Properties

Label 9075.2.a.dt
Level 90759075
Weight 22
Character orbit 9075.a
Self dual yes
Analytic conductor 72.46472.464
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9075=352112 9075 = 3 \cdot 5^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 72.464239834372.4642398343
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x711x6+9x5+38x425x341x2+20x+5 x^{8} - x^{7} - 11x^{6} + 9x^{5} + 38x^{4} - 25x^{3} - 41x^{2} + 20x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 825)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q3+(β2+1)q4+β1q6+(β61)q7+(β5β4β1)q8+q9+(β21)q12+(2β7+β6+β5+1)q13++(2β7+β42β3++3)q98+O(q100) q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + \beta_1 q^{6} + ( - \beta_{6} - 1) q^{7} + ( - \beta_{5} - \beta_{4} - \beta_1) q^{8} + q^{9} + ( - \beta_{2} - 1) q^{12} + ( - 2 \beta_{7} + \beta_{6} + \beta_{5} + \cdots - 1) q^{13}+ \cdots + ( - 2 \beta_{7} + \beta_{4} - 2 \beta_{3} + \cdots + 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq28q3+7q4+q68q73q8+8q97q127q138q147q16+q17q18+6q19+8q217q23+3q24q268q2711q28++27q98+O(q100) 8 q - q^{2} - 8 q^{3} + 7 q^{4} + q^{6} - 8 q^{7} - 3 q^{8} + 8 q^{9} - 7 q^{12} - 7 q^{13} - 8 q^{14} - 7 q^{16} + q^{17} - q^{18} + 6 q^{19} + 8 q^{21} - 7 q^{23} + 3 q^{24} - q^{26} - 8 q^{27} - 11 q^{28}+ \cdots + 27 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x711x6+9x5+38x425x341x2+20x+5 x^{8} - x^{7} - 11x^{6} + 9x^{5} + 38x^{4} - 25x^{3} - 41x^{2} + 20x + 5 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== (ν62ν56ν4+11ν3+7ν211ν1)/2 ( \nu^{6} - 2\nu^{5} - 6\nu^{4} + 11\nu^{3} + 7\nu^{2} - 11\nu - 1 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν72ν66ν5+11ν4+7ν311ν2ν)/2 ( \nu^{7} - 2\nu^{6} - 6\nu^{5} + 11\nu^{4} + 7\nu^{3} - 11\nu^{2} - \nu ) / 2 Copy content Toggle raw display
β5\beta_{5}== (ν7+2ν6+6ν511ν45ν3+11ν29ν)/2 ( -\nu^{7} + 2\nu^{6} + 6\nu^{5} - 11\nu^{4} - 5\nu^{3} + 11\nu^{2} - 9\nu ) / 2 Copy content Toggle raw display
β6\beta_{6}== (ν6+2ν5+8ν413ν317ν2+17ν+5)/2 ( -\nu^{6} + 2\nu^{5} + 8\nu^{4} - 13\nu^{3} - 17\nu^{2} + 17\nu + 5 ) / 2 Copy content Toggle raw display
β7\beta_{7}== (ν7+2ν6+8ν513ν419ν3+19ν2+13ν2)/2 ( -\nu^{7} + 2\nu^{6} + 8\nu^{5} - 13\nu^{4} - 19\nu^{3} + 19\nu^{2} + 13\nu - 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β5+β4+5β1 \beta_{5} + \beta_{4} + 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β6+β5+β4+β3+5β2+2β1+13 \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} + 5\beta_{2} + 2\beta _1 + 13 Copy content Toggle raw display
ν5\nu^{5}== β7+β6+7β5+8β4+β3+β2+26β1+2 \beta_{7} + \beta_{6} + 7\beta_{5} + 8\beta_{4} + \beta_{3} + \beta_{2} + 26\beta _1 + 2 Copy content Toggle raw display
ν6\nu^{6}== 2β7+8β6+9β5+11β4+10β3+25β2+20β1+62 2\beta_{7} + 8\beta_{6} + 9\beta_{5} + 11\beta_{4} + 10\beta_{3} + 25\beta_{2} + 20\beta _1 + 62 Copy content Toggle raw display
ν7\nu^{7}== 10β7+11β6+42β5+54β4+15β3+12β2+140β1+26 10\beta_{7} + 11\beta_{6} + 42\beta_{5} + 54\beta_{4} + 15\beta_{3} + 12\beta_{2} + 140\beta _1 + 26 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.49311
2.02189
1.40736
0.684625
−0.188059
−1.27571
−2.04884
−2.09438
−2.49311 −1.00000 4.21558 0 2.49311 −1.92071 −5.52367 1.00000 0
1.2 −2.02189 −1.00000 2.08806 0 2.02189 1.30998 −0.178044 1.00000 0
1.3 −1.40736 −1.00000 −0.0193259 0 1.40736 2.16377 2.84193 1.00000 0
1.4 −0.684625 −1.00000 −1.53129 0 0.684625 −4.22715 2.41761 1.00000 0
1.5 0.188059 −1.00000 −1.96463 0 −0.188059 −1.64886 −0.745587 1.00000 0
1.6 1.27571 −1.00000 −0.372560 0 −1.27571 2.62160 −3.02670 1.00000 0
1.7 2.04884 −1.00000 2.19776 0 −2.04884 −3.70442 0.405171 1.00000 0
1.8 2.09438 −1.00000 2.38641 0 −2.09438 −2.59420 0.809299 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.dt 8
5.b even 2 1 9075.2.a.dw 8
11.b odd 2 1 9075.2.a.dv 8
11.d odd 10 2 825.2.n.n yes 16
55.d odd 2 1 9075.2.a.du 8
55.h odd 10 2 825.2.n.m 16
55.l even 20 4 825.2.bx.j 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.n.m 16 55.h odd 10 2
825.2.n.n yes 16 11.d odd 10 2
825.2.bx.j 32 55.l even 20 4
9075.2.a.dt 8 1.a even 1 1 trivial
9075.2.a.du 8 55.d odd 2 1
9075.2.a.dv 8 11.b odd 2 1
9075.2.a.dw 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9075))S_{2}^{\mathrm{new}}(\Gamma_0(9075)):

T28+T2711T269T25+38T24+25T2341T2220T2+5 T_{2}^{8} + T_{2}^{7} - 11T_{2}^{6} - 9T_{2}^{5} + 38T_{2}^{4} + 25T_{2}^{3} - 41T_{2}^{2} - 20T_{2} + 5 Copy content Toggle raw display
T78+8T77+3T76105T75165T74+401T73+807T72394T7956 T_{7}^{8} + 8T_{7}^{7} + 3T_{7}^{6} - 105T_{7}^{5} - 165T_{7}^{4} + 401T_{7}^{3} + 807T_{7}^{2} - 394T_{7} - 956 Copy content Toggle raw display
T138+7T13769T136541T135+908T134+11144T133+9019T13244622T1362716 T_{13}^{8} + 7T_{13}^{7} - 69T_{13}^{6} - 541T_{13}^{5} + 908T_{13}^{4} + 11144T_{13}^{3} + 9019T_{13}^{2} - 44622T_{13} - 62716 Copy content Toggle raw display
T178T17779T176+25T175+2019T174+598T17317295T17210532T17+31364 T_{17}^{8} - T_{17}^{7} - 79T_{17}^{6} + 25T_{17}^{5} + 2019T_{17}^{4} + 598T_{17}^{3} - 17295T_{17}^{2} - 10532T_{17} + 31364 Copy content Toggle raw display
T1986T19755T196+503T195809T1942617T193+9969T19210970T19+3980 T_{19}^{8} - 6T_{19}^{7} - 55T_{19}^{6} + 503T_{19}^{5} - 809T_{19}^{4} - 2617T_{19}^{3} + 9969T_{19}^{2} - 10970T_{19} + 3980 Copy content Toggle raw display
T238+7T23780T236548T235+431T234+4440T2331036T2327409T23+3169 T_{23}^{8} + 7T_{23}^{7} - 80T_{23}^{6} - 548T_{23}^{5} + 431T_{23}^{4} + 4440T_{23}^{3} - 1036T_{23}^{2} - 7409T_{23} + 3169 Copy content Toggle raw display
T378+14T37771T3761657T3753023T374+34702T373+542461 T_{37}^{8} + 14 T_{37}^{7} - 71 T_{37}^{6} - 1657 T_{37}^{5} - 3023 T_{37}^{4} + 34702 T_{37}^{3} + \cdots - 542461 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T711T6++5 T^{8} + T^{7} - 11 T^{6} + \cdots + 5 Copy content Toggle raw display
33 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+8T7+956 T^{8} + 8 T^{7} + \cdots - 956 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8+7T7+62716 T^{8} + 7 T^{7} + \cdots - 62716 Copy content Toggle raw display
1717 T8T7++31364 T^{8} - T^{7} + \cdots + 31364 Copy content Toggle raw display
1919 T86T7++3980 T^{8} - 6 T^{7} + \cdots + 3980 Copy content Toggle raw display
2323 T8+7T7++3169 T^{8} + 7 T^{7} + \cdots + 3169 Copy content Toggle raw display
2929 T828T7+49849 T^{8} - 28 T^{7} + \cdots - 49849 Copy content Toggle raw display
3131 T810T7++30689 T^{8} - 10 T^{7} + \cdots + 30689 Copy content Toggle raw display
3737 T8+14T7+542461 T^{8} + 14 T^{7} + \cdots - 542461 Copy content Toggle raw display
4141 T814T7+2253521 T^{8} - 14 T^{7} + \cdots - 2253521 Copy content Toggle raw display
4343 T8+11T7++5045 T^{8} + 11 T^{7} + \cdots + 5045 Copy content Toggle raw display
4747 T8+5T7++4632625 T^{8} + 5 T^{7} + \cdots + 4632625 Copy content Toggle raw display
5353 T85T7+16004 T^{8} - 5 T^{7} + \cdots - 16004 Copy content Toggle raw display
5959 T8+2T7+59695 T^{8} + 2 T^{7} + \cdots - 59695 Copy content Toggle raw display
6161 T836T7++180080 T^{8} - 36 T^{7} + \cdots + 180080 Copy content Toggle raw display
6767 T8+6T7++45905 T^{8} + 6 T^{7} + \cdots + 45905 Copy content Toggle raw display
7171 T8+17T7++123920 T^{8} + 17 T^{7} + \cdots + 123920 Copy content Toggle raw display
7373 T8+32T7++994769 T^{8} + 32 T^{7} + \cdots + 994769 Copy content Toggle raw display
7979 T841T7++1546669 T^{8} - 41 T^{7} + \cdots + 1546669 Copy content Toggle raw display
8383 T86T7++498884 T^{8} - 6 T^{7} + \cdots + 498884 Copy content Toggle raw display
8989 T821T7+60824801 T^{8} - 21 T^{7} + \cdots - 60824801 Copy content Toggle raw display
9797 T84T7++45758221 T^{8} - 4 T^{7} + \cdots + 45758221 Copy content Toggle raw display
show more
show less