Properties

Label 91.2.h.b.74.3
Level $91$
Weight $2$
Character 91.74
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [91,2,Mod(16,91)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(91, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("91.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 74.3
Root \(0.756174 - 1.30973i\) of defining polynomial
Character \(\chi\) \(=\) 91.74
Dual form 91.2.h.b.16.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.851125 q^{2} +(-0.330612 - 0.572636i) q^{3} -1.27559 q^{4} +(-1.72074 - 2.98041i) q^{5} +(0.281392 + 0.487385i) q^{6} +(-2.57273 + 0.617304i) q^{7} +2.78793 q^{8} +(1.28139 - 2.21944i) q^{9} +(1.46456 + 2.53670i) q^{10} +(0.448993 + 0.777679i) q^{11} +(0.421723 + 0.730446i) q^{12} +(-3.07517 - 1.88237i) q^{13} +(2.18972 - 0.525403i) q^{14} +(-1.13779 + 1.97071i) q^{15} +0.178289 q^{16} +1.93681 q^{17} +(-1.09063 + 1.88902i) q^{18} +(-0.519020 + 0.898968i) q^{19} +(2.19495 + 3.80177i) q^{20} +(1.20406 + 1.26915i) q^{21} +(-0.382150 - 0.661902i) q^{22} +5.65013 q^{23} +(-0.921723 - 1.59647i) q^{24} +(-3.42189 + 5.92688i) q^{25} +(2.61736 + 1.60213i) q^{26} -3.67824 q^{27} +(3.28174 - 0.787424i) q^{28} +(0.917969 - 1.58997i) q^{29} +(0.968404 - 1.67733i) q^{30} +(4.56692 - 7.91014i) q^{31} -5.72761 q^{32} +(0.296885 - 0.514219i) q^{33} -1.64847 q^{34} +(6.26681 + 6.60556i) q^{35} +(-1.63452 + 2.83108i) q^{36} -10.6000 q^{37} +(0.441751 - 0.765135i) q^{38} +(-0.0612242 + 2.38329i) q^{39} +(-4.79731 - 8.30918i) q^{40} +(2.66571 - 4.61715i) q^{41} +(-1.02481 - 1.08021i) q^{42} +(1.95732 + 3.39018i) q^{43} +(-0.572729 - 0.991996i) q^{44} -8.81977 q^{45} -4.80897 q^{46} +(-3.59565 - 6.22784i) q^{47} +(-0.0589445 - 0.102095i) q^{48} +(6.23787 - 3.17631i) q^{49} +(2.91246 - 5.04452i) q^{50} +(-0.640331 - 1.10909i) q^{51} +(3.92265 + 2.40112i) q^{52} +(4.69324 - 8.12893i) q^{53} +3.13065 q^{54} +(1.54520 - 2.67637i) q^{55} +(-7.17260 + 1.72100i) q^{56} +0.686375 q^{57} +(-0.781307 + 1.35326i) q^{58} -0.510517 q^{59} +(1.45135 - 2.51382i) q^{60} +(-0.718095 + 1.24378i) q^{61} +(-3.88702 + 6.73252i) q^{62} +(-1.92661 + 6.50102i) q^{63} +4.51834 q^{64} +(-0.318655 + 12.4043i) q^{65} +(-0.252686 + 0.437665i) q^{66} +(4.22466 + 7.31732i) q^{67} -2.47057 q^{68} +(-1.86800 - 3.23547i) q^{69} +(-5.33385 - 5.62216i) q^{70} +(1.72419 + 2.98638i) q^{71} +(3.57244 - 6.18764i) q^{72} +(-5.45026 + 9.44013i) q^{73} +9.02195 q^{74} +4.52526 q^{75} +(0.662054 - 1.14671i) q^{76} +(-1.63520 - 1.72359i) q^{77} +(0.0521095 - 2.02848i) q^{78} +(6.04589 + 10.4718i) q^{79} +(-0.306789 - 0.531375i) q^{80} +(-2.62811 - 4.55201i) q^{81} +(-2.26886 + 3.92977i) q^{82} +1.51669 q^{83} +(-1.53589 - 1.61891i) q^{84} +(-3.33274 - 5.77248i) q^{85} +(-1.66593 - 2.88547i) q^{86} -1.21396 q^{87} +(1.25176 + 2.16812i) q^{88} +13.6078 q^{89} +7.50673 q^{90} +(9.07358 + 2.94451i) q^{91} -7.20722 q^{92} -6.03951 q^{93} +(3.06035 + 5.30067i) q^{94} +3.57239 q^{95} +(1.89362 + 3.27984i) q^{96} +(-0.253120 - 0.438417i) q^{97} +(-5.30921 + 2.70344i) q^{98} +2.30134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + q^{3} + 8 q^{4} + q^{5} - 9 q^{6} - 3 q^{7} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} + 5 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 16 q^{16} - 10 q^{17} + 3 q^{18} - q^{19} - q^{20}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.851125 −0.601837 −0.300918 0.953650i \(-0.597293\pi\)
−0.300918 + 0.953650i \(0.597293\pi\)
\(3\) −0.330612 0.572636i −0.190879 0.330612i 0.754663 0.656113i \(-0.227800\pi\)
−0.945542 + 0.325501i \(0.894467\pi\)
\(4\) −1.27559 −0.637793
\(5\) −1.72074 2.98041i −0.769538 1.33288i −0.937814 0.347139i \(-0.887153\pi\)
0.168276 0.985740i \(-0.446180\pi\)
\(6\) 0.281392 + 0.487385i 0.114878 + 0.198974i
\(7\) −2.57273 + 0.617304i −0.972400 + 0.233319i
\(8\) 2.78793 0.985684
\(9\) 1.28139 2.21944i 0.427131 0.739812i
\(10\) 1.46456 + 2.53670i 0.463136 + 0.802175i
\(11\) 0.448993 + 0.777679i 0.135377 + 0.234479i 0.925741 0.378158i \(-0.123442\pi\)
−0.790365 + 0.612637i \(0.790109\pi\)
\(12\) 0.421723 + 0.730446i 0.121741 + 0.210862i
\(13\) −3.07517 1.88237i −0.852900 0.522075i
\(14\) 2.18972 0.525403i 0.585226 0.140420i
\(15\) −1.13779 + 1.97071i −0.293777 + 0.508836i
\(16\) 0.178289 0.0445723
\(17\) 1.93681 0.469745 0.234873 0.972026i \(-0.424533\pi\)
0.234873 + 0.972026i \(0.424533\pi\)
\(18\) −1.09063 + 1.88902i −0.257063 + 0.445246i
\(19\) −0.519020 + 0.898968i −0.119071 + 0.206237i −0.919400 0.393324i \(-0.871325\pi\)
0.800329 + 0.599562i \(0.204658\pi\)
\(20\) 2.19495 + 3.80177i 0.490806 + 0.850101i
\(21\) 1.20406 + 1.26915i 0.262748 + 0.276951i
\(22\) −0.382150 0.661902i −0.0814745 0.141118i
\(23\) 5.65013 1.17813 0.589067 0.808084i \(-0.299496\pi\)
0.589067 + 0.808084i \(0.299496\pi\)
\(24\) −0.921723 1.59647i −0.188146 0.325878i
\(25\) −3.42189 + 5.92688i −0.684378 + 1.18538i
\(26\) 2.61736 + 1.60213i 0.513306 + 0.314204i
\(27\) −3.67824 −0.707878
\(28\) 3.28174 0.787424i 0.620190 0.148809i
\(29\) 0.917969 1.58997i 0.170463 0.295250i −0.768119 0.640307i \(-0.778807\pi\)
0.938582 + 0.345057i \(0.112140\pi\)
\(30\) 0.968404 1.67733i 0.176806 0.306236i
\(31\) 4.56692 7.91014i 0.820244 1.42070i −0.0852573 0.996359i \(-0.527171\pi\)
0.905501 0.424345i \(-0.139495\pi\)
\(32\) −5.72761 −1.01251
\(33\) 0.296885 0.514219i 0.0516810 0.0895141i
\(34\) −1.64847 −0.282710
\(35\) 6.26681 + 6.60556i 1.05929 + 1.11654i
\(36\) −1.63452 + 2.83108i −0.272421 + 0.471847i
\(37\) −10.6000 −1.74263 −0.871316 0.490722i \(-0.836733\pi\)
−0.871316 + 0.490722i \(0.836733\pi\)
\(38\) 0.441751 0.765135i 0.0716614 0.124121i
\(39\) −0.0612242 + 2.38329i −0.00980372 + 0.381631i
\(40\) −4.79731 8.30918i −0.758521 1.31380i
\(41\) 2.66571 4.61715i 0.416314 0.721078i −0.579251 0.815149i \(-0.696655\pi\)
0.995565 + 0.0940715i \(0.0299882\pi\)
\(42\) −1.02481 1.08021i −0.158132 0.166679i
\(43\) 1.95732 + 3.39018i 0.298489 + 0.516998i 0.975790 0.218708i \(-0.0701841\pi\)
−0.677302 + 0.735706i \(0.736851\pi\)
\(44\) −0.572729 0.991996i −0.0863422 0.149549i
\(45\) −8.81977 −1.31477
\(46\) −4.80897 −0.709044
\(47\) −3.59565 6.22784i −0.524479 0.908424i −0.999594 0.0285004i \(-0.990927\pi\)
0.475115 0.879924i \(-0.342407\pi\)
\(48\) −0.0589445 0.102095i −0.00850791 0.0147361i
\(49\) 6.23787 3.17631i 0.891124 0.453759i
\(50\) 2.91246 5.04452i 0.411883 0.713403i
\(51\) −0.640331 1.10909i −0.0896643 0.155303i
\(52\) 3.92265 + 2.40112i 0.543973 + 0.332976i
\(53\) 4.69324 8.12893i 0.644666 1.11659i −0.339712 0.940529i \(-0.610330\pi\)
0.984378 0.176065i \(-0.0563370\pi\)
\(54\) 3.13065 0.426027
\(55\) 1.54520 2.67637i 0.208355 0.360881i
\(56\) −7.17260 + 1.72100i −0.958479 + 0.229979i
\(57\) 0.686375 0.0909127
\(58\) −0.781307 + 1.35326i −0.102591 + 0.177692i
\(59\) −0.510517 −0.0664637 −0.0332318 0.999448i \(-0.510580\pi\)
−0.0332318 + 0.999448i \(0.510580\pi\)
\(60\) 1.45135 2.51382i 0.187369 0.324532i
\(61\) −0.718095 + 1.24378i −0.0919426 + 0.159249i −0.908328 0.418258i \(-0.862641\pi\)
0.816386 + 0.577507i \(0.195974\pi\)
\(62\) −3.88702 + 6.73252i −0.493653 + 0.855031i
\(63\) −1.92661 + 6.50102i −0.242730 + 0.819051i
\(64\) 4.51834 0.564792
\(65\) −0.318655 + 12.4043i −0.0395242 + 1.53857i
\(66\) −0.252686 + 0.437665i −0.0311035 + 0.0538729i
\(67\) 4.22466 + 7.31732i 0.516124 + 0.893953i 0.999825 + 0.0187197i \(0.00595900\pi\)
−0.483701 + 0.875233i \(0.660708\pi\)
\(68\) −2.47057 −0.299600
\(69\) −1.86800 3.23547i −0.224881 0.389504i
\(70\) −5.33385 5.62216i −0.637516 0.671977i
\(71\) 1.72419 + 2.98638i 0.204623 + 0.354418i 0.950013 0.312211i \(-0.101070\pi\)
−0.745389 + 0.666629i \(0.767736\pi\)
\(72\) 3.57244 6.18764i 0.421016 0.729221i
\(73\) −5.45026 + 9.44013i −0.637905 + 1.10488i 0.347987 + 0.937499i \(0.386865\pi\)
−0.985892 + 0.167384i \(0.946468\pi\)
\(74\) 9.02195 1.04878
\(75\) 4.52526 0.522532
\(76\) 0.662054 1.14671i 0.0759428 0.131537i
\(77\) −1.63520 1.72359i −0.186349 0.196422i
\(78\) 0.0521095 2.02848i 0.00590024 0.229680i
\(79\) 6.04589 + 10.4718i 0.680216 + 1.17817i 0.974915 + 0.222578i \(0.0714472\pi\)
−0.294699 + 0.955590i \(0.595219\pi\)
\(80\) −0.306789 0.531375i −0.0343001 0.0594095i
\(81\) −2.62811 4.55201i −0.292012 0.505779i
\(82\) −2.26886 + 3.92977i −0.250553 + 0.433971i
\(83\) 1.51669 0.166479 0.0832393 0.996530i \(-0.473473\pi\)
0.0832393 + 0.996530i \(0.473473\pi\)
\(84\) −1.53589 1.61891i −0.167579 0.176637i
\(85\) −3.33274 5.77248i −0.361487 0.626113i
\(86\) −1.66593 2.88547i −0.179642 0.311148i
\(87\) −1.21396 −0.130151
\(88\) 1.25176 + 2.16812i 0.133438 + 0.231122i
\(89\) 13.6078 1.44243 0.721213 0.692714i \(-0.243585\pi\)
0.721213 + 0.692714i \(0.243585\pi\)
\(90\) 7.50673 0.791279
\(91\) 9.07358 + 2.94451i 0.951170 + 0.308668i
\(92\) −7.20722 −0.751405
\(93\) −6.03951 −0.626268
\(94\) 3.06035 + 5.30067i 0.315651 + 0.546723i
\(95\) 3.57239 0.366519
\(96\) 1.89362 + 3.27984i 0.193266 + 0.334747i
\(97\) −0.253120 0.438417i −0.0257005 0.0445145i 0.852889 0.522092i \(-0.174848\pi\)
−0.878590 + 0.477578i \(0.841515\pi\)
\(98\) −5.30921 + 2.70344i −0.536311 + 0.273089i
\(99\) 2.30134 0.231294
\(100\) 4.36491 7.56025i 0.436491 0.756025i
\(101\) 2.99327 + 5.18450i 0.297842 + 0.515877i 0.975642 0.219369i \(-0.0703999\pi\)
−0.677800 + 0.735246i \(0.737067\pi\)
\(102\) 0.545002 + 0.943972i 0.0539633 + 0.0934671i
\(103\) 2.06651 + 3.57930i 0.203619 + 0.352679i 0.949692 0.313186i \(-0.101396\pi\)
−0.746073 + 0.665865i \(0.768063\pi\)
\(104\) −8.57338 5.24792i −0.840689 0.514601i
\(105\) 1.71070 5.77248i 0.166947 0.563336i
\(106\) −3.99454 + 6.91874i −0.387984 + 0.672008i
\(107\) −14.1234 −1.36536 −0.682679 0.730718i \(-0.739185\pi\)
−0.682679 + 0.730718i \(0.739185\pi\)
\(108\) 4.69191 0.451479
\(109\) 2.10119 3.63936i 0.201257 0.348588i −0.747677 0.664063i \(-0.768831\pi\)
0.948934 + 0.315475i \(0.102164\pi\)
\(110\) −1.31516 + 2.27792i −0.125396 + 0.217191i
\(111\) 3.50449 + 6.06995i 0.332631 + 0.576135i
\(112\) −0.458690 + 0.110059i −0.0433421 + 0.0103996i
\(113\) −6.88472 11.9247i −0.647660 1.12178i −0.983680 0.179926i \(-0.942414\pi\)
0.336020 0.941855i \(-0.390919\pi\)
\(114\) −0.584192 −0.0547146
\(115\) −9.72240 16.8397i −0.906618 1.57031i
\(116\) −1.17095 + 2.02814i −0.108720 + 0.188308i
\(117\) −8.11830 + 4.41310i −0.750537 + 0.407991i
\(118\) 0.434514 0.0400003
\(119\) −4.98288 + 1.19560i −0.456780 + 0.109601i
\(120\) −3.17209 + 5.49422i −0.289571 + 0.501552i
\(121\) 5.09681 8.82793i 0.463346 0.802539i
\(122\) 0.611189 1.05861i 0.0553344 0.0958420i
\(123\) −3.52526 −0.317862
\(124\) −5.82550 + 10.0901i −0.523145 + 0.906114i
\(125\) 6.34531 0.567542
\(126\) 1.63978 5.53318i 0.146084 0.492935i
\(127\) −0.972482 + 1.68439i −0.0862938 + 0.149465i −0.905942 0.423402i \(-0.860836\pi\)
0.819648 + 0.572868i \(0.194169\pi\)
\(128\) 7.60956 0.672596
\(129\) 1.29423 2.24167i 0.113950 0.197368i
\(130\) 0.271215 10.5576i 0.0237871 0.925967i
\(131\) 6.01770 + 10.4230i 0.525769 + 0.910659i 0.999549 + 0.0300158i \(0.00955576\pi\)
−0.473780 + 0.880643i \(0.657111\pi\)
\(132\) −0.378702 + 0.655931i −0.0329618 + 0.0570914i
\(133\) 0.780360 2.63319i 0.0676658 0.228327i
\(134\) −3.59571 6.22796i −0.310622 0.538014i
\(135\) 6.32930 + 10.9627i 0.544739 + 0.943516i
\(136\) 5.39970 0.463020
\(137\) 8.71715 0.744756 0.372378 0.928081i \(-0.378543\pi\)
0.372378 + 0.928081i \(0.378543\pi\)
\(138\) 1.58990 + 2.75379i 0.135341 + 0.234418i
\(139\) −2.10625 3.64813i −0.178650 0.309430i 0.762769 0.646672i \(-0.223840\pi\)
−0.941418 + 0.337241i \(0.890506\pi\)
\(140\) −7.99386 8.42596i −0.675604 0.712124i
\(141\) −2.37752 + 4.11799i −0.200224 + 0.346798i
\(142\) −1.46750 2.54178i −0.123150 0.213302i
\(143\) 0.0831467 3.23667i 0.00695307 0.270664i
\(144\) 0.228459 0.395702i 0.0190382 0.0329751i
\(145\) −6.31834 −0.524710
\(146\) 4.63885 8.03473i 0.383914 0.664959i
\(147\) −3.88118 2.52190i −0.320115 0.208003i
\(148\) 13.5212 1.11144
\(149\) −2.93242 + 5.07910i −0.240233 + 0.416096i −0.960781 0.277310i \(-0.910557\pi\)
0.720548 + 0.693406i \(0.243891\pi\)
\(150\) −3.85157 −0.314479
\(151\) 8.42840 14.5984i 0.685893 1.18800i −0.287262 0.957852i \(-0.592745\pi\)
0.973155 0.230150i \(-0.0739216\pi\)
\(152\) −1.44699 + 2.50626i −0.117367 + 0.203285i
\(153\) 2.48181 4.29862i 0.200643 0.347523i
\(154\) 1.39176 + 1.46699i 0.112151 + 0.118214i
\(155\) −31.4339 −2.52483
\(156\) 0.0780967 3.04009i 0.00625274 0.243402i
\(157\) 0.969500 1.67922i 0.0773746 0.134017i −0.824742 0.565509i \(-0.808680\pi\)
0.902116 + 0.431493i \(0.142013\pi\)
\(158\) −5.14581 8.91280i −0.409379 0.709065i
\(159\) −6.20656 −0.492212
\(160\) 9.85573 + 17.0706i 0.779164 + 1.34955i
\(161\) −14.5362 + 3.48785i −1.14562 + 0.274881i
\(162\) 2.23685 + 3.87433i 0.175743 + 0.304396i
\(163\) 5.94797 10.3022i 0.465881 0.806929i −0.533360 0.845888i \(-0.679071\pi\)
0.999241 + 0.0389590i \(0.0124042\pi\)
\(164\) −3.40035 + 5.88957i −0.265522 + 0.459898i
\(165\) −2.04344 −0.159082
\(166\) −1.29090 −0.100193
\(167\) −8.28801 + 14.3553i −0.641346 + 1.11084i 0.343787 + 0.939048i \(0.388290\pi\)
−0.985133 + 0.171796i \(0.945043\pi\)
\(168\) 3.35685 + 3.53831i 0.258987 + 0.272986i
\(169\) 5.91338 + 11.5772i 0.454875 + 0.890555i
\(170\) 2.83658 + 4.91310i 0.217556 + 0.376818i
\(171\) 1.33013 + 2.30386i 0.101718 + 0.176181i
\(172\) −2.49673 4.32447i −0.190374 0.329738i
\(173\) 4.99328 8.64862i 0.379632 0.657542i −0.611377 0.791340i \(-0.709384\pi\)
0.991009 + 0.133798i \(0.0427172\pi\)
\(174\) 1.03324 0.0783295
\(175\) 5.14490 17.3606i 0.388918 1.31234i
\(176\) 0.0800507 + 0.138652i 0.00603405 + 0.0104513i
\(177\) 0.168783 + 0.292341i 0.0126865 + 0.0219737i
\(178\) −11.5820 −0.868105
\(179\) −4.58829 7.94715i −0.342945 0.593998i 0.642033 0.766677i \(-0.278091\pi\)
−0.984978 + 0.172679i \(0.944758\pi\)
\(180\) 11.2504 0.838553
\(181\) 6.00489 0.446340 0.223170 0.974780i \(-0.428360\pi\)
0.223170 + 0.974780i \(0.428360\pi\)
\(182\) −7.72276 2.50614i −0.572449 0.185768i
\(183\) 0.949642 0.0701995
\(184\) 15.7522 1.16127
\(185\) 18.2399 + 31.5924i 1.34102 + 2.32272i
\(186\) 5.14038 0.376911
\(187\) 0.869614 + 1.50622i 0.0635925 + 0.110145i
\(188\) 4.58655 + 7.94415i 0.334509 + 0.579386i
\(189\) 9.46312 2.27059i 0.688341 0.165161i
\(190\) −3.04055 −0.220585
\(191\) −0.658061 + 1.13980i −0.0476156 + 0.0824727i −0.888851 0.458197i \(-0.848496\pi\)
0.841235 + 0.540669i \(0.181829\pi\)
\(192\) −1.49382 2.58736i −0.107807 0.186727i
\(193\) 8.21270 + 14.2248i 0.591163 + 1.02392i 0.994076 + 0.108686i \(0.0346643\pi\)
−0.402913 + 0.915238i \(0.632002\pi\)
\(194\) 0.215437 + 0.373148i 0.0154675 + 0.0267905i
\(195\) 7.20852 3.91854i 0.516213 0.280613i
\(196\) −7.95694 + 4.05166i −0.568353 + 0.289404i
\(197\) 12.7938 22.1594i 0.911517 1.57879i 0.0995951 0.995028i \(-0.468245\pi\)
0.811922 0.583766i \(-0.198421\pi\)
\(198\) −1.95873 −0.139201
\(199\) −25.3788 −1.79906 −0.899528 0.436864i \(-0.856089\pi\)
−0.899528 + 0.436864i \(0.856089\pi\)
\(200\) −9.54000 + 16.5238i −0.674580 + 1.16841i
\(201\) 2.79344 4.83838i 0.197034 0.341273i
\(202\) −2.54765 4.41266i −0.179252 0.310473i
\(203\) −1.38019 + 4.65723i −0.0968704 + 0.326873i
\(204\) 0.816797 + 1.41473i 0.0571873 + 0.0990512i
\(205\) −18.3480 −1.28148
\(206\) −1.75886 3.04643i −0.122546 0.212255i
\(207\) 7.24003 12.5401i 0.503217 0.871597i
\(208\) −0.548271 0.335606i −0.0380157 0.0232701i
\(209\) −0.932145 −0.0644778
\(210\) −1.45602 + 4.91310i −0.100475 + 0.339036i
\(211\) 2.84824 4.93330i 0.196081 0.339622i −0.751173 0.660105i \(-0.770512\pi\)
0.947254 + 0.320483i \(0.103845\pi\)
\(212\) −5.98663 + 10.3691i −0.411164 + 0.712156i
\(213\) 1.14007 1.97466i 0.0781165 0.135302i
\(214\) 12.0208 0.821723
\(215\) 6.73608 11.6672i 0.459397 0.795699i
\(216\) −10.2547 −0.697744
\(217\) −6.86649 + 23.1698i −0.466128 + 1.57287i
\(218\) −1.78837 + 3.09755i −0.121124 + 0.209793i
\(219\) 7.20768 0.487050
\(220\) −1.97104 + 3.41393i −0.132887 + 0.230167i
\(221\) −5.95602 3.64579i −0.400645 0.245242i
\(222\) −2.98276 5.16629i −0.200190 0.346739i
\(223\) −1.17906 + 2.04219i −0.0789558 + 0.136755i −0.902800 0.430061i \(-0.858492\pi\)
0.823844 + 0.566817i \(0.191825\pi\)
\(224\) 14.7356 3.53568i 0.984564 0.236238i
\(225\) 8.76956 + 15.1893i 0.584637 + 1.01262i
\(226\) 5.85976 + 10.1494i 0.389786 + 0.675129i
\(227\) 26.2926 1.74510 0.872551 0.488523i \(-0.162464\pi\)
0.872551 + 0.488523i \(0.162464\pi\)
\(228\) −0.875531 −0.0579834
\(229\) −0.0342777 0.0593708i −0.00226514 0.00392333i 0.864891 0.501960i \(-0.167388\pi\)
−0.867156 + 0.498037i \(0.834054\pi\)
\(230\) 8.27498 + 14.3327i 0.545636 + 0.945069i
\(231\) −0.446374 + 1.50622i −0.0293693 + 0.0991017i
\(232\) 2.55924 4.43273i 0.168022 0.291023i
\(233\) −7.33514 12.7048i −0.480541 0.832322i 0.519210 0.854647i \(-0.326226\pi\)
−0.999751 + 0.0223253i \(0.992893\pi\)
\(234\) 6.90969 3.75610i 0.451701 0.245544i
\(235\) −12.3743 + 21.4330i −0.807213 + 1.39813i
\(236\) 0.651208 0.0423901
\(237\) 3.99768 6.92419i 0.259677 0.449774i
\(238\) 4.24106 1.01761i 0.274907 0.0659616i
\(239\) 3.35434 0.216974 0.108487 0.994098i \(-0.465399\pi\)
0.108487 + 0.994098i \(0.465399\pi\)
\(240\) −0.202856 + 0.351357i −0.0130943 + 0.0226800i
\(241\) −8.57978 −0.552672 −0.276336 0.961061i \(-0.589120\pi\)
−0.276336 + 0.961061i \(0.589120\pi\)
\(242\) −4.33802 + 7.51368i −0.278859 + 0.482998i
\(243\) −7.25513 + 12.5662i −0.465417 + 0.806125i
\(244\) 0.915991 1.58654i 0.0586403 0.101568i
\(245\) −20.2005 13.1258i −1.29056 0.838576i
\(246\) 3.00044 0.191301
\(247\) 3.28826 1.78750i 0.209227 0.113736i
\(248\) 12.7323 22.0530i 0.808501 1.40036i
\(249\) −0.501436 0.868513i −0.0317772 0.0550398i
\(250\) −5.40066 −0.341568
\(251\) −10.7575 18.6326i −0.679010 1.17608i −0.975280 0.220975i \(-0.929076\pi\)
0.296270 0.955104i \(-0.404257\pi\)
\(252\) 2.45755 8.29260i 0.154811 0.522385i
\(253\) 2.53687 + 4.39399i 0.159492 + 0.276248i
\(254\) 0.827704 1.43363i 0.0519348 0.0899537i
\(255\) −2.20369 + 3.81690i −0.138000 + 0.239023i
\(256\) −15.5134 −0.969585
\(257\) 4.93792 0.308019 0.154010 0.988069i \(-0.450781\pi\)
0.154010 + 0.988069i \(0.450781\pi\)
\(258\) −1.10155 + 1.90794i −0.0685795 + 0.118783i
\(259\) 27.2710 6.54344i 1.69454 0.406590i
\(260\) 0.406471 15.8228i 0.0252083 0.981288i
\(261\) −2.35256 4.07475i −0.145620 0.252221i
\(262\) −5.12182 8.87125i −0.316427 0.548068i
\(263\) 4.47719 + 7.75473i 0.276076 + 0.478177i 0.970406 0.241480i \(-0.0776327\pi\)
−0.694330 + 0.719656i \(0.744299\pi\)
\(264\) 0.827695 1.43361i 0.0509411 0.0882326i
\(265\) −32.3034 −1.98438
\(266\) −0.664184 + 2.24118i −0.0407237 + 0.137415i
\(267\) −4.49890 7.79233i −0.275328 0.476883i
\(268\) −5.38891 9.33387i −0.329180 0.570157i
\(269\) −4.82345 −0.294091 −0.147045 0.989130i \(-0.546976\pi\)
−0.147045 + 0.989130i \(0.546976\pi\)
\(270\) −5.38702 9.33060i −0.327844 0.567842i
\(271\) −7.42144 −0.450820 −0.225410 0.974264i \(-0.572372\pi\)
−0.225410 + 0.974264i \(0.572372\pi\)
\(272\) 0.345312 0.0209376
\(273\) −1.31370 6.16935i −0.0795088 0.373386i
\(274\) −7.41938 −0.448221
\(275\) −6.14562 −0.370595
\(276\) 2.38279 + 4.12712i 0.143427 + 0.248423i
\(277\) 3.81631 0.229300 0.114650 0.993406i \(-0.463425\pi\)
0.114650 + 0.993406i \(0.463425\pi\)
\(278\) 1.79268 + 3.10502i 0.107518 + 0.186226i
\(279\) −11.7040 20.2720i −0.700702 1.21365i
\(280\) 17.4715 + 18.4159i 1.04412 + 1.10056i
\(281\) 8.54978 0.510037 0.255019 0.966936i \(-0.417918\pi\)
0.255019 + 0.966936i \(0.417918\pi\)
\(282\) 2.02357 3.50493i 0.120502 0.208715i
\(283\) −7.63217 13.2193i −0.453686 0.785807i 0.544926 0.838484i \(-0.316558\pi\)
−0.998612 + 0.0526775i \(0.983224\pi\)
\(284\) −2.19935 3.80938i −0.130507 0.226045i
\(285\) −1.18107 2.04568i −0.0699607 0.121176i
\(286\) −0.0707683 + 2.75481i −0.00418461 + 0.162895i
\(287\) −4.00797 + 13.5242i −0.236583 + 0.798310i
\(288\) −7.33932 + 12.7121i −0.432474 + 0.749066i
\(289\) −13.2488 −0.779340
\(290\) 5.37770 0.315790
\(291\) −0.167369 + 0.289892i −0.00981135 + 0.0169938i
\(292\) 6.95227 12.0417i 0.406851 0.704687i
\(293\) 2.96982 + 5.14388i 0.173499 + 0.300509i 0.939641 0.342163i \(-0.111159\pi\)
−0.766142 + 0.642671i \(0.777826\pi\)
\(294\) 3.30337 + 2.14646i 0.192657 + 0.125184i
\(295\) 0.878467 + 1.52155i 0.0511463 + 0.0885881i
\(296\) −29.5522 −1.71768
\(297\) −1.65151 2.86049i −0.0958301 0.165983i
\(298\) 2.49586 4.32295i 0.144581 0.250422i
\(299\) −17.3751 10.6356i −1.00483 0.615074i
\(300\) −5.77236 −0.333267
\(301\) −7.12843 7.51376i −0.410876 0.433086i
\(302\) −7.17362 + 12.4251i −0.412796 + 0.714983i
\(303\) 1.97922 3.42811i 0.113703 0.196940i
\(304\) −0.0925356 + 0.160276i −0.00530728 + 0.00919248i
\(305\) 4.94262 0.283013
\(306\) −2.11233 + 3.65867i −0.120754 + 0.209152i
\(307\) 22.2133 1.26778 0.633891 0.773422i \(-0.281457\pi\)
0.633891 + 0.773422i \(0.281457\pi\)
\(308\) 2.08584 + 2.19859i 0.118852 + 0.125276i
\(309\) 1.36642 2.36672i 0.0777332 0.134638i
\(310\) 26.7542 1.51954
\(311\) −4.92130 + 8.52394i −0.279061 + 0.483348i −0.971152 0.238463i \(-0.923357\pi\)
0.692091 + 0.721811i \(0.256690\pi\)
\(312\) −0.170689 + 6.64445i −0.00966337 + 0.376168i
\(313\) 10.4563 + 18.1108i 0.591023 + 1.02368i 0.994095 + 0.108513i \(0.0346090\pi\)
−0.403072 + 0.915168i \(0.632058\pi\)
\(314\) −0.825166 + 1.42923i −0.0465668 + 0.0806561i
\(315\) 22.6909 5.44448i 1.27849 0.306762i
\(316\) −7.71205 13.3577i −0.433837 0.751427i
\(317\) 12.6801 + 21.9626i 0.712188 + 1.23355i 0.964034 + 0.265778i \(0.0856288\pi\)
−0.251847 + 0.967767i \(0.581038\pi\)
\(318\) 5.28256 0.296231
\(319\) 1.64865 0.0923065
\(320\) −7.77489 13.4665i −0.434629 0.752800i
\(321\) 4.66935 + 8.08755i 0.260618 + 0.451403i
\(322\) 12.3722 2.96860i 0.689474 0.165433i
\(323\) −1.00524 + 1.74113i −0.0559331 + 0.0968790i
\(324\) 3.35237 + 5.80648i 0.186243 + 0.322582i
\(325\) 21.6795 11.7849i 1.20256 0.653711i
\(326\) −5.06247 + 8.76845i −0.280384 + 0.485640i
\(327\) −2.77871 −0.153663
\(328\) 7.43183 12.8723i 0.410354 0.710755i
\(329\) 13.0951 + 13.8029i 0.721956 + 0.760981i
\(330\) 1.73923 0.0957413
\(331\) −0.891417 + 1.54398i −0.0489967 + 0.0848648i −0.889484 0.456967i \(-0.848936\pi\)
0.840487 + 0.541832i \(0.182269\pi\)
\(332\) −1.93467 −0.106179
\(333\) −13.5828 + 23.5261i −0.744332 + 1.28922i
\(334\) 7.05414 12.2181i 0.385985 0.668546i
\(335\) 14.5391 25.1824i 0.794354 1.37586i
\(336\) 0.214672 + 0.226276i 0.0117113 + 0.0123444i
\(337\) 9.56149 0.520848 0.260424 0.965494i \(-0.416138\pi\)
0.260424 + 0.965494i \(0.416138\pi\)
\(338\) −5.03303 9.85366i −0.273761 0.535969i
\(339\) −4.55234 + 7.88488i −0.247249 + 0.428248i
\(340\) 4.25120 + 7.36329i 0.230554 + 0.399331i
\(341\) 8.20207 0.444167
\(342\) −1.13211 1.96087i −0.0612176 0.106032i
\(343\) −14.0876 + 12.0225i −0.760659 + 0.649152i
\(344\) 5.45689 + 9.45160i 0.294216 + 0.509596i
\(345\) −6.42867 + 11.1348i −0.346108 + 0.599477i
\(346\) −4.24991 + 7.36106i −0.228477 + 0.395733i
\(347\) 0.633389 0.0340021 0.0170010 0.999855i \(-0.494588\pi\)
0.0170010 + 0.999855i \(0.494588\pi\)
\(348\) 1.54852 0.0830092
\(349\) −15.2994 + 26.4994i −0.818960 + 1.41848i 0.0874885 + 0.996166i \(0.472116\pi\)
−0.906449 + 0.422315i \(0.861217\pi\)
\(350\) −4.37895 + 14.7761i −0.234065 + 0.789813i
\(351\) 11.3112 + 6.92381i 0.603749 + 0.369565i
\(352\) −2.57166 4.45425i −0.137070 0.237412i
\(353\) 0.550173 + 0.952928i 0.0292828 + 0.0507192i 0.880295 0.474426i \(-0.157344\pi\)
−0.851013 + 0.525145i \(0.824011\pi\)
\(354\) −0.143655 0.248819i −0.00763520 0.0132246i
\(355\) 5.93375 10.2776i 0.314931 0.545476i
\(356\) −17.3579 −0.919969
\(357\) 2.33204 + 2.45810i 0.123425 + 0.130096i
\(358\) 3.90521 + 6.76402i 0.206397 + 0.357489i
\(359\) 4.88693 + 8.46441i 0.257922 + 0.446734i 0.965685 0.259716i \(-0.0836288\pi\)
−0.707763 + 0.706450i \(0.750295\pi\)
\(360\) −24.5889 −1.29595
\(361\) 8.96124 + 15.5213i 0.471644 + 0.816912i
\(362\) −5.11091 −0.268624
\(363\) −6.74026 −0.353772
\(364\) −11.5741 3.75597i −0.606649 0.196866i
\(365\) 37.5139 1.96357
\(366\) −0.808264 −0.0422487
\(367\) 5.57363 + 9.65381i 0.290941 + 0.503925i 0.974033 0.226408i \(-0.0726983\pi\)
−0.683092 + 0.730333i \(0.739365\pi\)
\(368\) 1.00736 0.0525121
\(369\) −6.83165 11.8328i −0.355641 0.615989i
\(370\) −15.5244 26.8891i −0.807076 1.39790i
\(371\) −7.05641 + 23.8107i −0.366351 + 1.23619i
\(372\) 7.70391 0.399429
\(373\) 15.3651 26.6131i 0.795573 1.37797i −0.126902 0.991915i \(-0.540504\pi\)
0.922475 0.386057i \(-0.126163\pi\)
\(374\) −0.740150 1.28198i −0.0382723 0.0662895i
\(375\) −2.09783 3.63355i −0.108332 0.187636i
\(376\) −10.0244 17.3628i −0.516970 0.895419i
\(377\) −5.81582 + 3.16147i −0.299530 + 0.162824i
\(378\) −8.05430 + 1.93256i −0.414269 + 0.0994002i
\(379\) −11.3286 + 19.6217i −0.581912 + 1.00790i 0.413341 + 0.910576i \(0.364362\pi\)
−0.995253 + 0.0973246i \(0.968972\pi\)
\(380\) −4.55689 −0.233763
\(381\) 1.28606 0.0658866
\(382\) 0.560093 0.970109i 0.0286568 0.0496351i
\(383\) 0.294631 0.510317i 0.0150550 0.0260760i −0.858400 0.512981i \(-0.828541\pi\)
0.873455 + 0.486905i \(0.161874\pi\)
\(384\) −2.51581 4.35751i −0.128384 0.222368i
\(385\) −2.32325 + 7.83942i −0.118404 + 0.399534i
\(386\) −6.99004 12.1071i −0.355783 0.616235i
\(387\) 10.0324 0.509975
\(388\) 0.322877 + 0.559239i 0.0163916 + 0.0283910i
\(389\) −2.84973 + 4.93587i −0.144487 + 0.250259i −0.929181 0.369624i \(-0.879486\pi\)
0.784695 + 0.619883i \(0.212820\pi\)
\(390\) −6.13536 + 3.33517i −0.310676 + 0.168883i
\(391\) 10.9432 0.553422
\(392\) 17.3908 8.85535i 0.878367 0.447263i
\(393\) 3.97904 6.89191i 0.200716 0.347651i
\(394\) −10.8891 + 18.8605i −0.548584 + 0.950176i
\(395\) 20.8068 36.0384i 1.04690 1.81329i
\(396\) −2.93556 −0.147518
\(397\) 12.7641 22.1082i 0.640614 1.10958i −0.344682 0.938720i \(-0.612013\pi\)
0.985296 0.170857i \(-0.0546535\pi\)
\(398\) 21.6005 1.08274
\(399\) −1.76586 + 0.423703i −0.0884035 + 0.0212117i
\(400\) −0.610086 + 1.05670i −0.0305043 + 0.0528350i
\(401\) 25.5011 1.27347 0.636733 0.771085i \(-0.280286\pi\)
0.636733 + 0.771085i \(0.280286\pi\)
\(402\) −2.37757 + 4.11807i −0.118582 + 0.205391i
\(403\) −28.9339 + 15.7284i −1.44130 + 0.783489i
\(404\) −3.81817 6.61327i −0.189961 0.329022i
\(405\) −9.04457 + 15.6657i −0.449428 + 0.778433i
\(406\) 1.17472 3.96388i 0.0583002 0.196724i
\(407\) −4.75934 8.24341i −0.235912 0.408611i
\(408\) −1.78520 3.09206i −0.0883807 0.153080i
\(409\) 0.146988 0.00726807 0.00363403 0.999993i \(-0.498843\pi\)
0.00363403 + 0.999993i \(0.498843\pi\)
\(410\) 15.6164 0.771241
\(411\) −2.88199 4.99175i −0.142158 0.246225i
\(412\) −2.63601 4.56570i −0.129867 0.224936i
\(413\) 1.31342 0.315145i 0.0646293 0.0155072i
\(414\) −6.16217 + 10.6732i −0.302854 + 0.524559i
\(415\) −2.60983 4.52036i −0.128112 0.221896i
\(416\) 17.6134 + 10.7815i 0.863568 + 0.528606i
\(417\) −1.39270 + 2.41223i −0.0682008 + 0.118127i
\(418\) 0.793372 0.0388051
\(419\) −6.84795 + 11.8610i −0.334544 + 0.579447i −0.983397 0.181466i \(-0.941916\pi\)
0.648853 + 0.760914i \(0.275249\pi\)
\(420\) −2.18215 + 7.36329i −0.106478 + 0.359292i
\(421\) 3.44169 0.167738 0.0838688 0.996477i \(-0.473272\pi\)
0.0838688 + 0.996477i \(0.473272\pi\)
\(422\) −2.42421 + 4.19885i −0.118009 + 0.204397i
\(423\) −18.4297 −0.896084
\(424\) 13.0844 22.6629i 0.635437 1.10061i
\(425\) −6.62754 + 11.4792i −0.321483 + 0.556825i
\(426\) −0.970345 + 1.68069i −0.0470134 + 0.0814295i
\(427\) 1.07967 3.64318i 0.0522491 0.176306i
\(428\) 18.0156 0.870816
\(429\) −1.88092 + 1.02247i −0.0908118 + 0.0493652i
\(430\) −5.73325 + 9.93028i −0.276482 + 0.478881i
\(431\) −11.1455 19.3046i −0.536861 0.929870i −0.999071 0.0430997i \(-0.986277\pi\)
0.462210 0.886771i \(-0.347057\pi\)
\(432\) −0.655791 −0.0315518
\(433\) 12.9481 + 22.4268i 0.622247 + 1.07776i 0.989066 + 0.147472i \(0.0471136\pi\)
−0.366819 + 0.930292i \(0.619553\pi\)
\(434\) 5.84424 19.7204i 0.280533 0.946611i
\(435\) 2.08892 + 3.61811i 0.100156 + 0.173475i
\(436\) −2.68024 + 4.64232i −0.128360 + 0.222327i
\(437\) −2.93253 + 5.07929i −0.140282 + 0.242975i
\(438\) −6.13464 −0.293124
\(439\) −27.9838 −1.33560 −0.667798 0.744343i \(-0.732763\pi\)
−0.667798 + 0.744343i \(0.732763\pi\)
\(440\) 4.30792 7.46153i 0.205372 0.355715i
\(441\) 0.943533 17.9147i 0.0449301 0.853079i
\(442\) 5.06932 + 3.10302i 0.241123 + 0.147596i
\(443\) −16.6044 28.7597i −0.788900 1.36642i −0.926641 0.375947i \(-0.877317\pi\)
0.137741 0.990468i \(-0.456016\pi\)
\(444\) −4.47028 7.74275i −0.212150 0.367454i
\(445\) −23.4155 40.5568i −1.11000 1.92258i
\(446\) 1.00353 1.73816i 0.0475185 0.0823044i
\(447\) 3.87796 0.183421
\(448\) −11.6245 + 2.78919i −0.549204 + 0.131777i
\(449\) −9.84320 17.0489i −0.464529 0.804589i 0.534651 0.845073i \(-0.320443\pi\)
−0.999180 + 0.0404845i \(0.987110\pi\)
\(450\) −7.46399 12.9280i −0.351856 0.609433i
\(451\) 4.78755 0.225437
\(452\) 8.78205 + 15.2110i 0.413073 + 0.715464i
\(453\) −11.1461 −0.523690
\(454\) −22.3783 −1.05027
\(455\) −6.83744 32.1097i −0.320544 1.50533i
\(456\) 1.91357 0.0896111
\(457\) −0.746942 −0.0349405 −0.0174702 0.999847i \(-0.505561\pi\)
−0.0174702 + 0.999847i \(0.505561\pi\)
\(458\) 0.0291746 + 0.0505320i 0.00136324 + 0.00236120i
\(459\) −7.12405 −0.332522
\(460\) 12.4017 + 21.4805i 0.578235 + 1.00153i
\(461\) 16.5855 + 28.7269i 0.772464 + 1.33795i 0.936209 + 0.351445i \(0.114309\pi\)
−0.163744 + 0.986503i \(0.552357\pi\)
\(462\) 0.379920 1.28198i 0.0176755 0.0596430i
\(463\) −30.7521 −1.42917 −0.714586 0.699548i \(-0.753385\pi\)
−0.714586 + 0.699548i \(0.753385\pi\)
\(464\) 0.163664 0.283475i 0.00759792 0.0131600i
\(465\) 10.3924 + 18.0002i 0.481937 + 0.834740i
\(466\) 6.24313 + 10.8134i 0.289207 + 0.500922i
\(467\) 14.8033 + 25.6400i 0.685013 + 1.18648i 0.973433 + 0.228973i \(0.0735367\pi\)
−0.288420 + 0.957504i \(0.593130\pi\)
\(468\) 10.3556 5.62928i 0.478687 0.260214i
\(469\) −15.3859 16.2176i −0.710456 0.748859i
\(470\) 10.5321 18.2422i 0.485810 0.841448i
\(471\) −1.28211 −0.0590766
\(472\) −1.42329 −0.0655122
\(473\) −1.75765 + 3.04434i −0.0808168 + 0.139979i
\(474\) −3.40253 + 5.89335i −0.156283 + 0.270691i
\(475\) −3.55205 6.15234i −0.162979 0.282289i
\(476\) 6.35609 1.52509i 0.291331 0.0699024i
\(477\) −12.0278 20.8327i −0.550714 0.953864i
\(478\) −2.85496 −0.130583
\(479\) −7.04527 12.2028i −0.321907 0.557559i 0.658975 0.752165i \(-0.270990\pi\)
−0.980881 + 0.194606i \(0.937657\pi\)
\(480\) 6.51684 11.2875i 0.297452 0.515201i
\(481\) 32.5969 + 19.9531i 1.48629 + 0.909785i
\(482\) 7.30247 0.332618
\(483\) 6.80312 + 7.17086i 0.309553 + 0.326285i
\(484\) −6.50142 + 11.2608i −0.295519 + 0.511854i
\(485\) −0.871108 + 1.50880i −0.0395550 + 0.0685112i
\(486\) 6.17502 10.6955i 0.280105 0.485156i
\(487\) −16.7955 −0.761075 −0.380537 0.924766i \(-0.624261\pi\)
−0.380537 + 0.924766i \(0.624261\pi\)
\(488\) −2.00200 + 3.46757i −0.0906263 + 0.156969i
\(489\) −7.86587 −0.355707
\(490\) 17.1931 + 11.1717i 0.776706 + 0.504686i
\(491\) −10.8345 + 18.7659i −0.488954 + 0.846893i −0.999919 0.0127081i \(-0.995955\pi\)
0.510965 + 0.859601i \(0.329288\pi\)
\(492\) 4.49677 0.202730
\(493\) 1.77793 3.07947i 0.0800740 0.138692i
\(494\) −2.79873 + 1.52138i −0.125921 + 0.0684503i
\(495\) −3.96001 6.85895i −0.177989 0.308287i
\(496\) 0.814234 1.41029i 0.0365602 0.0633241i
\(497\) −6.27937 6.61880i −0.281668 0.296894i
\(498\) 0.426785 + 0.739213i 0.0191247 + 0.0331249i
\(499\) 11.6524 + 20.1825i 0.521633 + 0.903495i 0.999683 + 0.0251622i \(0.00801023\pi\)
−0.478051 + 0.878332i \(0.658656\pi\)
\(500\) −8.09399 −0.361974
\(501\) 10.9605 0.489677
\(502\) 9.15601 + 15.8587i 0.408653 + 0.707807i
\(503\) 21.9415 + 38.0037i 0.978322 + 1.69450i 0.668506 + 0.743707i \(0.266934\pi\)
0.309816 + 0.950796i \(0.399732\pi\)
\(504\) −5.37125 + 18.1244i −0.239255 + 0.807325i
\(505\) 10.3013 17.8423i 0.458401 0.793974i
\(506\) −2.15919 3.73983i −0.0959879 0.166256i
\(507\) 4.67450 7.21378i 0.207602 0.320375i
\(508\) 1.24048 2.14858i 0.0550376 0.0953279i
\(509\) 19.9242 0.883125 0.441563 0.897230i \(-0.354424\pi\)
0.441563 + 0.897230i \(0.354424\pi\)
\(510\) 1.87561 3.24866i 0.0830536 0.143853i
\(511\) 8.19461 27.6514i 0.362508 1.22322i
\(512\) −2.01529 −0.0890641
\(513\) 1.90908 3.30662i 0.0842879 0.145991i
\(514\) −4.20279 −0.185377
\(515\) 7.11185 12.3181i 0.313386 0.542800i
\(516\) −1.65090 + 2.85944i −0.0726767 + 0.125880i
\(517\) 3.22884 5.59252i 0.142004 0.245959i
\(518\) −23.2110 + 5.56929i −1.01983 + 0.244700i
\(519\) −6.60335 −0.289855
\(520\) −0.888388 + 34.5825i −0.0389584 + 1.51654i
\(521\) 8.26204 14.3103i 0.361967 0.626944i −0.626318 0.779568i \(-0.715439\pi\)
0.988284 + 0.152623i \(0.0487721\pi\)
\(522\) 2.00232 + 3.46812i 0.0876392 + 0.151796i
\(523\) −11.9962 −0.524556 −0.262278 0.964992i \(-0.584474\pi\)
−0.262278 + 0.964992i \(0.584474\pi\)
\(524\) −7.67609 13.2954i −0.335332 0.580812i
\(525\) −11.6423 + 2.79346i −0.508111 + 0.121917i
\(526\) −3.81065 6.60024i −0.166152 0.287784i
\(527\) 8.84526 15.3204i 0.385305 0.667369i
\(528\) 0.0529314 0.0916798i 0.00230354 0.00398985i
\(529\) 8.92395 0.387998
\(530\) 27.4942 1.19427
\(531\) −0.654173 + 1.13306i −0.0283887 + 0.0491706i
\(532\) −0.995416 + 3.35886i −0.0431567 + 0.145625i
\(533\) −16.8887 + 9.18068i −0.731531 + 0.397660i
\(534\) 3.82913 + 6.63225i 0.165703 + 0.287005i
\(535\) 24.3026 + 42.0934i 1.05070 + 1.81986i
\(536\) 11.7781 + 20.4002i 0.508735 + 0.881155i
\(537\) −3.03388 + 5.25484i −0.130922 + 0.226763i
\(538\) 4.10536 0.176995
\(539\) 5.27091 + 3.42492i 0.227034 + 0.147522i
\(540\) −8.07356 13.9838i −0.347431 0.601767i
\(541\) −18.1158 31.3775i −0.778860 1.34903i −0.932599 0.360914i \(-0.882465\pi\)
0.153739 0.988112i \(-0.450869\pi\)
\(542\) 6.31658 0.271320
\(543\) −1.98529 3.43862i −0.0851968 0.147565i
\(544\) −11.0933 −0.475621
\(545\) −14.4624 −0.619500
\(546\) 1.11812 + 5.25089i 0.0478513 + 0.224717i
\(547\) −7.34857 −0.314202 −0.157101 0.987583i \(-0.550215\pi\)
−0.157101 + 0.987583i \(0.550215\pi\)
\(548\) −11.1195 −0.475000
\(549\) 1.84032 + 3.18753i 0.0785430 + 0.136040i
\(550\) 5.23069 0.223037
\(551\) 0.952888 + 1.65045i 0.0405944 + 0.0703115i
\(552\) −5.20786 9.02027i −0.221661 0.383928i
\(553\) −22.0187 23.2089i −0.936331 0.986944i
\(554\) −3.24816 −0.138001
\(555\) 12.0606 20.8896i 0.511945 0.886715i
\(556\) 2.68670 + 4.65350i 0.113941 + 0.197352i
\(557\) −5.41399 9.37731i −0.229398 0.397329i 0.728232 0.685331i \(-0.240342\pi\)
−0.957630 + 0.288002i \(0.907009\pi\)
\(558\) 9.96160 + 17.2540i 0.421708 + 0.730420i
\(559\) 0.362466 14.1098i 0.0153307 0.596781i
\(560\) 1.11731 + 1.17770i 0.0472148 + 0.0497670i
\(561\) 0.575009 0.995945i 0.0242769 0.0420488i
\(562\) −7.27694 −0.306959
\(563\) −13.8599 −0.584127 −0.292064 0.956399i \(-0.594342\pi\)
−0.292064 + 0.956399i \(0.594342\pi\)
\(564\) 3.03274 5.25285i 0.127701 0.221185i
\(565\) −23.6936 + 41.0386i −0.996798 + 1.72651i
\(566\) 6.49594 + 11.2513i 0.273045 + 0.472927i
\(567\) 9.57138 + 10.0888i 0.401960 + 0.423688i
\(568\) 4.80692 + 8.32583i 0.201694 + 0.349344i
\(569\) 27.4120 1.14917 0.574586 0.818444i \(-0.305163\pi\)
0.574586 + 0.818444i \(0.305163\pi\)
\(570\) 1.00524 + 1.74113i 0.0421049 + 0.0729279i
\(571\) 0.103879 0.179923i 0.00434719 0.00752956i −0.863844 0.503760i \(-0.831950\pi\)
0.868191 + 0.496230i \(0.165283\pi\)
\(572\) −0.106061 + 4.12865i −0.00443462 + 0.172627i
\(573\) 0.870251 0.0363552
\(574\) 3.41129 11.5108i 0.142384 0.480452i
\(575\) −19.3341 + 33.4876i −0.806288 + 1.39653i
\(576\) 5.78976 10.0282i 0.241240 0.417840i
\(577\) 1.66328 2.88089i 0.0692434 0.119933i −0.829325 0.558766i \(-0.811275\pi\)
0.898568 + 0.438833i \(0.144608\pi\)
\(578\) 11.2764 0.469035
\(579\) 5.43043 9.40577i 0.225681 0.390891i
\(580\) 8.05959 0.334656
\(581\) −3.90204 + 0.936261i −0.161884 + 0.0388426i
\(582\) 0.142452 0.246734i 0.00590483 0.0102275i
\(583\) 8.42893 0.349091
\(584\) −15.1950 + 26.3185i −0.628772 + 1.08907i
\(585\) 27.1223 + 16.6020i 1.12137 + 0.686410i
\(586\) −2.52769 4.37809i −0.104418 0.180857i
\(587\) 7.54051 13.0606i 0.311230 0.539067i −0.667399 0.744701i \(-0.732592\pi\)
0.978629 + 0.205634i \(0.0659256\pi\)
\(588\) 4.95078 + 3.21690i 0.204167 + 0.132663i
\(589\) 4.74064 + 8.21104i 0.195335 + 0.338330i
\(590\) −0.747686 1.29503i −0.0307817 0.0533155i
\(591\) −16.9191 −0.695957
\(592\) −1.88987 −0.0776732
\(593\) −12.9245 22.3859i −0.530747 0.919281i −0.999356 0.0358751i \(-0.988578\pi\)
0.468609 0.883405i \(-0.344755\pi\)
\(594\) 1.40564 + 2.43464i 0.0576740 + 0.0998944i
\(595\) 12.1376 + 12.7937i 0.497594 + 0.524491i
\(596\) 3.74055 6.47882i 0.153219 0.265383i
\(597\) 8.39052 + 14.5328i 0.343401 + 0.594788i
\(598\) 14.7884 + 9.05225i 0.604743 + 0.370174i
\(599\) 17.7734 30.7845i 0.726203 1.25782i −0.232274 0.972650i \(-0.574617\pi\)
0.958477 0.285170i \(-0.0920501\pi\)
\(600\) 12.6161 0.515052
\(601\) 13.6474 23.6379i 0.556688 0.964212i −0.441082 0.897467i \(-0.645405\pi\)
0.997770 0.0667449i \(-0.0212614\pi\)
\(602\) 6.06719 + 6.39515i 0.247280 + 0.260647i
\(603\) 21.6538 0.881810
\(604\) −10.7511 + 18.6215i −0.437458 + 0.757699i
\(605\) −35.0811 −1.42625
\(606\) −1.68456 + 2.91775i −0.0684308 + 0.118526i
\(607\) 19.4629 33.7108i 0.789976 1.36828i −0.136006 0.990708i \(-0.543426\pi\)
0.925981 0.377570i \(-0.123240\pi\)
\(608\) 2.97274 5.14894i 0.120561 0.208817i
\(609\) 3.12320 0.749386i 0.126559 0.0303666i
\(610\) −4.20679 −0.170328
\(611\) −0.665859 + 25.9200i −0.0269378 + 1.04861i
\(612\) −3.16576 + 5.48326i −0.127968 + 0.221648i
\(613\) −0.443322 0.767857i −0.0179056 0.0310135i 0.856934 0.515427i \(-0.172367\pi\)
−0.874839 + 0.484413i \(0.839033\pi\)
\(614\) −18.9063 −0.762997
\(615\) 6.06606 + 10.5067i 0.244607 + 0.423672i
\(616\) −4.55884 4.80526i −0.183681 0.193609i
\(617\) −17.3944 30.1280i −0.700272 1.21291i −0.968371 0.249515i \(-0.919729\pi\)
0.268099 0.963391i \(-0.413605\pi\)
\(618\) −1.16300 + 2.01437i −0.0467827 + 0.0810300i
\(619\) −1.02781 + 1.78021i −0.0413111 + 0.0715529i −0.885942 0.463797i \(-0.846487\pi\)
0.844631 + 0.535350i \(0.179820\pi\)
\(620\) 40.0967 1.61032
\(621\) −20.7825 −0.833975
\(622\) 4.18864 7.25494i 0.167949 0.290897i
\(623\) −35.0092 + 8.40016i −1.40262 + 0.336545i
\(624\) −0.0109156 + 0.424915i −0.000436975 + 0.0170102i
\(625\) 6.19081 + 10.7228i 0.247632 + 0.428912i
\(626\) −8.89959 15.4145i −0.355699 0.616089i
\(627\) 0.308178 + 0.533780i 0.0123074 + 0.0213171i
\(628\) −1.23668 + 2.14199i −0.0493489 + 0.0854749i
\(629\) −20.5302 −0.818593
\(630\) −19.3128 + 4.63393i −0.769439 + 0.184620i
\(631\) 22.6169 + 39.1736i 0.900363 + 1.55947i 0.827023 + 0.562168i \(0.190033\pi\)
0.0733401 + 0.997307i \(0.476634\pi\)
\(632\) 16.8555 + 29.1946i 0.670477 + 1.16130i
\(633\) −3.76665 −0.149711
\(634\) −10.7924 18.6930i −0.428621 0.742393i
\(635\) 6.69355 0.265625
\(636\) 7.91700 0.313929
\(637\) −25.1615 1.97426i −0.996936 0.0782229i
\(638\) −1.40321 −0.0555534
\(639\) 8.83744 0.349604
\(640\) −13.0941 22.6796i −0.517588 0.896489i
\(641\) −19.0619 −0.752902 −0.376451 0.926437i \(-0.622856\pi\)
−0.376451 + 0.926437i \(0.622856\pi\)
\(642\) −3.97420 6.88352i −0.156849 0.271671i
\(643\) 5.26755 + 9.12367i 0.207732 + 0.359802i 0.951000 0.309192i \(-0.100058\pi\)
−0.743268 + 0.668994i \(0.766725\pi\)
\(644\) 18.5422 4.44905i 0.730666 0.175317i
\(645\) −8.90811 −0.350756
\(646\) 0.855587 1.48192i 0.0336626 0.0583053i
\(647\) 12.0804 + 20.9239i 0.474930 + 0.822603i 0.999588 0.0287105i \(-0.00914011\pi\)
−0.524658 + 0.851313i \(0.675807\pi\)
\(648\) −7.32699 12.6907i −0.287831 0.498538i
\(649\) −0.229219 0.397019i −0.00899762 0.0155843i
\(650\) −18.4520 + 10.0305i −0.723745 + 0.393427i
\(651\) 15.5380 3.72822i 0.608983 0.146120i
\(652\) −7.58714 + 13.1413i −0.297135 + 0.514654i
\(653\) −33.6890 −1.31835 −0.659176 0.751988i \(-0.729095\pi\)
−0.659176 + 0.751988i \(0.729095\pi\)
\(654\) 2.36503 0.0924799
\(655\) 20.7098 35.8704i 0.809199 1.40157i
\(656\) 0.475268 0.823189i 0.0185561 0.0321401i
\(657\) 13.9678 + 24.1930i 0.544937 + 0.943859i
\(658\) −11.1456 11.7480i −0.434500 0.457986i
\(659\) 2.10030 + 3.63782i 0.0818159 + 0.141709i 0.904030 0.427469i \(-0.140595\pi\)
−0.822214 + 0.569178i \(0.807261\pi\)
\(660\) 2.60659 0.101461
\(661\) −8.83631 15.3049i −0.343693 0.595293i 0.641423 0.767188i \(-0.278345\pi\)
−0.985115 + 0.171894i \(0.945011\pi\)
\(662\) 0.758708 1.31412i 0.0294880 0.0510748i
\(663\) −0.118580 + 4.61597i −0.00460525 + 0.179270i
\(664\) 4.22844 0.164095
\(665\) −9.19079 + 2.20525i −0.356404 + 0.0855160i
\(666\) 11.5607 20.0236i 0.447966 0.775900i
\(667\) 5.18664 8.98353i 0.200828 0.347844i
\(668\) 10.5721 18.3114i 0.409046 0.708488i
\(669\) 1.55925 0.0602839
\(670\) −12.3746 + 21.4334i −0.478071 + 0.828044i
\(671\) −1.28968 −0.0497875
\(672\) −6.89642 7.26920i −0.266035 0.280415i
\(673\) 10.3052 17.8491i 0.397235 0.688031i −0.596149 0.802874i \(-0.703303\pi\)
0.993384 + 0.114843i \(0.0366366\pi\)
\(674\) −8.13803 −0.313465
\(675\) 12.5865 21.8005i 0.484456 0.839102i
\(676\) −7.54302 14.7677i −0.290116 0.567990i
\(677\) 10.6537 + 18.4527i 0.409455 + 0.709196i 0.994829 0.101567i \(-0.0323857\pi\)
−0.585374 + 0.810763i \(0.699052\pi\)
\(678\) 3.87461 6.71102i 0.148804 0.257735i
\(679\) 0.921847 + 0.971677i 0.0353772 + 0.0372895i
\(680\) −9.29147 16.0933i −0.356312 0.617150i
\(681\) −8.69264 15.0561i −0.333103 0.576951i
\(682\) −6.98099 −0.267316
\(683\) −6.69757 −0.256275 −0.128138 0.991756i \(-0.540900\pi\)
−0.128138 + 0.991756i \(0.540900\pi\)
\(684\) −1.69670 2.93877i −0.0648750 0.112367i
\(685\) −14.9999 25.9806i −0.573118 0.992670i
\(686\) 11.9903 10.2326i 0.457792 0.390683i
\(687\) −0.0226652 + 0.0392573i −0.000864732 + 0.00149776i
\(688\) 0.348970 + 0.604433i 0.0133043 + 0.0230438i
\(689\) −29.7342 + 16.1635i −1.13278 + 0.615779i
\(690\) 5.47161 9.47710i 0.208301 0.360787i
\(691\) −24.9263 −0.948242 −0.474121 0.880460i \(-0.657234\pi\)
−0.474121 + 0.880460i \(0.657234\pi\)
\(692\) −6.36936 + 11.0321i −0.242127 + 0.419376i
\(693\) −5.92074 + 1.42063i −0.224910 + 0.0539653i
\(694\) −0.539093 −0.0204637
\(695\) −7.24861 + 12.5550i −0.274955 + 0.476237i
\(696\) −3.38445 −0.128287
\(697\) 5.16298 8.94254i 0.195562 0.338723i
\(698\) 13.0217 22.5543i 0.492880 0.853694i
\(699\) −4.85017 + 8.40073i −0.183450 + 0.317745i
\(700\) −6.56276 + 22.1449i −0.248049 + 0.837000i
\(701\) −4.94583 −0.186801 −0.0934007 0.995629i \(-0.529774\pi\)
−0.0934007 + 0.995629i \(0.529774\pi\)
\(702\) −9.62728 5.89303i −0.363358 0.222418i
\(703\) 5.50162 9.52908i 0.207497 0.359396i
\(704\) 2.02870 + 3.51382i 0.0764597 + 0.132432i
\(705\) 16.3644 0.616319
\(706\) −0.468266 0.811061i −0.0176234 0.0305247i
\(707\) −10.9013 11.4905i −0.409985 0.432147i
\(708\) −0.215297 0.372905i −0.00809136 0.0140146i
\(709\) 2.32249 4.02267i 0.0872228 0.151074i −0.819113 0.573632i \(-0.805534\pi\)
0.906336 + 0.422557i \(0.138867\pi\)
\(710\) −5.05037 + 8.74749i −0.189537 + 0.328288i
\(711\) 30.9886 1.16216
\(712\) 37.9377 1.42178
\(713\) 25.8037 44.6933i 0.966356 1.67378i
\(714\) −1.98486 2.09215i −0.0742816 0.0782968i
\(715\) −9.78966 + 5.32165i −0.366113 + 0.199018i
\(716\) 5.85275 + 10.1373i 0.218728 + 0.378847i
\(717\) −1.10898 1.92082i −0.0414157 0.0717342i
\(718\) −4.15939 7.20427i −0.155227 0.268861i
\(719\) −15.8706 + 27.4887i −0.591875 + 1.02516i 0.402105 + 0.915594i \(0.368279\pi\)
−0.993980 + 0.109564i \(0.965055\pi\)
\(720\) −1.57247 −0.0586025
\(721\) −7.52609 7.93291i −0.280286 0.295437i
\(722\) −7.62714 13.2106i −0.283853 0.491647i
\(723\) 2.83658 + 4.91309i 0.105493 + 0.182720i
\(724\) −7.65975 −0.284672
\(725\) 6.28237 + 10.8814i 0.233322 + 0.404125i
\(726\) 5.73681 0.212913
\(727\) 47.8755 1.77560 0.887801 0.460227i \(-0.152232\pi\)
0.887801 + 0.460227i \(0.152232\pi\)
\(728\) 25.2965 + 8.20909i 0.937552 + 0.304249i
\(729\) −6.17412 −0.228671
\(730\) −31.9290 −1.18175
\(731\) 3.79096 + 6.56613i 0.140214 + 0.242857i
\(732\) −1.21135 −0.0447728
\(733\) 3.80104 + 6.58359i 0.140395 + 0.243171i 0.927645 0.373463i \(-0.121830\pi\)
−0.787251 + 0.616633i \(0.788496\pi\)
\(734\) −4.74386 8.21660i −0.175099 0.303280i
\(735\) −0.837796 + 15.9071i −0.0309026 + 0.586740i
\(736\) −32.3618 −1.19287
\(737\) −3.79368 + 6.57086i −0.139742 + 0.242041i
\(738\) 5.81459 + 10.0712i 0.214038 + 0.370725i
\(739\) 16.7118 + 28.9457i 0.614754 + 1.06479i 0.990428 + 0.138033i \(0.0440781\pi\)
−0.375673 + 0.926752i \(0.622589\pi\)
\(740\) −23.2665 40.2988i −0.855294 1.48141i
\(741\) −2.11072 1.29201i −0.0775394 0.0474632i
\(742\) 6.00589 20.2659i 0.220483 0.743984i
\(743\) 1.46912 2.54458i 0.0538966 0.0933517i −0.837818 0.545949i \(-0.816169\pi\)
0.891715 + 0.452597i \(0.149503\pi\)
\(744\) −16.8378 −0.617302
\(745\) 20.1837 0.739474
\(746\) −13.0776 + 22.6511i −0.478805 + 0.829314i
\(747\) 1.94348 3.36620i 0.0711081 0.123163i
\(748\) −1.10927 1.92131i −0.0405588 0.0702499i
\(749\) 36.3356 8.71842i 1.32767 0.318564i
\(750\) 1.78552 + 3.09261i 0.0651980 + 0.112926i
\(751\) 1.19678 0.0436711 0.0218355 0.999762i \(-0.493049\pi\)
0.0218355 + 0.999762i \(0.493049\pi\)
\(752\) −0.641065 1.11036i −0.0233773 0.0404906i
\(753\) −7.11313 + 12.3203i −0.259217 + 0.448977i
\(754\) 4.94999 2.69081i 0.180268 0.0979936i
\(755\) −58.0123 −2.11128
\(756\) −12.0710 + 2.89634i −0.439019 + 0.105339i
\(757\) −5.77321 + 9.99950i −0.209831 + 0.363438i −0.951661 0.307150i \(-0.900625\pi\)
0.741830 + 0.670588i \(0.233958\pi\)
\(758\) 9.64207 16.7006i 0.350216 0.606592i
\(759\) 1.67744 2.90541i 0.0608871 0.105460i
\(760\) 9.95959 0.361272
\(761\) −17.3249 + 30.0075i −0.628026 + 1.08777i 0.359921 + 0.932983i \(0.382803\pi\)
−0.987947 + 0.154790i \(0.950530\pi\)
\(762\) −1.09459 −0.0396530
\(763\) −3.15919 + 10.6602i −0.114370 + 0.385924i
\(764\) 0.839413 1.45391i 0.0303689 0.0526005i
\(765\) −17.0822 −0.617608
\(766\) −0.250768 + 0.434344i −0.00906063 + 0.0156935i
\(767\) 1.56993 + 0.960982i 0.0566869 + 0.0346990i
\(768\) 5.12890 + 8.88351i 0.185073 + 0.320556i
\(769\) 3.27437 5.67138i 0.118077 0.204515i −0.800929 0.598760i \(-0.795660\pi\)
0.919006 + 0.394245i \(0.128994\pi\)
\(770\) 1.97738 6.67233i 0.0712597 0.240454i
\(771\) −1.63253 2.82763i −0.0587943 0.101835i
\(772\) −10.4760 18.1450i −0.377039 0.653051i
\(773\) 33.9275 1.22029 0.610143 0.792291i \(-0.291112\pi\)
0.610143 + 0.792291i \(0.291112\pi\)
\(774\) −8.53882 −0.306922
\(775\) 31.2550 + 54.1352i 1.12271 + 1.94459i
\(776\) −0.705683 1.22228i −0.0253325 0.0438772i
\(777\) −12.7631 13.4530i −0.457874 0.482624i
\(778\) 2.42547 4.20104i 0.0869575 0.150615i
\(779\) 2.76711 + 4.79278i 0.0991422 + 0.171719i
\(780\) −9.19508 + 4.99844i −0.329237 + 0.178973i
\(781\) −1.54830 + 2.68173i −0.0554024 + 0.0959598i
\(782\) −9.31405 −0.333070
\(783\) −3.37651 + 5.84829i −0.120667 + 0.209001i
\(784\) 1.11215 0.566303i 0.0397195 0.0202251i
\(785\) −6.67303 −0.238171
\(786\) −3.38667 + 5.86588i −0.120798 + 0.209229i
\(787\) 12.9743 0.462485 0.231243 0.972896i \(-0.425721\pi\)
0.231243 + 0.972896i \(0.425721\pi\)
\(788\) −16.3195 + 28.2662i −0.581359 + 1.00694i
\(789\) 2.96042 5.12760i 0.105394 0.182548i
\(790\) −17.7092 + 30.6732i −0.630065 + 1.09130i
\(791\) 25.0737 + 26.4290i 0.891518 + 0.939708i
\(792\) 6.41600 0.227983
\(793\) 4.54951 2.47311i 0.161558 0.0878227i
\(794\) −10.8639 + 18.8168i −0.385545 + 0.667784i
\(795\) 10.6799 + 18.4981i 0.378776 + 0.656059i
\(796\) 32.3728 1.14742
\(797\) −2.20956 3.82707i −0.0782667 0.135562i 0.824235 0.566247i \(-0.191605\pi\)
−0.902502 + 0.430685i \(0.858272\pi\)
\(798\) 1.50297 0.360624i 0.0532044 0.0127660i
\(799\) −6.96408 12.0621i −0.246371 0.426728i
\(800\) 19.5993 33.9469i 0.692938 1.20020i
\(801\) 17.4369 30.2017i 0.616104 1.06712i
\(802\) −21.7047 −0.766418
\(803\) −9.78852 −0.345429
\(804\) −3.56327 + 6.17177i −0.125667 + 0.217662i
\(805\) 35.4083 + 37.3223i 1.24798 + 1.31544i
\(806\) 24.6264 13.3869i 0.867427 0.471532i
\(807\) 1.59469 + 2.76208i 0.0561356 + 0.0972298i
\(808\) 8.34504 + 14.4540i 0.293578 + 0.508491i
\(809\) −5.73580 9.93470i −0.201660 0.349285i 0.747403 0.664371i \(-0.231300\pi\)
−0.949063 + 0.315085i \(0.897967\pi\)
\(810\) 7.69807 13.3334i 0.270482 0.468489i
\(811\) 23.8664 0.838063 0.419032 0.907972i \(-0.362370\pi\)
0.419032 + 0.907972i \(0.362370\pi\)
\(812\) 1.76055 5.94069i 0.0617833 0.208477i
\(813\) 2.45361 + 4.24978i 0.0860520 + 0.149046i
\(814\) 4.05079 + 7.01618i 0.141980 + 0.245917i
\(815\) −40.9396 −1.43405
\(816\) −0.114164 0.197738i −0.00399655 0.00692223i
\(817\) −4.06355 −0.142166
\(818\) −0.125105 −0.00437419
\(819\) 18.1620 16.3652i 0.634630 0.571845i
\(820\) 23.4044 0.817318
\(821\) 30.9694 1.08084 0.540420 0.841395i \(-0.318265\pi\)
0.540420 + 0.841395i \(0.318265\pi\)
\(822\) 2.45293 + 4.24861i 0.0855559 + 0.148187i
\(823\) −8.61357 −0.300250 −0.150125 0.988667i \(-0.547968\pi\)
−0.150125 + 0.988667i \(0.547968\pi\)
\(824\) 5.76129 + 9.97885i 0.200704 + 0.347630i
\(825\) 2.03181 + 3.51920i 0.0707386 + 0.122523i
\(826\) −1.11789 + 0.268228i −0.0388963 + 0.00933283i
\(827\) 22.9128 0.796756 0.398378 0.917221i \(-0.369573\pi\)
0.398378 + 0.917221i \(0.369573\pi\)
\(828\) −9.23528 + 15.9960i −0.320948 + 0.555898i
\(829\) 21.2806 + 36.8590i 0.739104 + 1.28017i 0.952899 + 0.303287i \(0.0980842\pi\)
−0.213795 + 0.976879i \(0.568582\pi\)
\(830\) 2.22129 + 3.84739i 0.0771022 + 0.133545i
\(831\) −1.26172 2.18536i −0.0437685 0.0758093i
\(832\) −13.8947 8.50518i −0.481711 0.294864i
\(833\) 12.0816 6.15191i 0.418601 0.213151i
\(834\) 1.18536 2.05311i 0.0410458 0.0710933i
\(835\) 57.0460 1.97416
\(836\) 1.18903 0.0411235
\(837\) −16.7982 + 29.0954i −0.580632 + 1.00568i
\(838\) 5.82846 10.0952i 0.201341 0.348733i
\(839\) −0.920524 1.59439i −0.0317800 0.0550446i 0.849698 0.527270i \(-0.176784\pi\)
−0.881478 + 0.472225i \(0.843451\pi\)
\(840\) 4.76932 16.0933i 0.164557 0.555271i
\(841\) 12.8147 + 22.1957i 0.441885 + 0.765367i
\(842\) −2.92931 −0.100951
\(843\) −2.82666 4.89591i −0.0973553 0.168624i
\(844\) −3.63317 + 6.29284i −0.125059 + 0.216609i
\(845\) 24.3294 37.5457i 0.836958 1.29161i
\(846\) 15.6860 0.539296
\(847\) −7.66319 + 25.8582i −0.263310 + 0.888497i
\(848\) 0.836755 1.44930i 0.0287343 0.0497692i
\(849\) −5.04657 + 8.74092i −0.173198 + 0.299988i
\(850\) 5.64087 9.77027i 0.193480 0.335118i
\(851\) −59.8915 −2.05305
\(852\) −1.45426 + 2.51885i −0.0498221 + 0.0862944i
\(853\) −27.0293 −0.925466 −0.462733 0.886498i \(-0.653131\pi\)
−0.462733 + 0.886498i \(0.653131\pi\)
\(854\) −0.918939 + 3.10081i −0.0314454 + 0.106107i
\(855\) 4.57763 7.92869i 0.156552 0.271155i
\(856\) −39.3750 −1.34581
\(857\) −8.39268 + 14.5365i −0.286688 + 0.496559i −0.973017 0.230732i \(-0.925888\pi\)
0.686329 + 0.727291i \(0.259221\pi\)
\(858\) 1.60090 0.870248i 0.0546538 0.0297098i
\(859\) −25.8058 44.6969i −0.880482 1.52504i −0.850806 0.525481i \(-0.823886\pi\)
−0.0296769 0.999560i \(-0.509448\pi\)
\(860\) −8.59245 + 14.8826i −0.293000 + 0.507491i
\(861\) 9.06955 2.17616i 0.309089 0.0741633i
\(862\) 9.48624 + 16.4306i 0.323102 + 0.559630i
\(863\) −10.9807 19.0191i −0.373787 0.647417i 0.616358 0.787466i \(-0.288607\pi\)
−0.990145 + 0.140049i \(0.955274\pi\)
\(864\) 21.0676 0.716733
\(865\) −34.3685 −1.16857
\(866\) −11.0205 19.0880i −0.374491 0.648638i
\(867\) 4.38020 + 7.58673i 0.148759 + 0.257659i
\(868\) 8.75880 29.5551i 0.297293 1.00317i
\(869\) −5.42913 + 9.40352i −0.184170 + 0.318993i
\(870\) −1.77793 3.07947i −0.0602775 0.104404i
\(871\) 0.782342 30.4544i 0.0265086 1.03191i
\(872\) 5.85797 10.1463i 0.198376 0.343597i
\(873\) −1.29739 −0.0439098
\(874\) 2.49595 4.32311i 0.0844267 0.146231i
\(875\) −16.3248 + 3.91699i −0.551878 + 0.132418i
\(876\) −9.19401 −0.310637
\(877\) 4.80873 8.32896i 0.162379 0.281249i −0.773342 0.633989i \(-0.781417\pi\)
0.935721 + 0.352740i \(0.114750\pi\)
\(878\) 23.8178 0.803811
\(879\) 1.96371 3.40125i 0.0662344 0.114721i
\(880\) 0.275493 0.477167i 0.00928686 0.0160853i
\(881\) −14.4863 + 25.0910i −0.488055 + 0.845336i −0.999906 0.0137383i \(-0.995627\pi\)
0.511851 + 0.859075i \(0.328960\pi\)
\(882\) −0.803065 + 15.2476i −0.0270406 + 0.513414i
\(883\) 6.60727 0.222352 0.111176 0.993801i \(-0.464538\pi\)
0.111176 + 0.993801i \(0.464538\pi\)
\(884\) 7.59742 + 4.65051i 0.255529 + 0.156414i
\(885\) 0.580863 1.00608i 0.0195255 0.0338191i
\(886\) 14.1325 + 24.4781i 0.474789 + 0.822359i
\(887\) −31.4144 −1.05479 −0.527397 0.849619i \(-0.676832\pi\)
−0.527397 + 0.849619i \(0.676832\pi\)
\(888\) 9.77029 + 16.9226i 0.327869 + 0.567886i
\(889\) 1.46215 4.93379i 0.0490390 0.165474i
\(890\) 19.9295 + 34.5190i 0.668039 + 1.15708i
\(891\) 2.36000 4.08765i 0.0790631 0.136941i
\(892\) 1.50399 2.60499i 0.0503574 0.0872216i
\(893\) 7.46484 0.249801
\(894\) −3.30063 −0.110390
\(895\) −15.7905 + 27.3499i −0.527818 + 0.914208i
\(896\) −19.5773 + 4.69741i −0.654033 + 0.156930i
\(897\) −0.345925 + 13.4659i −0.0115501 + 0.449613i
\(898\) 8.37780 + 14.5108i 0.279571 + 0.484231i
\(899\) −8.38459 14.5225i −0.279642 0.484354i
\(900\) −11.1863 19.3753i −0.372877 0.645843i
\(901\) 9.08991 15.7442i 0.302829 0.524515i
\(902\) −4.07480 −0.135676
\(903\) −1.94591 + 6.56613i −0.0647557 + 0.218507i
\(904\) −19.1942 33.2453i −0.638388 1.10572i
\(905\) −10.3328 17.8970i −0.343475 0.594917i
\(906\) 9.48673 0.315176
\(907\) −4.86821 8.43198i −0.161646 0.279979i 0.773813 0.633414i \(-0.218347\pi\)
−0.935459 + 0.353435i \(0.885014\pi\)
\(908\) −33.5385 −1.11301
\(909\) 15.3422 0.508869
\(910\) 5.81952 + 27.3294i 0.192915 + 0.905960i
\(911\) −38.4372 −1.27348 −0.636740 0.771078i \(-0.719718\pi\)
−0.636740 + 0.771078i \(0.719718\pi\)
\(912\) 0.122373 0.00405219
\(913\) 0.680984 + 1.17950i 0.0225373 + 0.0390357i
\(914\) 0.635741 0.0210285
\(915\) −1.63409 2.83032i −0.0540212 0.0935675i
\(916\) 0.0437242 + 0.0757325i 0.00144469 + 0.00250227i
\(917\) −21.9161 23.1007i −0.723732 0.762853i
\(918\) 6.06346 0.200124
\(919\) −27.1402 + 47.0082i −0.895273 + 1.55066i −0.0618056 + 0.998088i \(0.519686\pi\)
−0.833467 + 0.552569i \(0.813647\pi\)
\(920\) −27.1054 46.9479i −0.893639 1.54783i
\(921\) −7.34398 12.7202i −0.241993 0.419143i
\(922\) −14.1164 24.4502i −0.464897 0.805226i
\(923\) 0.319293 12.4292i 0.0105097 0.409112i
\(924\) 0.569388 1.92131i 0.0187315 0.0632063i
\(925\) 36.2721 62.8251i 1.19262 2.06568i
\(926\) 26.1739 0.860128
\(927\) 10.5920 0.347888
\(928\) −5.25777 + 9.10673i −0.172595 + 0.298943i
\(929\) 19.0960 33.0752i 0.626519 1.08516i −0.361726 0.932284i \(-0.617812\pi\)
0.988245 0.152878i \(-0.0488542\pi\)
\(930\) −8.84526 15.3204i −0.290047 0.502377i
\(931\) −0.382172 + 7.25622i −0.0125252 + 0.237813i
\(932\) 9.35660 + 16.2061i 0.306486 + 0.530849i
\(933\) 6.50815 0.213067
\(934\) −12.5994 21.8228i −0.412266 0.714065i
\(935\) 2.99276 5.18361i 0.0978736 0.169522i
\(936\) −22.6333 + 12.3034i −0.739792 + 0.402150i
\(937\) −19.0376 −0.621931 −0.310966 0.950421i \(-0.600652\pi\)
−0.310966 + 0.950421i \(0.600652\pi\)
\(938\) 13.0953 + 13.8032i 0.427578 + 0.450691i
\(939\) 6.91392 11.9753i 0.225627 0.390798i
\(940\) 15.7845 27.3396i 0.514835 0.891720i
\(941\) −23.0811 + 39.9776i −0.752422 + 1.30323i 0.194224 + 0.980957i \(0.437781\pi\)
−0.946646 + 0.322275i \(0.895552\pi\)
\(942\) 1.09124 0.0355545
\(943\) 15.0616 26.0875i 0.490474 0.849526i
\(944\) −0.0910198 −0.00296244
\(945\) −23.0509 24.2969i −0.749845 0.790377i
\(946\) 1.49598 2.59111i 0.0486385 0.0842443i
\(947\) −9.19374 −0.298756 −0.149378 0.988780i \(-0.547727\pi\)
−0.149378 + 0.988780i \(0.547727\pi\)
\(948\) −5.09938 + 8.83239i −0.165620 + 0.286863i
\(949\) 34.5303 18.7706i 1.12090 0.609320i
\(950\) 3.02324 + 5.23641i 0.0980869 + 0.169892i
\(951\) 8.38440 14.5222i 0.271883 0.470915i
\(952\) −13.8920 + 3.33325i −0.450241 + 0.108031i
\(953\) 22.3232 + 38.6648i 0.723118 + 1.25248i 0.959744 + 0.280876i \(0.0906250\pi\)
−0.236626 + 0.971601i \(0.576042\pi\)
\(954\) 10.2371 + 17.7312i 0.331440 + 0.574070i
\(955\) 4.52941 0.146568
\(956\) −4.27874 −0.138385
\(957\) −0.545062 0.944075i −0.0176194 0.0305176i
\(958\) 5.99641 + 10.3861i 0.193735 + 0.335559i
\(959\) −22.4269 + 5.38113i −0.724201 + 0.173766i
\(960\) −5.14093 + 8.90436i −0.165923 + 0.287387i
\(961\) −26.2136 45.4032i −0.845599 1.46462i
\(962\) −27.7441 16.9826i −0.894504 0.547542i
\(963\) −18.0976 + 31.3459i −0.583186 + 1.01011i
\(964\) 10.9442 0.352490
\(965\) 28.2638 48.9544i 0.909845 1.57590i
\(966\) −5.79031 6.10330i −0.186300 0.196370i
\(967\) 13.8268 0.444639 0.222320 0.974974i \(-0.428637\pi\)
0.222320 + 0.974974i \(0.428637\pi\)
\(968\) 14.2096 24.6117i 0.456713 0.791050i
\(969\) 1.32938 0.0427058
\(970\) 0.741422 1.28418i 0.0238056 0.0412326i
\(971\) −3.63437 + 6.29491i −0.116632 + 0.202013i −0.918431 0.395581i \(-0.870543\pi\)
0.801799 + 0.597594i \(0.203877\pi\)
\(972\) 9.25454 16.0293i 0.296839 0.514141i
\(973\) 7.67081 + 8.08545i 0.245915 + 0.259208i
\(974\) 14.2950 0.458043
\(975\) −13.9160 8.51821i −0.445668 0.272801i
\(976\) −0.128029 + 0.221752i −0.00409810 + 0.00709811i
\(977\) −21.4050 37.0746i −0.684808 1.18612i −0.973497 0.228699i \(-0.926553\pi\)
0.288689 0.957423i \(-0.406781\pi\)
\(978\) 6.69484 0.214077
\(979\) 6.10982 + 10.5825i 0.195271 + 0.338219i
\(980\) 25.7674 + 16.7431i 0.823110 + 0.534838i
\(981\) −5.38489 9.32690i −0.171926 0.297785i
\(982\) 9.22152 15.9721i 0.294270 0.509691i
\(983\) 23.1544 40.1046i 0.738511 1.27914i −0.214655 0.976690i \(-0.568863\pi\)
0.953166 0.302448i \(-0.0978040\pi\)
\(984\) −9.82820 −0.313312
\(985\) −88.0588 −2.80579
\(986\) −1.51324 + 2.62101i −0.0481914 + 0.0834700i
\(987\) 3.57467 12.0621i 0.113783 0.383942i
\(988\) −4.19446 + 2.28010i −0.133444 + 0.0725398i
\(989\) 11.0591 + 19.1550i 0.351660 + 0.609092i
\(990\) 3.37047 + 5.83782i 0.107121 + 0.185538i
\(991\) 29.1162 + 50.4307i 0.924907 + 1.60199i 0.791711 + 0.610896i \(0.209190\pi\)
0.133195 + 0.991090i \(0.457476\pi\)
\(992\) −26.1576 + 45.3062i −0.830504 + 1.43847i
\(993\) 1.17885 0.0374097
\(994\) 5.34453 + 5.63343i 0.169518 + 0.178681i
\(995\) 43.6703 + 75.6392i 1.38444 + 2.39792i
\(996\) 0.639625 + 1.10786i 0.0202673 + 0.0351040i
\(997\) −4.49479 −0.142351 −0.0711757 0.997464i \(-0.522675\pi\)
−0.0711757 + 0.997464i \(0.522675\pi\)
\(998\) −9.91765 17.1779i −0.313938 0.543756i
\(999\) 38.9894 1.23357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 91.2.h.b.74.3 yes 12
3.2 odd 2 819.2.s.d.802.4 12
7.2 even 3 91.2.g.b.9.4 12
7.3 odd 6 637.2.f.j.295.4 12
7.4 even 3 637.2.f.k.295.4 12
7.5 odd 6 637.2.g.l.373.4 12
7.6 odd 2 637.2.h.l.165.3 12
13.3 even 3 91.2.g.b.81.4 yes 12
13.4 even 6 1183.2.e.g.508.3 12
13.9 even 3 1183.2.e.h.508.4 12
21.2 odd 6 819.2.n.d.100.3 12
39.29 odd 6 819.2.n.d.172.3 12
91.3 odd 6 637.2.f.j.393.4 12
91.4 even 6 8281.2.a.ce.1.4 6
91.9 even 3 1183.2.e.h.170.4 12
91.16 even 3 inner 91.2.h.b.16.3 yes 12
91.17 odd 6 8281.2.a.cf.1.4 6
91.30 even 6 1183.2.e.g.170.3 12
91.55 odd 6 637.2.g.l.263.4 12
91.68 odd 6 637.2.h.l.471.3 12
91.74 even 3 8281.2.a.bz.1.3 6
91.81 even 3 637.2.f.k.393.4 12
91.87 odd 6 8281.2.a.ca.1.3 6
273.107 odd 6 819.2.s.d.289.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.4 12 7.2 even 3
91.2.g.b.81.4 yes 12 13.3 even 3
91.2.h.b.16.3 yes 12 91.16 even 3 inner
91.2.h.b.74.3 yes 12 1.1 even 1 trivial
637.2.f.j.295.4 12 7.3 odd 6
637.2.f.j.393.4 12 91.3 odd 6
637.2.f.k.295.4 12 7.4 even 3
637.2.f.k.393.4 12 91.81 even 3
637.2.g.l.263.4 12 91.55 odd 6
637.2.g.l.373.4 12 7.5 odd 6
637.2.h.l.165.3 12 7.6 odd 2
637.2.h.l.471.3 12 91.68 odd 6
819.2.n.d.100.3 12 21.2 odd 6
819.2.n.d.172.3 12 39.29 odd 6
819.2.s.d.289.4 12 273.107 odd 6
819.2.s.d.802.4 12 3.2 odd 2
1183.2.e.g.170.3 12 91.30 even 6
1183.2.e.g.508.3 12 13.4 even 6
1183.2.e.h.170.4 12 91.9 even 3
1183.2.e.h.508.4 12 13.9 even 3
8281.2.a.bz.1.3 6 91.74 even 3
8281.2.a.ca.1.3 6 91.87 odd 6
8281.2.a.ce.1.4 6 91.4 even 6
8281.2.a.cf.1.4 6 91.17 odd 6