Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [91,2,Mod(36,91)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(91, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("91.36");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 91.q (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.58891012706304.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36.1 |
|
−2.34104 | + | 1.35160i | 0.172975 | + | 0.299601i | 2.65363 | − | 4.59623i | − | 3.25812i | −0.809880 | − | 0.467584i | 0.866025 | + | 0.500000i | 8.94020i | 1.44016 | − | 2.49443i | 4.40367 | + | 7.62739i | |||||||||||||||||||||||||||||||||||||||
36.2 | −1.20027 | + | 0.692976i | 1.41289 | + | 2.44719i | −0.0395678 | + | 0.0685334i | − | 0.518957i | −3.39169 | − | 1.95819i | −0.866025 | − | 0.500000i | − | 2.88158i | −2.49250 | + | 4.31714i | 0.359625 | + | 0.622889i | |||||||||||||||||||||||||||||||||||||||
36.3 | −0.104235 | + | 0.0601799i | 0.291146 | + | 0.504280i | −0.992757 | + | 1.71951i | 1.68817i | −0.0606950 | − | 0.0350423i | 0.866025 | + | 0.500000i | − | 0.479696i | 1.33047 | − | 2.30444i | −0.101594 | − | 0.175965i | ||||||||||||||||||||||||||||||||||||||||
36.4 | 0.713220 | − | 0.411778i | −1.33015 | − | 2.30388i | −0.660878 | + | 1.14467i | − | 3.16209i | −1.89737 | − | 1.09545i | 0.866025 | + | 0.500000i | 2.73565i | −2.03858 | + | 3.53092i | −1.30208 | − | 2.25527i | ||||||||||||||||||||||||||||||||||||||||
36.5 | 1.10554 | − | 0.638282i | 0.583963 | + | 1.01145i | −0.185192 | + | 0.320762i | − | 1.81487i | 1.29118 | + | 0.745466i | −0.866025 | − | 0.500000i | 3.02595i | 0.817975 | − | 1.41677i | −1.15840 | − | 2.00641i | ||||||||||||||||||||||||||||||||||||||||
36.6 | 1.82678 | − | 1.05469i | −1.13082 | − | 1.95864i | 1.22476 | − | 2.12135i | 3.60178i | −4.13154 | − | 2.38535i | −0.866025 | − | 0.500000i | − | 0.948212i | −1.05753 | + | 1.83169i | 3.79878 | + | 6.57967i | ||||||||||||||||||||||||||||||||||||||||
43.1 | −2.34104 | − | 1.35160i | 0.172975 | − | 0.299601i | 2.65363 | + | 4.59623i | 3.25812i | −0.809880 | + | 0.467584i | 0.866025 | − | 0.500000i | − | 8.94020i | 1.44016 | + | 2.49443i | 4.40367 | − | 7.62739i | ||||||||||||||||||||||||||||||||||||||||
43.2 | −1.20027 | − | 0.692976i | 1.41289 | − | 2.44719i | −0.0395678 | − | 0.0685334i | 0.518957i | −3.39169 | + | 1.95819i | −0.866025 | + | 0.500000i | 2.88158i | −2.49250 | − | 4.31714i | 0.359625 | − | 0.622889i | |||||||||||||||||||||||||||||||||||||||||
43.3 | −0.104235 | − | 0.0601799i | 0.291146 | − | 0.504280i | −0.992757 | − | 1.71951i | − | 1.68817i | −0.0606950 | + | 0.0350423i | 0.866025 | − | 0.500000i | 0.479696i | 1.33047 | + | 2.30444i | −0.101594 | + | 0.175965i | ||||||||||||||||||||||||||||||||||||||||
43.4 | 0.713220 | + | 0.411778i | −1.33015 | + | 2.30388i | −0.660878 | − | 1.14467i | 3.16209i | −1.89737 | + | 1.09545i | 0.866025 | − | 0.500000i | − | 2.73565i | −2.03858 | − | 3.53092i | −1.30208 | + | 2.25527i | ||||||||||||||||||||||||||||||||||||||||
43.5 | 1.10554 | + | 0.638282i | 0.583963 | − | 1.01145i | −0.185192 | − | 0.320762i | 1.81487i | 1.29118 | − | 0.745466i | −0.866025 | + | 0.500000i | − | 3.02595i | 0.817975 | + | 1.41677i | −1.15840 | + | 2.00641i | ||||||||||||||||||||||||||||||||||||||||
43.6 | 1.82678 | + | 1.05469i | −1.13082 | + | 1.95864i | 1.22476 | + | 2.12135i | − | 3.60178i | −4.13154 | + | 2.38535i | −0.866025 | + | 0.500000i | 0.948212i | −1.05753 | − | 1.83169i | 3.79878 | − | 6.57967i | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.2.q.a | ✓ | 12 |
3.b | odd | 2 | 1 | 819.2.ct.a | 12 | ||
4.b | odd | 2 | 1 | 1456.2.cc.c | 12 | ||
7.b | odd | 2 | 1 | 637.2.q.h | 12 | ||
7.c | even | 3 | 1 | 637.2.k.h | 12 | ||
7.c | even | 3 | 1 | 637.2.u.h | 12 | ||
7.d | odd | 6 | 1 | 637.2.k.g | 12 | ||
7.d | odd | 6 | 1 | 637.2.u.i | 12 | ||
13.c | even | 3 | 1 | 1183.2.c.i | 12 | ||
13.e | even | 6 | 1 | inner | 91.2.q.a | ✓ | 12 |
13.e | even | 6 | 1 | 1183.2.c.i | 12 | ||
13.f | odd | 12 | 1 | 1183.2.a.m | 6 | ||
13.f | odd | 12 | 1 | 1183.2.a.p | 6 | ||
39.h | odd | 6 | 1 | 819.2.ct.a | 12 | ||
52.i | odd | 6 | 1 | 1456.2.cc.c | 12 | ||
91.k | even | 6 | 1 | 637.2.u.h | 12 | ||
91.l | odd | 6 | 1 | 637.2.u.i | 12 | ||
91.p | odd | 6 | 1 | 637.2.k.g | 12 | ||
91.t | odd | 6 | 1 | 637.2.q.h | 12 | ||
91.u | even | 6 | 1 | 637.2.k.h | 12 | ||
91.bc | even | 12 | 1 | 8281.2.a.by | 6 | ||
91.bc | even | 12 | 1 | 8281.2.a.ch | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.q.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
91.2.q.a | ✓ | 12 | 13.e | even | 6 | 1 | inner |
637.2.k.g | 12 | 7.d | odd | 6 | 1 | ||
637.2.k.g | 12 | 91.p | odd | 6 | 1 | ||
637.2.k.h | 12 | 7.c | even | 3 | 1 | ||
637.2.k.h | 12 | 91.u | even | 6 | 1 | ||
637.2.q.h | 12 | 7.b | odd | 2 | 1 | ||
637.2.q.h | 12 | 91.t | odd | 6 | 1 | ||
637.2.u.h | 12 | 7.c | even | 3 | 1 | ||
637.2.u.h | 12 | 91.k | even | 6 | 1 | ||
637.2.u.i | 12 | 7.d | odd | 6 | 1 | ||
637.2.u.i | 12 | 91.l | odd | 6 | 1 | ||
819.2.ct.a | 12 | 3.b | odd | 2 | 1 | ||
819.2.ct.a | 12 | 39.h | odd | 6 | 1 | ||
1183.2.a.m | 6 | 13.f | odd | 12 | 1 | ||
1183.2.a.p | 6 | 13.f | odd | 12 | 1 | ||
1183.2.c.i | 12 | 13.c | even | 3 | 1 | ||
1183.2.c.i | 12 | 13.e | even | 6 | 1 | ||
1456.2.cc.c | 12 | 4.b | odd | 2 | 1 | ||
1456.2.cc.c | 12 | 52.i | odd | 6 | 1 | ||
8281.2.a.by | 6 | 91.bc | even | 12 | 1 | ||
8281.2.a.ch | 6 | 91.bc | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace .