[N,k,chi] = [9075,2,Mod(1,9075)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9075.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 9075 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(9075)) S 2 n e w ( Γ 0 ( 9 0 7 5 ) ) :
T 2 8 + T 2 7 − 11 T 2 6 − 9 T 2 5 + 38 T 2 4 + 25 T 2 3 − 41 T 2 2 − 20 T 2 + 5 T_{2}^{8} + T_{2}^{7} - 11T_{2}^{6} - 9T_{2}^{5} + 38T_{2}^{4} + 25T_{2}^{3} - 41T_{2}^{2} - 20T_{2} + 5 T 2 8 + T 2 7 − 1 1 T 2 6 − 9 T 2 5 + 3 8 T 2 4 + 2 5 T 2 3 − 4 1 T 2 2 − 2 0 T 2 + 5
T2^8 + T2^7 - 11*T2^6 - 9*T2^5 + 38*T2^4 + 25*T2^3 - 41*T2^2 - 20*T2 + 5
T 7 8 + 8 T 7 7 + 3 T 7 6 − 105 T 7 5 − 165 T 7 4 + 401 T 7 3 + 807 T 7 2 − 394 T 7 − 956 T_{7}^{8} + 8T_{7}^{7} + 3T_{7}^{6} - 105T_{7}^{5} - 165T_{7}^{4} + 401T_{7}^{3} + 807T_{7}^{2} - 394T_{7} - 956 T 7 8 + 8 T 7 7 + 3 T 7 6 − 1 0 5 T 7 5 − 1 6 5 T 7 4 + 4 0 1 T 7 3 + 8 0 7 T 7 2 − 3 9 4 T 7 − 9 5 6
T7^8 + 8*T7^7 + 3*T7^6 - 105*T7^5 - 165*T7^4 + 401*T7^3 + 807*T7^2 - 394*T7 - 956
T 13 8 + 7 T 13 7 − 69 T 13 6 − 541 T 13 5 + 908 T 13 4 + 11144 T 13 3 + 9019 T 13 2 − 44622 T 13 − 62716 T_{13}^{8} + 7T_{13}^{7} - 69T_{13}^{6} - 541T_{13}^{5} + 908T_{13}^{4} + 11144T_{13}^{3} + 9019T_{13}^{2} - 44622T_{13} - 62716 T 1 3 8 + 7 T 1 3 7 − 6 9 T 1 3 6 − 5 4 1 T 1 3 5 + 9 0 8 T 1 3 4 + 1 1 1 4 4 T 1 3 3 + 9 0 1 9 T 1 3 2 − 4 4 6 2 2 T 1 3 − 6 2 7 1 6
T13^8 + 7*T13^7 - 69*T13^6 - 541*T13^5 + 908*T13^4 + 11144*T13^3 + 9019*T13^2 - 44622*T13 - 62716
T 17 8 − T 17 7 − 79 T 17 6 + 25 T 17 5 + 2019 T 17 4 + 598 T 17 3 − 17295 T 17 2 − 10532 T 17 + 31364 T_{17}^{8} - T_{17}^{7} - 79T_{17}^{6} + 25T_{17}^{5} + 2019T_{17}^{4} + 598T_{17}^{3} - 17295T_{17}^{2} - 10532T_{17} + 31364 T 1 7 8 − T 1 7 7 − 7 9 T 1 7 6 + 2 5 T 1 7 5 + 2 0 1 9 T 1 7 4 + 5 9 8 T 1 7 3 − 1 7 2 9 5 T 1 7 2 − 1 0 5 3 2 T 1 7 + 3 1 3 6 4
T17^8 - T17^7 - 79*T17^6 + 25*T17^5 + 2019*T17^4 + 598*T17^3 - 17295*T17^2 - 10532*T17 + 31364
T 19 8 − 6 T 19 7 − 55 T 19 6 + 503 T 19 5 − 809 T 19 4 − 2617 T 19 3 + 9969 T 19 2 − 10970 T 19 + 3980 T_{19}^{8} - 6T_{19}^{7} - 55T_{19}^{6} + 503T_{19}^{5} - 809T_{19}^{4} - 2617T_{19}^{3} + 9969T_{19}^{2} - 10970T_{19} + 3980 T 1 9 8 − 6 T 1 9 7 − 5 5 T 1 9 6 + 5 0 3 T 1 9 5 − 8 0 9 T 1 9 4 − 2 6 1 7 T 1 9 3 + 9 9 6 9 T 1 9 2 − 1 0 9 7 0 T 1 9 + 3 9 8 0
T19^8 - 6*T19^7 - 55*T19^6 + 503*T19^5 - 809*T19^4 - 2617*T19^3 + 9969*T19^2 - 10970*T19 + 3980
T 23 8 + 7 T 23 7 − 80 T 23 6 − 548 T 23 5 + 431 T 23 4 + 4440 T 23 3 − 1036 T 23 2 − 7409 T 23 + 3169 T_{23}^{8} + 7T_{23}^{7} - 80T_{23}^{6} - 548T_{23}^{5} + 431T_{23}^{4} + 4440T_{23}^{3} - 1036T_{23}^{2} - 7409T_{23} + 3169 T 2 3 8 + 7 T 2 3 7 − 8 0 T 2 3 6 − 5 4 8 T 2 3 5 + 4 3 1 T 2 3 4 + 4 4 4 0 T 2 3 3 − 1 0 3 6 T 2 3 2 − 7 4 0 9 T 2 3 + 3 1 6 9
T23^8 + 7*T23^7 - 80*T23^6 - 548*T23^5 + 431*T23^4 + 4440*T23^3 - 1036*T23^2 - 7409*T23 + 3169
T 37 8 + 14 T 37 7 − 71 T 37 6 − 1657 T 37 5 − 3023 T 37 4 + 34702 T 37 3 + ⋯ − 542461 T_{37}^{8} + 14 T_{37}^{7} - 71 T_{37}^{6} - 1657 T_{37}^{5} - 3023 T_{37}^{4} + 34702 T_{37}^{3} + \cdots - 542461 T 3 7 8 + 1 4 T 3 7 7 − 7 1 T 3 7 6 − 1 6 5 7 T 3 7 5 − 3 0 2 3 T 3 7 4 + 3 4 7 0 2 T 3 7 3 + ⋯ − 5 4 2 4 6 1
T37^8 + 14*T37^7 - 71*T37^6 - 1657*T37^5 - 3023*T37^4 + 34702*T37^3 + 93156*T37^2 - 207941*T37 - 542461
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 + T 7 − 11 T 6 + ⋯ + 5 T^{8} + T^{7} - 11 T^{6} + \cdots + 5 T 8 + T 7 − 1 1 T 6 + ⋯ + 5
T^8 + T^7 - 11*T^6 - 9*T^5 + 38*T^4 + 25*T^3 - 41*T^2 - 20*T + 5
3 3 3
( T + 1 ) 8 (T + 1)^{8} ( T + 1 ) 8
(T + 1)^8
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + 8 T 7 + ⋯ − 956 T^{8} + 8 T^{7} + \cdots - 956 T 8 + 8 T 7 + ⋯ − 9 5 6
T^8 + 8*T^7 + 3*T^6 - 105*T^5 - 165*T^4 + 401*T^3 + 807*T^2 - 394*T - 956
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
T 8 + 7 T 7 + ⋯ − 62716 T^{8} + 7 T^{7} + \cdots - 62716 T 8 + 7 T 7 + ⋯ − 6 2 7 1 6
T^8 + 7*T^7 - 69*T^6 - 541*T^5 + 908*T^4 + 11144*T^3 + 9019*T^2 - 44622*T - 62716
17 17 1 7
T 8 − T 7 + ⋯ + 31364 T^{8} - T^{7} + \cdots + 31364 T 8 − T 7 + ⋯ + 3 1 3 6 4
T^8 - T^7 - 79*T^6 + 25*T^5 + 2019*T^4 + 598*T^3 - 17295*T^2 - 10532*T + 31364
19 19 1 9
T 8 − 6 T 7 + ⋯ + 3980 T^{8} - 6 T^{7} + \cdots + 3980 T 8 − 6 T 7 + ⋯ + 3 9 8 0
T^8 - 6*T^7 - 55*T^6 + 503*T^5 - 809*T^4 - 2617*T^3 + 9969*T^2 - 10970*T + 3980
23 23 2 3
T 8 + 7 T 7 + ⋯ + 3169 T^{8} + 7 T^{7} + \cdots + 3169 T 8 + 7 T 7 + ⋯ + 3 1 6 9
T^8 + 7*T^7 - 80*T^6 - 548*T^5 + 431*T^4 + 4440*T^3 - 1036*T^2 - 7409*T + 3169
29 29 2 9
T 8 − 28 T 7 + ⋯ − 49849 T^{8} - 28 T^{7} + \cdots - 49849 T 8 − 2 8 T 7 + ⋯ − 4 9 8 4 9
T^8 - 28*T^7 + 239*T^6 - 67*T^5 - 8206*T^4 + 29783*T^3 + 11087*T^2 - 100585*T - 49849
31 31 3 1
T 8 − 10 T 7 + ⋯ + 30689 T^{8} - 10 T^{7} + \cdots + 30689 T 8 − 1 0 T 7 + ⋯ + 3 0 6 8 9
T^8 - 10*T^7 - 32*T^6 + 625*T^5 - 1458*T^4 - 6075*T^3 + 34074*T^2 - 56130*T + 30689
37 37 3 7
T 8 + 14 T 7 + ⋯ − 542461 T^{8} + 14 T^{7} + \cdots - 542461 T 8 + 1 4 T 7 + ⋯ − 5 4 2 4 6 1
T^8 + 14*T^7 - 71*T^6 - 1657*T^5 - 3023*T^4 + 34702*T^3 + 93156*T^2 - 207941*T - 542461
41 41 4 1
T 8 − 14 T 7 + ⋯ − 2253521 T^{8} - 14 T^{7} + \cdots - 2253521 T 8 − 1 4 T 7 + ⋯ − 2 2 5 3 5 2 1
T^8 - 14*T^7 - 141*T^6 + 2228*T^5 + 5358*T^4 - 109918*T^3 - 449*T^2 + 1674776*T - 2253521
43 43 4 3
T 8 + 11 T 7 + ⋯ + 5045 T^{8} + 11 T^{7} + \cdots + 5045 T 8 + 1 1 T 7 + ⋯ + 5 0 4 5
T^8 + 11*T^7 - 61*T^6 - 1024*T^5 - 3692*T^4 - 2540*T^3 + 10059*T^2 + 17325*T + 5045
47 47 4 7
T 8 + 5 T 7 + ⋯ + 4632625 T^{8} + 5 T^{7} + \cdots + 4632625 T 8 + 5 T 7 + ⋯ + 4 6 3 2 6 2 5
T^8 + 5*T^7 - 285*T^6 - 869*T^5 + 25700*T^4 + 17185*T^3 - 825651*T^2 + 841700*T + 4632625
53 53 5 3
T 8 − 5 T 7 + ⋯ − 16004 T^{8} - 5 T^{7} + \cdots - 16004 T 8 − 5 T 7 + ⋯ − 1 6 0 0 4
T^8 - 5*T^7 - 193*T^6 + 693*T^5 + 7994*T^4 - 30612*T^3 + 12029*T^2 + 37072*T - 16004
59 59 5 9
T 8 + 2 T 7 + ⋯ − 59695 T^{8} + 2 T^{7} + \cdots - 59695 T 8 + 2 T 7 + ⋯ − 5 9 6 9 5
T^8 + 2*T^7 - 176*T^6 + 151*T^5 + 8674*T^4 - 24243*T^3 - 73014*T^2 + 253980*T - 59695
61 61 6 1
T 8 − 36 T 7 + ⋯ + 180080 T^{8} - 36 T^{7} + \cdots + 180080 T 8 − 3 6 T 7 + ⋯ + 1 8 0 0 8 0
T^8 - 36*T^7 + 348*T^6 + 1230*T^5 - 35517*T^4 + 149534*T^3 + 13256*T^2 - 767840*T + 180080
67 67 6 7
T 8 + 6 T 7 + ⋯ + 45905 T^{8} + 6 T^{7} + \cdots + 45905 T 8 + 6 T 7 + ⋯ + 4 5 9 0 5
T^8 + 6*T^7 - 285*T^6 - 1011*T^5 + 26787*T^4 + 41308*T^3 - 822496*T^2 + 5165*T + 45905
71 71 7 1
T 8 + 17 T 7 + ⋯ + 123920 T^{8} + 17 T^{7} + \cdots + 123920 T 8 + 1 7 T 7 + ⋯ + 1 2 3 9 2 0
T^8 + 17*T^7 + 31*T^6 - 877*T^5 - 5107*T^4 + 330*T^3 + 67221*T^2 + 170740*T + 123920
73 73 7 3
T 8 + 32 T 7 + ⋯ + 994769 T^{8} + 32 T^{7} + \cdots + 994769 T 8 + 3 2 T 7 + ⋯ + 9 9 4 7 6 9
T^8 + 32*T^7 + 233*T^6 - 1907*T^5 - 29019*T^4 - 71610*T^3 + 266498*T^2 + 1151067*T + 994769
79 79 7 9
T 8 − 41 T 7 + ⋯ + 1546669 T^{8} - 41 T^{7} + \cdots + 1546669 T 8 − 4 1 T 7 + ⋯ + 1 5 4 6 6 6 9
T^8 - 41*T^7 + 582*T^6 - 2192*T^5 - 24099*T^4 + 266310*T^3 - 813120*T^2 + 164581*T + 1546669
83 83 8 3
T 8 − 6 T 7 + ⋯ + 498884 T^{8} - 6 T^{7} + \cdots + 498884 T 8 − 6 T 7 + ⋯ + 4 9 8 8 8 4
T^8 - 6*T^7 - 211*T^6 + 977*T^5 + 12013*T^4 - 40522*T^3 - 145569*T^2 + 209014*T + 498884
89 89 8 9
T 8 − 21 T 7 + ⋯ − 60824801 T^{8} - 21 T^{7} + \cdots - 60824801 T 8 − 2 1 T 7 + ⋯ − 6 0 8 2 4 8 0 1
T^8 - 21*T^7 - 222*T^6 + 6424*T^5 + 1205*T^4 - 582060*T^3 + 1752812*T^2 + 14528857*T - 60824801
97 97 9 7
T 8 − 4 T 7 + ⋯ + 45758221 T^{8} - 4 T^{7} + \cdots + 45758221 T 8 − 4 T 7 + ⋯ + 4 5 7 5 8 2 2 1
T^8 - 4*T^7 - 572*T^6 + 2093*T^5 + 94734*T^4 - 301042*T^3 - 4154592*T^2 + 5287561*T + 45758221
show more
show less