157\) −6.62772 −0.528950 −0.264475 0.964393i \(-0.585199\pi\)
−0.264475 + 0.964393i \(0.585199\pi\)
\(158\) −14.7446 −1.17301
\(159\) 13.1168 1.04023
\(160\) 0 0
\(161\) 1.58457 0.124882
\(162\) −2.52434 −0.198331
\(163\) 9.37228 0.734094 0.367047 0.930202i \(-0.380369\pi\)
0.367047 + 0.930202i \(0.380369\pi\)
\(164\) −24.8935 −1.94386
\(165\) 0 0
\(166\) 21.4891 1.66788
\(167\) 2.87419 0.222412 0.111206 0.993797i \(-0.464529\pi\)
0.111206 + 0.993797i \(0.464529\pi\)
\(168\) −4.74456 −0.366051
\(169\) 3.88316 0.298704
\(170\) 0 0
\(171\) 4.25639 0.325494
\(172\) 29.0024 2.21141
\(173\) 6.92820 0.526742 0.263371 0.964695i \(-0.415166\pi\)
0.263371 + 0.964695i \(0.415166\pi\)
\(174\) −6.37228 −0.483081
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 16.0858 1.20568
\(179\) −24.2337 −1.81131 −0.905655 0.424014i \(-0.860621\pi\)
−0.905655 + 0.424014i \(0.860621\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 8.21782 0.609146
\(183\) 2.67181 0.197506
\(184\) 11.9769 0.882947
\(185\) 0 0
\(186\) 18.6101 1.36456
\(187\) 0 0
\(188\) 5.48913 0.400336
\(189\) 0.792287 0.0576304
\(190\) 0 0
\(191\) −17.4891 −1.26547 −0.632734 0.774369i \(-0.718067\pi\)
−0.632734 + 0.774369i \(0.718067\pi\)
\(192\) 2.37228 0.171205
\(193\) 17.1730 1.23614 0.618071 0.786122i \(-0.287914\pi\)
0.618071 + 0.786122i \(0.287914\pi\)
\(194\) −31.5268 −2.26349
\(195\) 0 0
\(196\) −27.8614 −1.99010
\(197\) −21.1345 −1.50577 −0.752884 0.658153i \(-0.771338\pi\)
−0.752884 + 0.658153i \(0.771338\pi\)
\(198\) 0 0
\(199\) −6.86141 −0.486392 −0.243196 0.969977i \(-0.578196\pi\)
−0.243196 + 0.969977i \(0.578196\pi\)
\(200\) 0 0
\(201\) 16.1168 1.13679
\(202\) 13.4891 0.949092
\(203\) 2.00000 0.140372
\(204\) −26.1831 −1.83319
\(205\) 0 0
\(206\) 20.4897 1.42758
\(207\) −2.00000 −0.139010
\(208\) 26.1831 1.81547
\(209\) 0 0
\(210\) 0 0
\(211\) 12.4742 0.858760 0.429380 0.903124i \(-0.358732\pi\)
0.429380 + 0.903124i \(0.358732\pi\)
\(212\) −57.3505 −3.93885
\(213\) −0.744563 −0.0510166
\(214\) −0.744563 −0.0508973
\(215\) 0 0
\(216\) 5.98844 0.407462
\(217\) −5.84096 −0.396510
\(218\) −25.1168 −1.70113
\(219\) 7.42554 0.501771
\(220\) 0 0
\(221\) 24.6060 1.65518
\(222\) −12.6217 −0.847112
\(223\) 4.86141 0.325544 0.162772 0.986664i \(-0.447957\pi\)
0.162772 + 0.986664i \(0.447957\pi\)
\(224\) 3.25544 0.217513
\(225\) 0 0
\(226\) −11.0371 −0.734178
\(227\) −25.2434 −1.67546 −0.837731 0.546083i \(-0.816118\pi\)
−0.837731 + 0.546083i \(0.816118\pi\)
\(228\) −18.6101 −1.23249
\(229\) −3.62772 −0.239726 −0.119863 0.992790i \(-0.538246\pi\)
−0.119863 + 0.992790i \(0.538246\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.1168 0.992469
\(233\) −2.52434 −0.165375 −0.0826874 0.996576i \(-0.526350\pi\)
−0.0826874 + 0.996576i \(0.526350\pi\)
\(234\) −10.3723 −0.678057
\(235\) 0 0
\(236\) −26.2337 −1.70767
\(237\) −5.84096 −0.379411
\(238\) 11.9769 0.776346
\(239\) −29.2974 −1.89509 −0.947545 0.319622i \(-0.896444\pi\)
−0.947545 + 0.319622i \(0.896444\pi\)
\(240\) 0 0
\(241\) −13.2665 −0.854570 −0.427285 0.904117i \(-0.640530\pi\)
−0.427285 + 0.904117i \(0.640530\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −11.6819 −0.747859
\(245\) 0 0
\(246\) −14.3723 −0.916343
\(247\) 17.4891 1.11281
\(248\) −44.1485 −2.80343
\(249\) 8.51278 0.539475
\(250\) 0 0
\(251\) −0.510875 −0.0322461 −0.0161231 0.999870i \(-0.505132\pi\)
−0.0161231 + 0.999870i \(0.505132\pi\)
\(252\) −3.46410 −0.218218
\(253\) 0 0
\(254\) 49.7228 3.11989
\(255\) 0 0
\(256\) −31.1168 −1.94480
\(257\) −24.3723 −1.52030 −0.760151 0.649747i \(-0.774875\pi\)
−0.760151 + 0.649747i \(0.774875\pi\)
\(258\) 16.7446 1.04247
\(259\) 3.96143 0.246152
\(260\) 0 0
\(261\) −2.52434 −0.156253
\(262\) −16.7446 −1.03448
\(263\) 22.3692 1.37934 0.689671 0.724122i \(-0.257755\pi\)
0.689671 + 0.724122i \(0.257755\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.51278 0.521952
\(267\) 6.37228 0.389977
\(268\) −70.4674 −4.30448
\(269\) 9.11684 0.555864 0.277932 0.960601i \(-0.410351\pi\)
0.277932 + 0.960601i \(0.410351\pi\)
\(270\) 0 0
\(271\) −10.3923 −0.631288 −0.315644 0.948878i \(-0.602220\pi\)
−0.315644 + 0.948878i \(0.602220\pi\)
\(272\) 38.1600 2.31379
\(273\) 3.25544 0.197028
\(274\) 1.87953 0.113546
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) 8.66025 0.520344 0.260172 0.965562i \(-0.416221\pi\)
0.260172 + 0.965562i \(0.416221\pi\)
\(278\) 26.2337 1.57339
\(279\) 7.37228 0.441367
\(280\) 0 0
\(281\) −0.589907 −0.0351909 −0.0175955 0.999845i \(-0.505601\pi\)
−0.0175955 + 0.999845i \(0.505601\pi\)
\(282\) 3.16915 0.188720
\(283\) 2.37686 0.141290 0.0706449 0.997502i \(-0.477494\pi\)
0.0706449 + 0.997502i \(0.477494\pi\)
\(284\) 3.25544 0.193175
\(285\) 0 0
\(286\) 0 0
\(287\) 4.51087 0.266269
\(288\) −4.10891 −0.242120
\(289\) 18.8614 1.10949
\(290\) 0 0
\(291\) −12.4891 −0.732125
\(292\) −32.4665 −1.89996
\(293\) −6.57835 −0.384311 −0.192156 0.981364i \(-0.561548\pi\)
−0.192156 + 0.981364i \(0.561548\pi\)
\(294\) −16.0858 −0.938142
\(295\) 0 0
\(296\) 29.9422 1.74035
\(297\) 0 0
\(298\) 15.1168 0.875695
\(299\) −8.21782 −0.475249
\(300\) 0 0
\(301\) −5.25544 −0.302918
\(302\) −5.48913 −0.315864
\(303\) 5.34363 0.306983
\(304\) 27.1229 1.55561
\(305\) 0 0
\(306\) −15.1168 −0.864172
\(307\) 17.8178 1.01692 0.508459 0.861086i \(-0.330215\pi\)
0.508459 + 0.861086i \(0.330215\pi\)
\(308\) 0 0
\(309\) 8.11684 0.461751
\(310\) 0 0
\(311\) −6.51087 −0.369198 −0.184599 0.982814i \(-0.559099\pi\)
−0.184599 + 0.982814i \(0.559099\pi\)
\(312\) 24.6060 1.39304
\(313\) −9.11684 −0.515314 −0.257657 0.966236i \(-0.582951\pi\)
−0.257657 + 0.966236i \(0.582951\pi\)
\(314\) 16.7306 0.944162
\(315\) 0 0
\(316\) 25.5383 1.43664
\(317\) −15.2554 −0.856831 −0.428415 0.903582i \(-0.640928\pi\)
−0.428415 + 0.903582i \(0.640928\pi\)
\(318\) −33.1113 −1.85679
\(319\) 0 0
\(320\) 0 0
\(321\) −0.294954 −0.0164627
\(322\) −4.00000 −0.222911
\(323\) 25.4891 1.41825
\(324\) 4.37228 0.242905
\(325\) 0 0
\(326\) −23.6588 −1.31034
\(327\) −9.94987 −0.550229
\(328\) 34.0951 1.88259
\(329\) −0.994667 −0.0548377
\(330\) 0 0
\(331\) −0.627719 −0.0345025 −0.0172513 0.999851i \(-0.505492\pi\)
−0.0172513 + 0.999851i \(0.505492\pi\)
\(332\) −37.2203 −2.04273
\(333\) −5.00000 −0.273998
\(334\) −7.25544 −0.397000
\(335\) 0 0
\(336\) 5.04868 0.275428
\(337\) −15.2935 −0.833090 −0.416545 0.909115i \(-0.636759\pi\)
−0.416545 + 0.909115i \(0.636759\pi\)
\(338\) −9.80240 −0.533180
\(339\) −4.37228 −0.237470
\(340\) 0 0
\(341\) 0 0
\(342\) −10.7446 −0.580999
\(343\) 10.5947 0.572059
\(344\) −39.7228 −2.14171
\(345\) 0 0
\(346\) −17.4891 −0.940221
\(347\) 18.0202 0.967376 0.483688 0.875240i \(-0.339297\pi\)
0.483688 + 0.875240i \(0.339297\pi\)
\(348\) 11.0371 0.591651
\(349\) −25.9808 −1.39072 −0.695359 0.718662i \(-0.744755\pi\)
−0.695359 + 0.718662i \(0.744755\pi\)
\(350\) 0 0
\(351\) −4.10891 −0.219317
\(352\) 0 0
\(353\) 29.3505 1.56217 0.781086 0.624424i \(-0.214666\pi\)
0.781086 + 0.624424i \(0.214666\pi\)
\(354\) −15.1460 −0.805002
\(355\) 0 0
\(356\) −27.8614 −1.47665
\(357\) 4.74456 0.251109
\(358\) 61.1740 3.23315
\(359\) −1.28962 −0.0680636 −0.0340318 0.999421i \(-0.510835\pi\)
−0.0340318 + 0.999421i \(0.510835\pi\)
\(360\) 0 0
\(361\) −0.883156 −0.0464819
\(362\) −42.9137 −2.25550
\(363\) 0 0
\(364\) −14.2337 −0.746048
\(365\) 0 0
\(366\) −6.74456 −0.352544
\(367\) 23.7228 1.23832 0.619160 0.785265i \(-0.287473\pi\)
0.619160 + 0.785265i \(0.287473\pi\)
\(368\) −12.7446 −0.664356
\(369\) −5.69349 −0.296391
\(370\) 0 0
\(371\) 10.3923 0.539542
\(372\) −32.2337 −1.67124
\(373\) 24.4511 1.26603 0.633015 0.774140i \(-0.281817\pi\)
0.633015 + 0.774140i \(0.281817\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −7.51811 −0.387717
\(377\) −10.3723 −0.534200
\(378\) −2.00000 −0.102869
\(379\) 23.7228 1.21856 0.609280 0.792956i \(-0.291459\pi\)
0.609280 + 0.792956i \(0.291459\pi\)
\(380\) 0 0
\(381\) 19.6974 1.00913
\(382\) 44.1485 2.25883
\(383\) 23.4891 1.20024 0.600119 0.799911i \(-0.295120\pi\)
0.600119 + 0.799911i \(0.295120\pi\)
\(384\) −14.2063 −0.724960
\(385\) 0 0
\(386\) −43.3505 −2.20648
\(387\) 6.63325 0.337187
\(388\) 54.6060 2.77220
\(389\) −9.11684 −0.462242 −0.231121 0.972925i \(-0.574239\pi\)
−0.231121 + 0.972925i \(0.574239\pi\)
\(390\) 0 0
\(391\) −11.9769 −0.605697
\(392\) 38.1600 1.92737
\(393\) −6.63325 −0.334603
\(394\) 53.3505 2.68776
\(395\) 0 0
\(396\) 0 0
\(397\) −24.4891 −1.22907 −0.614537 0.788888i \(-0.710657\pi\)
−0.614537 + 0.788888i \(0.710657\pi\)
\(398\) 17.3205 0.868199
\(399\) 3.37228 0.168825
\(400\) 0 0
\(401\) −19.1168 −0.954650 −0.477325 0.878727i \(-0.658393\pi\)
−0.477325 + 0.878727i \(0.658393\pi\)
\(402\) −40.6844 −2.02915
\(403\) 30.2921 1.50895
\(404\) −23.3639 −1.16240
\(405\) 0 0
\(406\) −5.04868 −0.250562
\(407\) 0 0
\(408\) 35.8614 1.77540
\(409\) 0.442430 0.0218768 0.0109384 0.999940i \(-0.496518\pi\)
0.0109384 + 0.999940i \(0.496518\pi\)
\(410\) 0 0
\(411\) 0.744563 0.0367266
\(412\) −35.4891 −1.74842
\(413\) 4.75372 0.233915
\(414\) 5.04868 0.248129
\(415\) 0 0
\(416\) −16.8832 −0.827765
\(417\) 10.3923 0.508913
\(418\) 0 0
\(419\) −8.51087 −0.415783 −0.207892 0.978152i \(-0.566660\pi\)
−0.207892 + 0.978152i \(0.566660\pi\)
\(420\) 0 0
\(421\) 6.13859 0.299177 0.149588 0.988748i \(-0.452205\pi\)
0.149588 + 0.988748i \(0.452205\pi\)
\(422\) −31.4891 −1.53287
\(423\) 1.25544 0.0610415
\(424\) 78.5494 3.81470
\(425\) 0 0
\(426\) 1.87953 0.0910634
\(427\) 2.11684 0.102441
\(428\) 1.28962 0.0623362
\(429\) 0 0
\(430\) 0 0
\(431\) 23.6588 1.13960 0.569802 0.821782i \(-0.307020\pi\)
0.569802 + 0.821782i \(0.307020\pi\)
\(432\) −6.37228 −0.306587
\(433\) 23.2337 1.11654 0.558270 0.829659i \(-0.311465\pi\)
0.558270 + 0.829659i \(0.311465\pi\)
\(434\) 14.7446 0.707762
\(435\) 0 0
\(436\) 43.5036 2.08345
\(437\) −8.51278 −0.407221
\(438\) −18.7446 −0.895650
\(439\) 24.4511 1.16699 0.583493 0.812118i \(-0.301685\pi\)
0.583493 + 0.812118i \(0.301685\pi\)
\(440\) 0 0
\(441\) −6.37228 −0.303442
\(442\) −62.1138 −2.95445
\(443\) −20.7446 −0.985604 −0.492802 0.870142i \(-0.664027\pi\)
−0.492802 + 0.870142i \(0.664027\pi\)
\(444\) 21.8614 1.03750
\(445\) 0 0
\(446\) −12.2718 −0.581088
\(447\) 5.98844 0.283243
\(448\) 1.87953 0.0887993
\(449\) 24.6060 1.16123 0.580614 0.814179i \(-0.302813\pi\)
0.580614 + 0.814179i \(0.302813\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 19.1168 0.899181
\(453\) −2.17448 −0.102166
\(454\) 63.7228 2.99066
\(455\) 0 0
\(456\) 25.4891 1.19364
\(457\) 8.45787 0.395643 0.197821 0.980238i \(-0.436613\pi\)
0.197821 + 0.980238i \(0.436613\pi\)
\(458\) 9.15759 0.427906
\(459\) −5.98844 −0.279516
\(460\) 0 0
\(461\) 14.5012 0.675389 0.337694 0.941256i \(-0.390353\pi\)
0.337694 + 0.941256i \(0.390353\pi\)
\(462\) 0 0
\(463\) 3.25544 0.151293 0.0756465 0.997135i \(-0.475898\pi\)
0.0756465 + 0.997135i \(0.475898\pi\)
\(464\) −16.0858 −0.746764
\(465\) 0 0
\(466\) 6.37228 0.295190
\(467\) 22.2337 1.02885 0.514426 0.857535i \(-0.328005\pi\)
0.514426 + 0.857535i \(0.328005\pi\)
\(468\) 17.9653 0.830447
\(469\) 12.7692 0.589625
\(470\) 0 0
\(471\) 6.62772 0.305389
\(472\) 35.9306 1.65384
\(473\) 0 0
\(474\) 14.7446 0.677240
\(475\) 0 0
\(476\) −20.7446 −0.950825
\(477\) −13.1168 −0.600579
\(478\) 73.9565 3.38269
\(479\) 37.5152 1.71411 0.857057 0.515222i \(-0.172290\pi\)
0.857057 + 0.515222i \(0.172290\pi\)
\(480\) 0 0
\(481\) −20.5446 −0.936751
\(482\) 33.4891 1.52539
\(483\) −1.58457 −0.0721006
\(484\) 0 0
\(485\) 0 0
\(486\) 2.52434 0.114506
\(487\) 12.7446 0.577511 0.288756 0.957403i \(-0.406758\pi\)
0.288756 + 0.957403i \(0.406758\pi\)
\(488\) 16.0000 0.724286
\(489\) −9.37228 −0.423829
\(490\) 0 0
\(491\) 18.6101 0.839863 0.419932 0.907556i \(-0.362054\pi\)
0.419932 + 0.907556i \(0.362054\pi\)
\(492\) 24.8935 1.12229
\(493\) −15.1168 −0.680828
\(494\) −44.1485 −1.98633
\(495\) 0 0
\(496\) 46.9783 2.10939
\(497\) −0.589907 −0.0264610
\(498\) −21.4891 −0.962951
\(499\) −37.8397 −1.69394 −0.846968 0.531644i \(-0.821574\pi\)
−0.846968 + 0.531644i \(0.821574\pi\)
\(500\) 0 0
\(501\) −2.87419 −0.128410
\(502\) 1.28962 0.0575586
\(503\) −22.0742 −0.984241 −0.492121 0.870527i \(-0.663778\pi\)
−0.492121 + 0.870527i \(0.663778\pi\)
\(504\) 4.74456 0.211340
\(505\) 0 0
\(506\) 0 0
\(507\) −3.88316 −0.172457
\(508\) −86.1224 −3.82107
\(509\) −40.9783 −1.81633 −0.908165 0.418613i \(-0.862516\pi\)
−0.908165 + 0.418613i \(0.862516\pi\)
\(510\) 0 0
\(511\) 5.88316 0.260256
\(512\) 50.1369 2.21576
\(513\) −4.25639 −0.187924
\(514\) 61.5239 2.71370
\(515\) 0 0
\(516\) −29.0024 −1.27676
\(517\) 0 0
\(518\) −10.0000 −0.439375
\(519\) −6.92820 −0.304114
\(520\) 0 0
\(521\) 16.9783 0.743831 0.371915 0.928267i \(-0.378701\pi\)
0.371915 + 0.928267i \(0.378701\pi\)
\(522\) 6.37228 0.278907
\(523\) 6.83563 0.298901 0.149451 0.988769i \(-0.452250\pi\)
0.149451 + 0.988769i \(0.452250\pi\)
\(524\) 29.0024 1.26698
\(525\) 0 0
\(526\) −56.4674 −2.46209
\(527\) 44.1485 1.92314
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) −14.7446 −0.639258
\(533\) −23.3940 −1.01331
\(534\) −16.0858 −0.696100
\(535\) 0 0
\(536\) 96.5147 4.16880
\(537\) 24.2337 1.04576
\(538\) −23.0140 −0.992204
\(539\) 0 0
\(540\) 0 0
\(541\) −27.7128 −1.19147 −0.595733 0.803182i \(-0.703139\pi\)
−0.595733 + 0.803182i \(0.703139\pi\)
\(542\) 26.2337 1.12683
\(543\) −17.0000 −0.729540
\(544\) −24.6060 −1.05497
\(545\) 0 0
\(546\) −8.21782 −0.351690
\(547\) −41.9740 −1.79468 −0.897339 0.441342i \(-0.854502\pi\)
−0.897339 + 0.441342i \(0.854502\pi\)
\(548\) −3.25544 −0.139065
\(549\) −2.67181 −0.114030
\(550\) 0 0
\(551\) −10.7446 −0.457734
\(552\) −11.9769 −0.509770
\(553\) −4.62772 −0.196791
\(554\) −21.8614 −0.928802
\(555\) 0 0
\(556\) −45.4381 −1.92700
\(557\) −9.50744 −0.402843 −0.201422 0.979505i \(-0.564556\pi\)
−0.201422 + 0.979505i \(0.564556\pi\)
\(558\) −18.6101 −0.787830
\(559\) 27.2554 1.15278
\(560\) 0 0
\(561\) 0 0
\(562\) 1.48913 0.0628150
\(563\) −14.5561 −0.613467 −0.306734 0.951795i \(-0.599236\pi\)
−0.306734 + 0.951795i \(0.599236\pi\)
\(564\) −5.48913 −0.231134
\(565\) 0 0
\(566\) −6.00000 −0.252199
\(567\) −0.792287 −0.0332729
\(568\) −4.45877 −0.187086
\(569\) 24.5437 1.02892 0.514462 0.857513i \(-0.327992\pi\)
0.514462 + 0.857513i \(0.327992\pi\)
\(570\) 0 0
\(571\) 4.55134 0.190468 0.0952339 0.995455i \(-0.469640\pi\)
0.0952339 + 0.995455i \(0.469640\pi\)
\(572\) 0 0
\(573\) 17.4891 0.730619
\(574\) −11.3870 −0.475283
\(575\) 0 0
\(576\) −2.37228 −0.0988451
\(577\) 16.4891 0.686451 0.343226 0.939253i \(-0.388480\pi\)
0.343226 + 0.939253i \(0.388480\pi\)
\(578\) −47.6126 −1.98042
\(579\) −17.1730 −0.713687
\(580\) 0 0
\(581\) 6.74456 0.279812
\(582\) 31.5268 1.30683
\(583\) 0 0
\(584\) 44.4674 1.84007
\(585\) 0 0
\(586\) 16.6060 0.685986
\(587\) −38.9783 −1.60880 −0.804402 0.594085i \(-0.797514\pi\)
−0.804402 + 0.594085i \(0.797514\pi\)
\(588\) 27.8614 1.14899
\(589\) 31.3793 1.29296
\(590\) 0 0
\(591\) 21.1345 0.869356
\(592\) −31.8614 −1.30950
\(593\) −27.7677 −1.14028 −0.570142 0.821546i \(-0.693112\pi\)
−0.570142 + 0.821546i \(0.693112\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −26.1831 −1.07250
\(597\) 6.86141 0.280819
\(598\) 20.7446 0.848308
\(599\) 40.4674 1.65345 0.826726 0.562605i \(-0.190201\pi\)
0.826726 + 0.562605i \(0.190201\pi\)
\(600\) 0 0
\(601\) −40.2419 −1.64150 −0.820751 0.571286i \(-0.806445\pi\)
−0.820751 + 0.571286i \(0.806445\pi\)
\(602\) 13.2665 0.540702
\(603\) −16.1168 −0.656329
\(604\) 9.50744 0.386852
\(605\) 0 0
\(606\) −13.4891 −0.547958
\(607\) −26.1282 −1.06051 −0.530256 0.847837i \(-0.677904\pi\)
−0.530256 + 0.847837i \(0.677904\pi\)
\(608\) −17.4891 −0.709278
\(609\) −2.00000 −0.0810441
\(610\) 0 0
\(611\) 5.15848 0.208690
\(612\) 26.1831 1.05839
\(613\) 43.4111 1.75336 0.876678 0.481077i \(-0.159754\pi\)
0.876678 + 0.481077i \(0.159754\pi\)
\(614\) −44.9783 −1.81517
\(615\) 0 0
\(616\) 0 0
\(617\) −43.8614 −1.76579 −0.882897 0.469567i \(-0.844410\pi\)
−0.882897 + 0.469567i \(0.844410\pi\)
\(618\) −20.4897 −0.824215
\(619\) 10.2337 0.411327 0.205663 0.978623i \(-0.434065\pi\)
0.205663 + 0.978623i \(0.434065\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 16.4356 0.659009
\(623\) 5.04868 0.202271
\(624\) −26.1831 −1.04816
\(625\) 0 0
\(626\) 23.0140 0.919824
\(627\) 0 0
\(628\) −28.9783 −1.15636
\(629\) −29.9422 −1.19387
\(630\) 0 0
\(631\) 22.2337 0.885109 0.442555 0.896742i \(-0.354072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(632\) −34.9783 −1.39136
\(633\) −12.4742 −0.495805
\(634\) 38.5099 1.52942
\(635\) 0 0
\(636\) 57.3505 2.27410
\(637\) −26.1831 −1.03741
\(638\) 0 0
\(639\) 0.744563 0.0294544
\(640\) 0 0
\(641\) 7.11684 0.281098 0.140549 0.990074i \(-0.455113\pi\)
0.140549 + 0.990074i \(0.455113\pi\)
\(642\) 0.744563 0.0293855
\(643\) −21.0951 −0.831909 −0.415955 0.909385i \(-0.636553\pi\)
−0.415955 + 0.909385i \(0.636553\pi\)
\(644\) 6.92820 0.273009
\(645\) 0 0
\(646\) −64.3432 −2.53155
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) −5.98844 −0.235248
\(649\) 0 0
\(650\) 0 0
\(651\) 5.84096 0.228925
\(652\) 40.9783 1.60483
\(653\) −4.51087 −0.176524 −0.0882621 0.996097i \(-0.528131\pi\)
−0.0882621 + 0.996097i \(0.528131\pi\)
\(654\) 25.1168 0.982146
\(655\) 0 0
\(656\) −36.2805 −1.41652
\(657\) −7.42554 −0.289698
\(658\) 2.51087 0.0978841
\(659\) 22.3692 0.871380 0.435690 0.900097i \(-0.356504\pi\)
0.435690 + 0.900097i \(0.356504\pi\)
\(660\) 0 0
\(661\) −26.7228 −1.03940 −0.519698 0.854350i \(-0.673956\pi\)
−0.519698 + 0.854350i \(0.673956\pi\)
\(662\) 1.58457 0.0615862
\(663\) −24.6060 −0.955617
\(664\) 50.9783 1.97834
\(665\) 0 0
\(666\) 12.6217 0.489081
\(667\) 5.04868 0.195485
\(668\) 12.5668 0.486224
\(669\) −4.86141 −0.187953
\(670\) 0 0
\(671\) 0 0
\(672\) −3.25544 −0.125581
\(673\) −41.4766 −1.59881 −0.799404 0.600794i \(-0.794851\pi\)
−0.799404 + 0.600794i \(0.794851\pi\)
\(674\) 38.6060 1.48705
\(675\) 0 0
\(676\) 16.9783 0.653010
\(677\) −36.2805 −1.39437 −0.697186 0.716890i \(-0.745565\pi\)
−0.697186 + 0.716890i \(0.745565\pi\)
\(678\) 11.0371 0.423878
\(679\) −9.89497 −0.379734
\(680\) 0 0
\(681\) 25.2434 0.967328
\(682\) 0 0
\(683\) −2.00000 −0.0765279 −0.0382639 0.999268i \(-0.512183\pi\)
−0.0382639 + 0.999268i \(0.512183\pi\)
\(684\) 18.6101 0.711576
\(685\) 0 0
\(686\) −26.7446 −1.02111
\(687\) 3.62772 0.138406
\(688\) 42.2689 1.61149
\(689\) −53.8960 −2.05327
\(690\) 0 0
\(691\) −4.11684 −0.156612 −0.0783061 0.996929i \(-0.524951\pi\)
−0.0783061 + 0.996929i \(0.524951\pi\)
\(692\) 30.2921 1.15153
\(693\) 0 0
\(694\) −45.4891 −1.72674
\(695\) 0 0
\(696\) −15.1168 −0.573002
\(697\) −34.0951 −1.29144
\(698\) 65.5842 2.48240
\(699\) 2.52434 0.0954792
\(700\) 0 0
\(701\) 10.0424 0.379298 0.189649 0.981852i \(-0.439265\pi\)
0.189649 + 0.981852i \(0.439265\pi\)
\(702\) 10.3723 0.391477
\(703\) −21.2819 −0.802664
\(704\) 0 0
\(705\) 0 0
\(706\) −74.0907 −2.78844
\(707\) 4.23369 0.159224
\(708\) 26.2337 0.985922
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 5.84096 0.219053
\(712\) 38.1600 1.43011
\(713\) −14.7446 −0.552188
\(714\) −11.9769 −0.448223
\(715\) 0 0
\(716\) −105.957 −3.95978
\(717\) 29.2974 1.09413
\(718\) 3.25544 0.121492
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 6.43087 0.239498
\(722\) 2.22938 0.0829691
\(723\) 13.2665 0.493386
\(724\) 74.3288 2.76241
\(725\) 0 0
\(726\) 0 0
\(727\) −7.25544 −0.269089 −0.134545 0.990908i \(-0.542957\pi\)
−0.134545 + 0.990908i \(0.542957\pi\)
\(728\) 19.4950 0.722532
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 39.7228 1.46920
\(732\) 11.6819 0.431776
\(733\) 9.15759 0.338243 0.169122 0.985595i \(-0.445907\pi\)
0.169122 + 0.985595i \(0.445907\pi\)
\(734\) −59.8844 −2.21037
\(735\) 0 0
\(736\) 8.21782 0.302913
\(737\) 0 0
\(738\) 14.3723 0.529051
\(739\) −38.8974 −1.43086 −0.715432 0.698682i \(-0.753770\pi\)
−0.715432 + 0.698682i \(0.753770\pi\)
\(740\) 0 0
\(741\) −17.4891 −0.642479
\(742\) −26.2337 −0.963069
\(743\) 24.6535 0.904448 0.452224 0.891904i \(-0.350631\pi\)
0.452224 + 0.891904i \(0.350631\pi\)
\(744\) 44.1485 1.61856
\(745\) 0 0
\(746\) −61.7228 −2.25983
\(747\) −8.51278 −0.311466
\(748\) 0 0
\(749\) −0.233688 −0.00853877
\(750\) 0 0
\(751\) −16.3505 −0.596639 −0.298320 0.954466i \(-0.596426\pi\)
−0.298320 + 0.954466i \(0.596426\pi\)
\(752\) 8.00000 0.291730
\(753\) 0.510875 0.0186173
\(754\) 26.1831 0.953534
\(755\) 0 0
\(756\) 3.46410 0.125988
\(757\) −9.51087 −0.345679 −0.172839 0.984950i \(-0.555294\pi\)
−0.172839 + 0.984950i \(0.555294\pi\)
\(758\) −59.8844 −2.17510
\(759\) 0 0
\(760\) 0 0
\(761\) 40.6295 1.47282 0.736408 0.676537i \(-0.236520\pi\)
0.736408 + 0.676537i \(0.236520\pi\)
\(762\) −49.7228 −1.80127
\(763\) −7.88316 −0.285389
\(764\) −76.4674 −2.76649
\(765\) 0 0
\(766\) −59.2945 −2.14240
\(767\) −24.6535 −0.890185
\(768\) 31.1168 1.12283
\(769\) 34.7885 1.25451 0.627253 0.778816i \(-0.284179\pi\)
0.627253 + 0.778816i \(0.284179\pi\)
\(770\) 0 0
\(771\) 24.3723 0.877746
\(772\) 75.0853 2.70238
\(773\) −33.2119 −1.19455 −0.597275 0.802036i \(-0.703750\pi\)
−0.597275 + 0.802036i \(0.703750\pi\)
\(774\) −16.7446 −0.601871
\(775\) 0 0
\(776\) −74.7904 −2.68482
\(777\) −3.96143 −0.142116
\(778\) 23.0140 0.825092
\(779\) −24.2337 −0.868262
\(780\) 0 0
\(781\) 0 0
\(782\) 30.2337 1.08115
\(783\) 2.52434 0.0902125
\(784\) −40.6060 −1.45021
\(785\) 0 0
\(786\) 16.7446 0.597259
\(787\) 4.75372 0.169452 0.0847259 0.996404i \(-0.472999\pi\)
0.0847259 + 0.996404i \(0.472999\pi\)
\(788\) −92.4058 −3.29182
\(789\) −22.3692 −0.796364
\(790\) 0 0
\(791\) −3.46410 −0.123169
\(792\) 0 0
\(793\) −10.9783 −0.389849
\(794\) 61.8188 2.19387
\(795\) 0 0
\(796\) −30.0000 −1.06332
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) −8.51278 −0.301349
\(799\) 7.51811 0.265972
\(800\) 0 0
\(801\) −6.37228 −0.225153
\(802\) 48.2574 1.70403
\(803\) 0 0
\(804\) 70.4674 2.48519
\(805\) 0 0
\(806\) −76.4674 −2.69345
\(807\) −9.11684 −0.320928
\(808\) 32.0000 1.12576
\(809\) −53.6559 −1.88644 −0.943221 0.332167i \(-0.892220\pi\)
−0.943221 + 0.332167i \(0.892220\pi\)
\(810\) 0 0
\(811\) 44.0559 1.54701 0.773506 0.633789i \(-0.218501\pi\)
0.773506 + 0.633789i \(0.218501\pi\)
\(812\) 8.74456 0.306874
\(813\) 10.3923 0.364474
\(814\) 0 0
\(815\) 0 0
\(816\) −38.1600 −1.33587
\(817\) 28.2337 0.987772
\(818\) −1.11684 −0.0390495
\(819\) −3.25544 −0.113754
\(820\) 0 0
\(821\) −12.8617 −0.448878 −0.224439 0.974488i \(-0.572055\pi\)
−0.224439 + 0.974488i \(0.572055\pi\)
\(822\) −1.87953 −0.0655561
\(823\) 32.3505 1.12767 0.563834 0.825888i \(-0.309326\pi\)
0.563834 + 0.825888i \(0.309326\pi\)
\(824\) 48.6072 1.69331
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) 16.1407 0.561267 0.280633 0.959815i \(-0.409455\pi\)
0.280633 + 0.959815i \(0.409455\pi\)
\(828\) −8.74456 −0.303895
\(829\) −22.2554 −0.772963 −0.386482 0.922297i \(-0.626310\pi\)
−0.386482 + 0.922297i \(0.626310\pi\)
\(830\) 0 0
\(831\) −8.66025 −0.300421
\(832\) −9.74749 −0.337934
\(833\) −38.1600 −1.32217
\(834\) −26.2337 −0.908398
\(835\) 0 0
\(836\) 0 0
\(837\) −7.37228 −0.254823
\(838\) 21.4843 0.742164
\(839\) 26.9783 0.931393 0.465696 0.884945i \(-0.345804\pi\)
0.465696 + 0.884945i \(0.345804\pi\)
\(840\) 0 0
\(841\) −22.6277 −0.780266
\(842\) −15.4959 −0.534023
\(843\) 0.589907 0.0203175
\(844\) 54.5408 1.87737
\(845\) 0 0
\(846\) −3.16915 −0.108958
\(847\) 0 0
\(848\) −83.5842 −2.87029
\(849\) −2.37686 −0.0815737
\(850\) 0 0
\(851\) 10.0000 0.342796
\(852\) −3.25544 −0.111529
\(853\) −31.7292 −1.08639 −0.543193 0.839608i \(-0.682785\pi\)
−0.543193 + 0.839608i \(0.682785\pi\)
\(854\) −5.34363 −0.182855
\(855\) 0 0
\(856\) −1.76631 −0.0603713
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −12.1168 −0.413421 −0.206711 0.978402i \(-0.566276\pi\)
−0.206711 + 0.978402i \(0.566276\pi\)
\(860\) 0 0
\(861\) −4.51087 −0.153730
\(862\) −59.7228 −2.03417
\(863\) −16.5109 −0.562037 −0.281018 0.959702i \(-0.590672\pi\)
−0.281018 + 0.959702i \(0.590672\pi\)
\(864\) 4.10891 0.139788
\(865\) 0 0
\(866\) −58.6497 −1.99300
\(867\) −18.8614 −0.640567
\(868\) −25.5383 −0.866827
\(869\) 0 0
\(870\) 0 0
\(871\) −66.2227 −2.24387
\(872\) −59.5842 −2.01778
\(873\) 12.4891 0.422693
\(874\) 21.4891 0.726881
\(875\) 0 0
\(876\) 32.4665 1.09694
\(877\) −25.3909 −0.857388 −0.428694 0.903450i \(-0.641026\pi\)
−0.428694 + 0.903450i \(0.641026\pi\)
\(878\) −61.7228 −2.08304
\(879\) 6.57835 0.221882
\(880\) 0 0
\(881\) −5.39403 −0.181730 −0.0908648 0.995863i \(-0.528963\pi\)
−0.0908648 + 0.995863i \(0.528963\pi\)
\(882\) 16.0858 0.541637
\(883\) 4.86141 0.163599 0.0817997 0.996649i \(-0.473933\pi\)
0.0817997 + 0.996649i \(0.473933\pi\)
\(884\) 107.584 3.61845
\(885\) 0 0
\(886\) 52.3663 1.75928
\(887\) −29.4072 −0.987397 −0.493698 0.869633i \(-0.664355\pi\)
−0.493698 + 0.869633i \(0.664355\pi\)
\(888\) −29.9422 −1.00479
\(889\) 15.6060 0.523407
\(890\) 0 0
\(891\) 0 0
\(892\) 21.2554 0.711685
\(893\) 5.34363 0.178818
\(894\) −15.1168 −0.505583
\(895\) 0 0
\(896\) −11.2554 −0.376018
\(897\) 8.21782 0.274385
\(898\) −62.1138 −2.07276
\(899\) −18.6101 −0.620683
\(900\) 0 0
\(901\) −78.5494 −2.61686
\(902\) 0 0
\(903\) 5.25544 0.174890
\(904\) −26.1831 −0.870838
\(905\) 0 0
\(906\) 5.48913 0.182364
\(907\) 36.3505 1.20700 0.603500 0.797363i \(-0.293772\pi\)
0.603500 + 0.797363i \(0.293772\pi\)
\(908\) −110.371 −3.66280
\(909\) −5.34363 −0.177237
\(910\) 0 0
\(911\) 38.2337 1.26674 0.633369 0.773850i \(-0.281671\pi\)
0.633369 + 0.773850i \(0.281671\pi\)
\(912\) −27.1229 −0.898129
\(913\) 0 0
\(914\) −21.3505 −0.706213
\(915\) 0 0
\(916\) −15.8614 −0.524076
\(917\) −5.25544 −0.173550
\(918\) 15.1168 0.498930
\(919\) −31.6742 −1.04484 −0.522419 0.852689i \(-0.674970\pi\)
−0.522419 + 0.852689i \(0.674970\pi\)
\(920\) 0 0
\(921\) −17.8178 −0.587118
\(922\) −36.6060 −1.20555
\(923\) 3.05934 0.100699
\(924\) 0 0
\(925\) 0 0
\(926\) −8.21782 −0.270054
\(927\) −8.11684 −0.266592
\(928\) 10.3723 0.340487
\(929\) −34.8832 −1.14448 −0.572240 0.820086i \(-0.693925\pi\)
−0.572240 + 0.820086i \(0.693925\pi\)
\(930\) 0 0
\(931\) −27.1229 −0.888917
\(932\) −11.0371 −0.361533
\(933\) 6.51087 0.213156
\(934\) −56.1253 −1.83648
\(935\) 0 0
\(936\) −24.6060 −0.804271
\(937\) −40.2419 −1.31465 −0.657323 0.753609i \(-0.728311\pi\)
−0.657323 + 0.753609i \(0.728311\pi\)
\(938\) −32.2337 −1.05247
\(939\) 9.11684 0.297517
\(940\) 0 0
\(941\) 16.3807 0.533997 0.266999 0.963697i \(-0.413968\pi\)
0.266999 + 0.963697i \(0.413968\pi\)
\(942\) −16.7306 −0.545112
\(943\) 11.3870 0.370811
\(944\) −38.2337 −1.24440
\(945\) 0 0
\(946\) 0 0
\(947\) 31.4891 1.02326 0.511630 0.859206i \(-0.329042\pi\)
0.511630 + 0.859206i \(0.329042\pi\)
\(948\) −25.5383 −0.829446
\(949\) −30.5109 −0.990425
\(950\) 0 0
\(951\) 15.2554 0.494691
\(952\) 28.4125 0.920855
\(953\) 47.2627 1.53099 0.765495 0.643442i \(-0.222494\pi\)
0.765495 + 0.643442i \(0.222494\pi\)
\(954\) 33.1113 1.07202
\(955\) 0 0
\(956\) −128.096 −4.14293
\(957\) 0 0
\(958\) −94.7011 −3.05965
\(959\) 0.589907 0.0190491
\(960\) 0 0
\(961\) 23.3505 0.753243
\(962\) 51.8614 1.67208
\(963\) 0.294954 0.00950475
\(964\) −58.0049 −1.86821
\(965\) 0 0
\(966\) 4.00000 0.128698
\(967\) −44.3508 −1.42623 −0.713113 0.701049i \(-0.752716\pi\)
−0.713113 + 0.701049i \(0.752716\pi\)
\(968\) 0 0
\(969\) −25.4891 −0.818829
\(970\) 0 0
\(971\) 59.4891 1.90910 0.954548 0.298056i \(-0.0963382\pi\)
0.954548 + 0.298056i \(0.0963382\pi\)
\(972\) −4.37228 −0.140241
\(973\) 8.23369 0.263960
\(974\) −32.1716 −1.03084
\(975\) 0 0
\(976\) −17.0256 −0.544975
\(977\) −13.1168 −0.419645 −0.209823 0.977739i \(-0.567289\pi\)
−0.209823 + 0.977739i \(0.567289\pi\)
\(978\) 23.6588 0.756525
\(979\) 0 0
\(980\) 0 0
\(981\) 9.94987 0.317675
\(982\) −46.9783 −1.49914
\(983\) 56.2337 1.79358 0.896788 0.442460i \(-0.145894\pi\)
0.896788 + 0.442460i \(0.145894\pi\)
\(984\) −34.0951 −1.08691
\(985\) 0 0
\(986\) 38.1600 1.21526
\(987\) 0.994667 0.0316606
\(988\) 76.4674 2.43275
\(989\) −13.2665 −0.421850
\(990\) 0 0
\(991\) 34.5109 1.09627 0.548137 0.836389i \(-0.315337\pi\)
0.548137 + 0.836389i \(0.315337\pi\)
\(992\) −30.2921 −0.961774
\(993\) 0.627719 0.0199201
\(994\) 1.48913 0.0472322
\(995\) 0 0
\(996\) 37.2203 1.17937
\(997\) −48.4598 −1.53474 −0.767368 0.641207i \(-0.778434\pi\)
−0.767368 + 0.641207i \(0.778434\pi\)
\(998\) 95.5201 3.02364
\(999\) 5.00000 0.158193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9075.2.a.cv.1.1 4
5.4 even 2 363.2.a.j.1.4 yes 4
11.10 odd 2 inner 9075.2.a.cv.1.4 4
15.14 odd 2 1089.2.a.u.1.1 4
20.19 odd 2 5808.2.a.ck.1.1 4
55.4 even 10 363.2.e.n.148.4 16
55.9 even 10 363.2.e.n.202.1 16
55.14 even 10 363.2.e.n.130.4 16
55.19 odd 10 363.2.e.n.130.1 16
55.24 odd 10 363.2.e.n.202.4 16
55.29 odd 10 363.2.e.n.148.1 16
55.39 odd 10 363.2.e.n.124.4 16
55.49 even 10 363.2.e.n.124.1 16
55.54 odd 2 363.2.a.j.1.1 4
165.164 even 2 1089.2.a.u.1.4 4
220.219 even 2 5808.2.a.ck.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.j.1.1 4 55.54 odd 2
363.2.a.j.1.4 yes 4 5.4 even 2
363.2.e.n.124.1 16 55.49 even 10
363.2.e.n.124.4 16 55.39 odd 10
363.2.e.n.130.1 16 55.19 odd 10
363.2.e.n.130.4 16 55.14 even 10
363.2.e.n.148.1 16 55.29 odd 10
363.2.e.n.148.4 16 55.4 even 10
363.2.e.n.202.1 16 55.9 even 10
363.2.e.n.202.4 16 55.24 odd 10
1089.2.a.u.1.1 4 15.14 odd 2
1089.2.a.u.1.4 4 165.164 even 2
5808.2.a.ck.1.1 4 20.19 odd 2
5808.2.a.ck.1.2 4 220.219 even 2
9075.2.a.cv.1.1 4 1.1 even 1 trivial
9075.2.a.cv.1.4 4 11.10 odd 2 inner