Properties

Label 91.2.q.a
Level 9191
Weight 22
Character orbit 91.q
Analytic conductor 0.7270.727
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [91,2,Mod(36,91)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(91, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("91.36");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 91=713 91 = 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 91.q (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7266386583940.726638658394
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 12.0.58891012706304.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x125x102x9+15x8+2x730x6+4x5+60x416x380x2+64 x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β10β6β4β1)q2+(β10β2)q3+(β10β9β8++1)q4+(β11β7+β3)q5++(4β11+2β10+3)q99+O(q100) q + (\beta_{10} - \beta_{6} - \beta_{4} - \beta_1) q^{2} + ( - \beta_{10} - \beta_{2}) q^{3} + ( - \beta_{10} - \beta_{9} - \beta_{8} + \cdots + 1) q^{4} + ( - \beta_{11} - \beta_{7} + \cdots - \beta_{3}) q^{5}+ \cdots + (4 \beta_{11} + 2 \beta_{10} + \cdots - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+4q418q64q9+12q10+6q114q12+4q138q14+6q158q164q1712q20+6q2212q23+12q2420q2542q26+12q27++6q97+O(q100) 12 q + 4 q^{4} - 18 q^{6} - 4 q^{9} + 12 q^{10} + 6 q^{11} - 4 q^{12} + 4 q^{13} - 8 q^{14} + 6 q^{15} - 8 q^{16} - 4 q^{17} - 12 q^{20} + 6 q^{22} - 12 q^{23} + 12 q^{24} - 20 q^{25} - 42 q^{26} + 12 q^{27}+ \cdots + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x125x102x9+15x8+2x730x6+4x5+60x416x380x2+64 x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν115ν92ν8+15ν7+2ν630ν5+4ν4+60ν316ν280ν)/32 ( \nu^{11} - 5\nu^{9} - 2\nu^{8} + 15\nu^{7} + 2\nu^{6} - 30\nu^{5} + 4\nu^{4} + 60\nu^{3} - 16\nu^{2} - 80\nu ) / 32 Copy content Toggle raw display
β3\beta_{3}== (3ν11+4ν10+7ν96ν813ν7+30ν66ν528ν4++96)/32 ( - 3 \nu^{11} + 4 \nu^{10} + 7 \nu^{9} - 6 \nu^{8} - 13 \nu^{7} + 30 \nu^{6} - 6 \nu^{5} - 28 \nu^{4} + \cdots + 96 ) / 32 Copy content Toggle raw display
β4\beta_{4}== (3ν11+2ν1011ν98ν8+21ν7+4ν642ν5+84ν3+64)/32 ( 3 \nu^{11} + 2 \nu^{10} - 11 \nu^{9} - 8 \nu^{8} + 21 \nu^{7} + 4 \nu^{6} - 42 \nu^{5} + 84 \nu^{3} + \cdots - 64 ) / 32 Copy content Toggle raw display
β5\beta_{5}== (ν11+3ν103ν913ν8+7ν7+23ν626ν538ν4+64)/16 ( \nu^{11} + 3 \nu^{10} - 3 \nu^{9} - 13 \nu^{8} + 7 \nu^{7} + 23 \nu^{6} - 26 \nu^{5} - 38 \nu^{4} + \cdots - 64 ) / 16 Copy content Toggle raw display
β6\beta_{6}== (5ν11+4ν10+13ν910ν823ν7+42ν6+10ν568ν4++64)/32 ( - 5 \nu^{11} + 4 \nu^{10} + 13 \nu^{9} - 10 \nu^{8} - 23 \nu^{7} + 42 \nu^{6} + 10 \nu^{5} - 68 \nu^{4} + \cdots + 64 ) / 32 Copy content Toggle raw display
β7\beta_{7}== (5ν11+2ν10+17ν98ν839ν7+44ν6+50ν588ν4+32)/32 ( - 5 \nu^{11} + 2 \nu^{10} + 17 \nu^{9} - 8 \nu^{8} - 39 \nu^{7} + 44 \nu^{6} + 50 \nu^{5} - 88 \nu^{4} + \cdots - 32 ) / 32 Copy content Toggle raw display
β8\beta_{8}== (ν11+ν10+5ν93ν813ν7+13ν6+20ν534ν4+32)/8 ( - \nu^{11} + \nu^{10} + 5 \nu^{9} - 3 \nu^{8} - 13 \nu^{7} + 13 \nu^{6} + 20 \nu^{5} - 34 \nu^{4} + \cdots - 32 ) / 8 Copy content Toggle raw display
β9\beta_{9}== (ν11+3ν10+5ν913ν813ν7+35ν6+12ν570ν4+80)/16 ( - \nu^{11} + 3 \nu^{10} + 5 \nu^{9} - 13 \nu^{8} - 13 \nu^{7} + 35 \nu^{6} + 12 \nu^{5} - 70 \nu^{4} + \cdots - 80 ) / 16 Copy content Toggle raw display
β10\beta_{10}== (3ν11+15ν92ν837ν7+18ν6+66ν568ν492ν3+64)/16 ( - 3 \nu^{11} + 15 \nu^{9} - 2 \nu^{8} - 37 \nu^{7} + 18 \nu^{6} + 66 \nu^{5} - 68 \nu^{4} - 92 \nu^{3} + \cdots - 64 ) / 16 Copy content Toggle raw display
β11\beta_{11}== (ν11+4ν10+9ν918ν827ν7+50ν6+34ν5116ν4+160)/16 ( - \nu^{11} + 4 \nu^{10} + 9 \nu^{9} - 18 \nu^{8} - 27 \nu^{7} + 50 \nu^{6} + 34 \nu^{5} - 116 \nu^{4} + \cdots - 160 ) / 16 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11+β8+β7β6+β5+1 -\beta_{11} + \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} + 1 Copy content Toggle raw display
ν3\nu^{3}== β11+β10+β9β6+β4+β3+β2+β1 -\beta_{11} + \beta_{10} + \beta_{9} - \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 Copy content Toggle raw display
ν4\nu^{4}== β11+β9+β72β6+β5β4+β3β21 -\beta_{11} + \beta_{9} + \beta_{7} - 2\beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - 1 Copy content Toggle raw display
ν5\nu^{5}== 2β11+4β9+β8β7β6β5β1+1 -2\beta_{11} + 4\beta_{9} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} - \beta _1 + 1 Copy content Toggle raw display
ν6\nu^{6}== 2β112β10+β9β8β62β53β4+β3+2 2 \beta_{11} - 2 \beta_{10} + \beta_{9} - \beta_{8} - \beta_{6} - 2 \beta_{5} - 3 \beta_{4} + \beta_{3} + \cdots - 2 Copy content Toggle raw display
ν7\nu^{7}== 5β113β10+5β9+7β8β72β6+3β5++1 - 5 \beta_{11} - 3 \beta_{10} + 5 \beta_{9} + 7 \beta_{8} - \beta_{7} - 2 \beta_{6} + 3 \beta_{5} + \cdots + 1 Copy content Toggle raw display
ν8\nu^{8}== 3β11+7β8+β75β6β5+2β4+4β3+10β2+8β13 -3\beta_{11} + 7\beta_{8} + \beta_{7} - 5\beta_{6} - \beta_{5} + 2\beta_{4} + 4\beta_{3} + 10\beta_{2} + 8\beta _1 - 3 Copy content Toggle raw display
ν9\nu^{9}== 7β11+3β10+3β9+6β84β711β6+12β5+8 - 7 \beta_{11} + 3 \beta_{10} + 3 \beta_{9} + 6 \beta_{8} - 4 \beta_{7} - 11 \beta_{6} + 12 \beta_{5} + \cdots - 8 Copy content Toggle raw display
ν10\nu^{10}== 17β11+4β10+13β9+18β89β78β6+3β5+11 - 17 \beta_{11} + 4 \beta_{10} + 13 \beta_{9} + 18 \beta_{8} - 9 \beta_{7} - 8 \beta_{6} + 3 \beta_{5} + \cdots - 11 Copy content Toggle raw display
ν11\nu^{11}== 18β11+4β106β913β821β711β6β5+7 18 \beta_{11} + 4 \beta_{10} - 6 \beta_{9} - 13 \beta_{8} - 21 \beta_{7} - 11 \beta_{6} - \beta_{5} + \cdots - 7 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/91Z)×\left(\mathbb{Z}/91\mathbb{Z}\right)^\times.

nn 1515 6666
χ(n)\chi(n) 1β91 - \beta_{9} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
36.1
−1.12906 0.851598i
0.759479 1.19298i
1.34408 + 0.439820i
−1.08105 + 0.911778i
1.40744 + 0.138282i
−1.30089 + 0.554694i
−1.12906 + 0.851598i
0.759479 + 1.19298i
1.34408 0.439820i
−1.08105 0.911778i
1.40744 0.138282i
−1.30089 0.554694i
−2.34104 + 1.35160i 0.172975 + 0.299601i 2.65363 4.59623i 3.25812i −0.809880 0.467584i 0.866025 + 0.500000i 8.94020i 1.44016 2.49443i 4.40367 + 7.62739i
36.2 −1.20027 + 0.692976i 1.41289 + 2.44719i −0.0395678 + 0.0685334i 0.518957i −3.39169 1.95819i −0.866025 0.500000i 2.88158i −2.49250 + 4.31714i 0.359625 + 0.622889i
36.3 −0.104235 + 0.0601799i 0.291146 + 0.504280i −0.992757 + 1.71951i 1.68817i −0.0606950 0.0350423i 0.866025 + 0.500000i 0.479696i 1.33047 2.30444i −0.101594 0.175965i
36.4 0.713220 0.411778i −1.33015 2.30388i −0.660878 + 1.14467i 3.16209i −1.89737 1.09545i 0.866025 + 0.500000i 2.73565i −2.03858 + 3.53092i −1.30208 2.25527i
36.5 1.10554 0.638282i 0.583963 + 1.01145i −0.185192 + 0.320762i 1.81487i 1.29118 + 0.745466i −0.866025 0.500000i 3.02595i 0.817975 1.41677i −1.15840 2.00641i
36.6 1.82678 1.05469i −1.13082 1.95864i 1.22476 2.12135i 3.60178i −4.13154 2.38535i −0.866025 0.500000i 0.948212i −1.05753 + 1.83169i 3.79878 + 6.57967i
43.1 −2.34104 1.35160i 0.172975 0.299601i 2.65363 + 4.59623i 3.25812i −0.809880 + 0.467584i 0.866025 0.500000i 8.94020i 1.44016 + 2.49443i 4.40367 7.62739i
43.2 −1.20027 0.692976i 1.41289 2.44719i −0.0395678 0.0685334i 0.518957i −3.39169 + 1.95819i −0.866025 + 0.500000i 2.88158i −2.49250 4.31714i 0.359625 0.622889i
43.3 −0.104235 0.0601799i 0.291146 0.504280i −0.992757 1.71951i 1.68817i −0.0606950 + 0.0350423i 0.866025 0.500000i 0.479696i 1.33047 + 2.30444i −0.101594 + 0.175965i
43.4 0.713220 + 0.411778i −1.33015 + 2.30388i −0.660878 1.14467i 3.16209i −1.89737 + 1.09545i 0.866025 0.500000i 2.73565i −2.03858 3.53092i −1.30208 + 2.25527i
43.5 1.10554 + 0.638282i 0.583963 1.01145i −0.185192 0.320762i 1.81487i 1.29118 0.745466i −0.866025 + 0.500000i 3.02595i 0.817975 + 1.41677i −1.15840 + 2.00641i
43.6 1.82678 + 1.05469i −1.13082 + 1.95864i 1.22476 + 2.12135i 3.60178i −4.13154 + 2.38535i −0.866025 + 0.500000i 0.948212i −1.05753 1.83169i 3.79878 6.57967i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 36.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.q.a 12
3.b odd 2 1 819.2.ct.a 12
4.b odd 2 1 1456.2.cc.c 12
7.b odd 2 1 637.2.q.h 12
7.c even 3 1 637.2.k.h 12
7.c even 3 1 637.2.u.h 12
7.d odd 6 1 637.2.k.g 12
7.d odd 6 1 637.2.u.i 12
13.c even 3 1 1183.2.c.i 12
13.e even 6 1 inner 91.2.q.a 12
13.e even 6 1 1183.2.c.i 12
13.f odd 12 1 1183.2.a.m 6
13.f odd 12 1 1183.2.a.p 6
39.h odd 6 1 819.2.ct.a 12
52.i odd 6 1 1456.2.cc.c 12
91.k even 6 1 637.2.u.h 12
91.l odd 6 1 637.2.u.i 12
91.p odd 6 1 637.2.k.g 12
91.t odd 6 1 637.2.q.h 12
91.u even 6 1 637.2.k.h 12
91.bc even 12 1 8281.2.a.by 6
91.bc even 12 1 8281.2.a.ch 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.q.a 12 1.a even 1 1 trivial
91.2.q.a 12 13.e even 6 1 inner
637.2.k.g 12 7.d odd 6 1
637.2.k.g 12 91.p odd 6 1
637.2.k.h 12 7.c even 3 1
637.2.k.h 12 91.u even 6 1
637.2.q.h 12 7.b odd 2 1
637.2.q.h 12 91.t odd 6 1
637.2.u.h 12 7.c even 3 1
637.2.u.h 12 91.k even 6 1
637.2.u.i 12 7.d odd 6 1
637.2.u.i 12 91.l odd 6 1
819.2.ct.a 12 3.b odd 2 1
819.2.ct.a 12 39.h odd 6 1
1183.2.a.m 6 13.f odd 12 1
1183.2.a.p 6 13.f odd 12 1
1183.2.c.i 12 13.c even 3 1
1183.2.c.i 12 13.e even 6 1
1456.2.cc.c 12 4.b odd 2 1
1456.2.cc.c 12 52.i odd 6 1
8281.2.a.by 6 91.bc even 12 1
8281.2.a.ch 6 91.bc even 12 1

Hecke kernels

This newform subspace is the entire newspace S2new(91,[χ])S_{2}^{\mathrm{new}}(91, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T128T10++1 T^{12} - 8 T^{10} + \cdots + 1 Copy content Toggle raw display
33 T12+11T10++16 T^{12} + 11 T^{10} + \cdots + 16 Copy content Toggle raw display
55 T12+40T10++3481 T^{12} + 40 T^{10} + \cdots + 3481 Copy content Toggle raw display
77 (T4T2+1)3 (T^{4} - T^{2} + 1)^{3} Copy content Toggle raw display
1111 T126T11++256 T^{12} - 6 T^{11} + \cdots + 256 Copy content Toggle raw display
1313 T124T11++4826809 T^{12} - 4 T^{11} + \cdots + 4826809 Copy content Toggle raw display
1717 T12+4T11++241081 T^{12} + 4 T^{11} + \cdots + 241081 Copy content Toggle raw display
1919 T1229T10++55696 T^{12} - 29 T^{10} + \cdots + 55696 Copy content Toggle raw display
2323 T12+12T11++38539264 T^{12} + 12 T^{11} + \cdots + 38539264 Copy content Toggle raw display
2929 T128T11++10042561 T^{12} - 8 T^{11} + \cdots + 10042561 Copy content Toggle raw display
3131 T12+136T10++913936 T^{12} + 136 T^{10} + \cdots + 913936 Copy content Toggle raw display
3737 T12++1755945216 T^{12} + \cdots + 1755945216 Copy content Toggle raw display
4141 T12++884705536 T^{12} + \cdots + 884705536 Copy content Toggle raw display
4343 T122T11++2408704 T^{12} - 2 T^{11} + \cdots + 2408704 Copy content Toggle raw display
4747 T12+272T10++9461776 T^{12} + 272 T^{10} + \cdots + 9461776 Copy content Toggle raw display
5353 (T6+22T5+2339)2 (T^{6} + 22 T^{5} + \cdots - 2339)^{2} Copy content Toggle raw display
5959 T12++4571923456 T^{12} + \cdots + 4571923456 Copy content Toggle raw display
6161 T1214T11++5607424 T^{12} - 14 T^{11} + \cdots + 5607424 Copy content Toggle raw display
6767 T12++613651984 T^{12} + \cdots + 613651984 Copy content Toggle raw display
7171 T12+24T11++46895104 T^{12} + 24 T^{11} + \cdots + 46895104 Copy content Toggle raw display
7373 T12++1386221824 T^{12} + \cdots + 1386221824 Copy content Toggle raw display
7979 (T6+28T5+512)2 (T^{6} + 28 T^{5} + \cdots - 512)^{2} Copy content Toggle raw display
8383 T12++141324544 T^{12} + \cdots + 141324544 Copy content Toggle raw display
8989 T12++1834580224 T^{12} + \cdots + 1834580224 Copy content Toggle raw display
9797 T126T11++53465344 T^{12} - 6 T^{11} + \cdots + 53465344 Copy content Toggle raw display
show more
show less