Properties

Label 9075.2.a.dr
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.860280160.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 9x^{3} + 23x^{2} - 22x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1815)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - \beta_1 q^{6} + ( - \beta_{4} - 1) q^{7} + (\beta_{3} + \beta_{2} + \beta_1) q^{8} + q^{9} + ( - \beta_{2} - 2) q^{12} + (\beta_{5} - \beta_{4}) q^{13}+ \cdots + (\beta_{5} + 3 \beta_{2} + 2 \beta_1 + 10) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 6 q^{3} + 9 q^{4} - q^{6} - 4 q^{7} + 6 q^{9} - 9 q^{12} + 2 q^{13} - 10 q^{14} + 11 q^{16} + 2 q^{17} + q^{18} + 2 q^{19} + 4 q^{21} - 12 q^{23} - 6 q^{27} - 24 q^{28} - 12 q^{29} + 18 q^{31}+ \cdots + 53 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 10x^{4} + 9x^{3} + 23x^{2} - 22x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 9\nu^{3} - \nu^{2} + 16\nu - 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + \nu^{4} - 10\nu^{3} - 8\nu^{2} + 20\nu + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{3} + 8\beta_{2} + \beta _1 + 22 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{4} + 9\beta_{3} + 10\beta_{2} + 29\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.42911
−1.95455
−0.0838261
1.19557
1.53672
2.73519
−2.42911 −1.00000 3.90056 0 2.42911 1.34168 −4.61665 1.00000 0
1.2 −1.95455 −1.00000 1.82026 0 1.95455 −2.58348 0.351308 1.00000 0
1.3 −0.0838261 −1.00000 −1.99297 0 0.0838261 2.34295 0.334715 1.00000 0
1.4 1.19557 −1.00000 −0.570614 0 −1.19557 −3.76208 −3.07335 1.00000 0
1.5 1.53672 −1.00000 0.361523 0 −1.53672 2.86503 −2.51789 1.00000 0
1.6 2.73519 −1.00000 5.48125 0 −2.73519 −4.20410 9.52186 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.dr 6
5.b even 2 1 9075.2.a.dp 6
5.c odd 4 2 1815.2.c.h 12
11.b odd 2 1 9075.2.a.do 6
55.d odd 2 1 9075.2.a.ds 6
55.e even 4 2 1815.2.c.i yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.c.h 12 5.c odd 4 2
1815.2.c.i yes 12 55.e even 4 2
9075.2.a.do 6 11.b odd 2 1
9075.2.a.dp 6 5.b even 2 1
9075.2.a.dr 6 1.a even 1 1 trivial
9075.2.a.ds 6 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{6} - T_{2}^{5} - 10T_{2}^{4} + 9T_{2}^{3} + 23T_{2}^{2} - 22T_{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{6} + 4T_{7}^{5} - 19T_{7}^{4} - 62T_{7}^{3} + 136T_{7}^{2} + 232T_{7} - 368 \) Copy content Toggle raw display
\( T_{13}^{6} - 2T_{13}^{5} - 47T_{13}^{4} + 110T_{13}^{3} + 300T_{13}^{2} - 432T_{13} + 32 \) Copy content Toggle raw display
\( T_{17}^{6} - 2T_{17}^{5} - 68T_{17}^{4} + 106T_{17}^{3} + 1025T_{17}^{2} - 2036T_{17} + 46 \) Copy content Toggle raw display
\( T_{19}^{6} - 2T_{19}^{5} - 47T_{19}^{4} + 64T_{19}^{3} + 368T_{19}^{2} - 128T_{19} - 512 \) Copy content Toggle raw display
\( T_{23}^{6} + 12T_{23}^{5} - 21T_{23}^{4} - 564T_{23}^{3} - 528T_{23}^{2} + 4656T_{23} - 1072 \) Copy content Toggle raw display
\( T_{37}^{6} + 24T_{37}^{5} + 126T_{37}^{4} - 858T_{37}^{3} - 7687T_{37}^{2} + 4710T_{37} + 98540 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{5} - 10 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 4 T^{5} + \cdots - 368 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 2 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$17$ \( T^{6} - 2 T^{5} + \cdots + 46 \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots - 512 \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots - 1072 \) Copy content Toggle raw display
$29$ \( T^{6} + 12 T^{5} + \cdots - 7688 \) Copy content Toggle raw display
$31$ \( T^{6} - 18 T^{5} + \cdots - 2656 \) Copy content Toggle raw display
$37$ \( T^{6} + 24 T^{5} + \cdots + 98540 \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + \cdots - 52544 \) Copy content Toggle raw display
$43$ \( T^{6} - 10 T^{5} + \cdots + 16960 \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + \cdots - 160 \) Copy content Toggle raw display
$53$ \( T^{6} + 18 T^{5} + \cdots - 9188 \) Copy content Toggle raw display
$59$ \( T^{6} + 18 T^{5} + \cdots - 8224 \) Copy content Toggle raw display
$61$ \( T^{6} + 4 T^{5} + \cdots - 104284 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots - 464 \) Copy content Toggle raw display
$71$ \( T^{6} - 130 T^{4} + \cdots + 11744 \) Copy content Toggle raw display
$73$ \( T^{6} - 14 T^{5} + \cdots + 44288 \) Copy content Toggle raw display
$79$ \( T^{6} + 2 T^{5} + \cdots - 196624 \) Copy content Toggle raw display
$83$ \( T^{6} + 20 T^{5} + \cdots + 266240 \) Copy content Toggle raw display
$89$ \( T^{6} + 16 T^{5} + \cdots - 80776 \) Copy content Toggle raw display
$97$ \( T^{6} + 12 T^{5} + \cdots + 23572 \) Copy content Toggle raw display
show more
show less