Properties

Label 910.2.i.b.841.1
Level $910$
Weight $2$
Character 910.841
Analytic conductor $7.266$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [910,2,Mod(211,910)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(910, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("910.211");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 910 = 2 \cdot 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 910.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.26638658394\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 841.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 910.841
Dual form 910.2.i.b.211.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 + 0.866025i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.00000 + 1.73205i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 + 0.866025i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.00000 + 1.73205i) q^{9} +(-0.500000 + 0.866025i) q^{10} +1.00000 q^{12} +(-3.50000 + 0.866025i) q^{13} -1.00000 q^{14} +(0.500000 - 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +2.00000 q^{18} +(-4.00000 - 6.92820i) q^{19} +(0.500000 + 0.866025i) q^{20} +1.00000 q^{21} +(-3.00000 + 5.19615i) q^{23} +(0.500000 - 0.866025i) q^{24} +1.00000 q^{25} +(-1.00000 + 3.46410i) q^{26} -5.00000 q^{27} +(-0.500000 + 0.866025i) q^{28} +(-4.50000 + 7.79423i) q^{29} +(-0.500000 - 0.866025i) q^{30} -4.00000 q^{31} +(0.500000 + 0.866025i) q^{32} +3.00000 q^{34} +(0.500000 + 0.866025i) q^{35} +(1.00000 - 1.73205i) q^{36} +(-1.00000 + 1.73205i) q^{37} -8.00000 q^{38} +(1.00000 - 3.46410i) q^{39} +1.00000 q^{40} +(0.500000 - 0.866025i) q^{42} +(5.00000 + 8.66025i) q^{43} +(-1.00000 - 1.73205i) q^{45} +(3.00000 + 5.19615i) q^{46} +9.00000 q^{47} +(-0.500000 - 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{50} -3.00000 q^{51} +(2.50000 + 2.59808i) q^{52} -12.0000 q^{53} +(-2.50000 + 4.33013i) q^{54} +(0.500000 + 0.866025i) q^{56} +8.00000 q^{57} +(4.50000 + 7.79423i) q^{58} +(-3.00000 - 5.19615i) q^{59} -1.00000 q^{60} +(-1.00000 - 1.73205i) q^{61} +(-2.00000 + 3.46410i) q^{62} +(1.00000 - 1.73205i) q^{63} +1.00000 q^{64} +(3.50000 - 0.866025i) q^{65} +(-7.00000 + 12.1244i) q^{67} +(1.50000 - 2.59808i) q^{68} +(-3.00000 - 5.19615i) q^{69} +1.00000 q^{70} +(-1.50000 - 2.59808i) q^{71} +(-1.00000 - 1.73205i) q^{72} -13.0000 q^{73} +(1.00000 + 1.73205i) q^{74} +(-0.500000 + 0.866025i) q^{75} +(-4.00000 + 6.92820i) q^{76} +(-2.50000 - 2.59808i) q^{78} -1.00000 q^{79} +(0.500000 - 0.866025i) q^{80} +(-0.500000 + 0.866025i) q^{81} +9.00000 q^{83} +(-0.500000 - 0.866025i) q^{84} +(-1.50000 - 2.59808i) q^{85} +10.0000 q^{86} +(-4.50000 - 7.79423i) q^{87} +(6.00000 - 10.3923i) q^{89} -2.00000 q^{90} +(2.50000 + 2.59808i) q^{91} +6.00000 q^{92} +(2.00000 - 3.46410i) q^{93} +(4.50000 - 7.79423i) q^{94} +(4.00000 + 6.92820i) q^{95} -1.00000 q^{96} +(3.50000 + 6.06218i) q^{97} +(0.500000 + 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} - q^{4} - 2 q^{5} + q^{6} - q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{3} - q^{4} - 2 q^{5} + q^{6} - q^{7} - 2 q^{8} + 2 q^{9} - q^{10} + 2 q^{12} - 7 q^{13} - 2 q^{14} + q^{15} - q^{16} + 3 q^{17} + 4 q^{18} - 8 q^{19} + q^{20} + 2 q^{21} - 6 q^{23} + q^{24} + 2 q^{25} - 2 q^{26} - 10 q^{27} - q^{28} - 9 q^{29} - q^{30} - 8 q^{31} + q^{32} + 6 q^{34} + q^{35} + 2 q^{36} - 2 q^{37} - 16 q^{38} + 2 q^{39} + 2 q^{40} + q^{42} + 10 q^{43} - 2 q^{45} + 6 q^{46} + 18 q^{47} - q^{48} - q^{49} + q^{50} - 6 q^{51} + 5 q^{52} - 24 q^{53} - 5 q^{54} + q^{56} + 16 q^{57} + 9 q^{58} - 6 q^{59} - 2 q^{60} - 2 q^{61} - 4 q^{62} + 2 q^{63} + 2 q^{64} + 7 q^{65} - 14 q^{67} + 3 q^{68} - 6 q^{69} + 2 q^{70} - 3 q^{71} - 2 q^{72} - 26 q^{73} + 2 q^{74} - q^{75} - 8 q^{76} - 5 q^{78} - 2 q^{79} + q^{80} - q^{81} + 18 q^{83} - q^{84} - 3 q^{85} + 20 q^{86} - 9 q^{87} + 12 q^{89} - 4 q^{90} + 5 q^{91} + 12 q^{92} + 4 q^{93} + 9 q^{94} + 8 q^{95} - 2 q^{96} + 7 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/910\mathbb{Z}\right)^\times\).

\(n\) \(521\) \(547\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 −0.447214
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 1.00000 0.288675
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) −1.00000 −0.267261
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 2.00000 0.471405
\(19\) −4.00000 6.92820i −0.917663 1.58944i −0.802955 0.596040i \(-0.796740\pi\)
−0.114708 0.993399i \(-0.536593\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 1.00000 0.200000
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) −5.00000 −0.962250
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) −4.50000 + 7.79423i −0.835629 + 1.44735i 0.0578882 + 0.998323i \(0.481563\pi\)
−0.893517 + 0.449029i \(0.851770\pi\)
\(30\) −0.500000 0.866025i −0.0912871 0.158114i
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 1.00000 1.73205i 0.166667 0.288675i
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) −8.00000 −1.29777
\(39\) 1.00000 3.46410i 0.160128 0.554700i
\(40\) 1.00000 0.158114
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0.500000 0.866025i 0.0771517 0.133631i
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) 0 0
\(45\) −1.00000 1.73205i −0.149071 0.258199i
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −3.00000 −0.420084
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) −2.50000 + 4.33013i −0.340207 + 0.589256i
\(55\) 0 0
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 8.00000 1.05963
\(58\) 4.50000 + 7.79423i 0.590879 + 1.02343i
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) −1.00000 −0.129099
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) −2.00000 + 3.46410i −0.254000 + 0.439941i
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 1.00000 0.125000
\(65\) 3.50000 0.866025i 0.434122 0.107417i
\(66\) 0 0
\(67\) −7.00000 + 12.1244i −0.855186 + 1.48123i 0.0212861 + 0.999773i \(0.493224\pi\)
−0.876472 + 0.481452i \(0.840109\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) −3.00000 5.19615i −0.361158 0.625543i
\(70\) 1.00000 0.119523
\(71\) −1.50000 2.59808i −0.178017 0.308335i 0.763184 0.646181i \(-0.223635\pi\)
−0.941201 + 0.337846i \(0.890302\pi\)
\(72\) −1.00000 1.73205i −0.117851 0.204124i
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) −0.500000 + 0.866025i −0.0577350 + 0.100000i
\(76\) −4.00000 + 6.92820i −0.458831 + 0.794719i
\(77\) 0 0
\(78\) −2.50000 2.59808i −0.283069 0.294174i
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) −0.500000 0.866025i −0.0545545 0.0944911i
\(85\) −1.50000 2.59808i −0.162698 0.281801i
\(86\) 10.0000 1.07833
\(87\) −4.50000 7.79423i −0.482451 0.835629i
\(88\) 0 0
\(89\) 6.00000 10.3923i 0.635999 1.10158i −0.350304 0.936636i \(-0.613922\pi\)
0.986303 0.164946i \(-0.0527450\pi\)
\(90\) −2.00000 −0.210819
\(91\) 2.50000 + 2.59808i 0.262071 + 0.272352i
\(92\) 6.00000 0.625543
\(93\) 2.00000 3.46410i 0.207390 0.359211i
\(94\) 4.50000 7.79423i 0.464140 0.803913i
\(95\) 4.00000 + 6.92820i 0.410391 + 0.710819i
\(96\) −1.00000 −0.102062
\(97\) 3.50000 + 6.06218i 0.355371 + 0.615521i 0.987181 0.159602i \(-0.0510211\pi\)
−0.631810 + 0.775123i \(0.717688\pi\)
\(98\) 0.500000 + 0.866025i 0.0505076 + 0.0874818i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) −1.50000 + 2.59808i −0.148522 + 0.257248i
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 3.50000 0.866025i 0.343203 0.0849208i
\(105\) −1.00000 −0.0975900
\(106\) −6.00000 + 10.3923i −0.582772 + 1.00939i
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) 2.50000 + 4.33013i 0.240563 + 0.416667i
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) −1.00000 1.73205i −0.0949158 0.164399i
\(112\) 1.00000 0.0944911
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 4.00000 6.92820i 0.374634 0.648886i
\(115\) 3.00000 5.19615i 0.279751 0.484544i
\(116\) 9.00000 0.835629
\(117\) −5.00000 5.19615i −0.462250 0.480384i
\(118\) −6.00000 −0.552345
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) −0.500000 + 0.866025i −0.0456435 + 0.0790569i
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) −1.00000 −0.0894427
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) 11.0000 19.0526i 0.976092 1.69064i 0.299809 0.953999i \(-0.403077\pi\)
0.676283 0.736642i \(-0.263590\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −10.0000 −0.880451
\(130\) 1.00000 3.46410i 0.0877058 0.303822i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −4.00000 + 6.92820i −0.346844 + 0.600751i
\(134\) 7.00000 + 12.1244i 0.604708 + 1.04738i
\(135\) 5.00000 0.430331
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) −6.00000 −0.510754
\(139\) −7.00000 12.1244i −0.593732 1.02837i −0.993724 0.111856i \(-0.964321\pi\)
0.399992 0.916519i \(-0.369013\pi\)
\(140\) 0.500000 0.866025i 0.0422577 0.0731925i
\(141\) −4.50000 + 7.79423i −0.378968 + 0.656392i
\(142\) −3.00000 −0.251754
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) 4.50000 7.79423i 0.373705 0.647275i
\(146\) −6.50000 + 11.2583i −0.537944 + 0.931746i
\(147\) −0.500000 0.866025i −0.0412393 0.0714286i
\(148\) 2.00000 0.164399
\(149\) 1.50000 + 2.59808i 0.122885 + 0.212843i 0.920904 0.389789i \(-0.127452\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(150\) 0.500000 + 0.866025i 0.0408248 + 0.0707107i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000 + 6.92820i 0.324443 + 0.561951i
\(153\) −3.00000 + 5.19615i −0.242536 + 0.420084i
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) −3.50000 + 0.866025i −0.280224 + 0.0693375i
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) −0.500000 + 0.866025i −0.0397779 + 0.0688973i
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 6.00000 0.472866
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.50000 7.79423i 0.349268 0.604949i
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) −1.00000 −0.0771517
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) −3.00000 −0.230089
\(171\) 8.00000 13.8564i 0.611775 1.05963i
\(172\) 5.00000 8.66025i 0.381246 0.660338i
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) −9.00000 −0.682288
\(175\) −0.500000 0.866025i −0.0377964 0.0654654i
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) −6.00000 10.3923i −0.449719 0.778936i
\(179\) 4.50000 7.79423i 0.336346 0.582568i −0.647397 0.762153i \(-0.724142\pi\)
0.983742 + 0.179585i \(0.0574756\pi\)
\(180\) −1.00000 + 1.73205i −0.0745356 + 0.129099i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 3.50000 0.866025i 0.259437 0.0641941i
\(183\) 2.00000 0.147844
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) 1.00000 1.73205i 0.0735215 0.127343i
\(186\) −2.00000 3.46410i −0.146647 0.254000i
\(187\) 0 0
\(188\) −4.50000 7.79423i −0.328196 0.568453i
\(189\) 2.50000 + 4.33013i 0.181848 + 0.314970i
\(190\) 8.00000 0.580381
\(191\) −7.50000 12.9904i −0.542681 0.939951i −0.998749 0.0500060i \(-0.984076\pi\)
0.456068 0.889945i \(-0.349257\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 7.00000 0.502571
\(195\) −1.00000 + 3.46410i −0.0716115 + 0.248069i
\(196\) 1.00000 0.0714286
\(197\) −6.00000 + 10.3923i −0.427482 + 0.740421i −0.996649 0.0818013i \(-0.973933\pi\)
0.569166 + 0.822222i \(0.307266\pi\)
\(198\) 0 0
\(199\) 8.00000 + 13.8564i 0.567105 + 0.982255i 0.996850 + 0.0793045i \(0.0252700\pi\)
−0.429745 + 0.902950i \(0.641397\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −7.00000 12.1244i −0.493742 0.855186i
\(202\) 0 0
\(203\) 9.00000 0.631676
\(204\) 1.50000 + 2.59808i 0.105021 + 0.181902i
\(205\) 0 0
\(206\) −0.500000 + 0.866025i −0.0348367 + 0.0603388i
\(207\) −12.0000 −0.834058
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) 0 0
\(210\) −0.500000 + 0.866025i −0.0345033 + 0.0597614i
\(211\) 0.500000 0.866025i 0.0344214 0.0596196i −0.848301 0.529514i \(-0.822374\pi\)
0.882723 + 0.469894i \(0.155708\pi\)
\(212\) 6.00000 + 10.3923i 0.412082 + 0.713746i
\(213\) 3.00000 0.205557
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −5.00000 8.66025i −0.340997 0.590624i
\(216\) 5.00000 0.340207
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) −0.500000 + 0.866025i −0.0338643 + 0.0586546i
\(219\) 6.50000 11.2583i 0.439229 0.760767i
\(220\) 0 0
\(221\) −7.50000 7.79423i −0.504505 0.524297i
\(222\) −2.00000 −0.134231
\(223\) −8.50000 + 14.7224i −0.569202 + 0.985887i 0.427443 + 0.904042i \(0.359414\pi\)
−0.996645 + 0.0818447i \(0.973919\pi\)
\(224\) 0.500000 0.866025i 0.0334077 0.0578638i
\(225\) 1.00000 + 1.73205i 0.0666667 + 0.115470i
\(226\) −6.00000 −0.399114
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) −4.00000 6.92820i −0.264906 0.458831i
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −3.00000 5.19615i −0.197814 0.342624i
\(231\) 0 0
\(232\) 4.50000 7.79423i 0.295439 0.511716i
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) −7.00000 + 1.73205i −0.457604 + 0.113228i
\(235\) −9.00000 −0.587095
\(236\) −3.00000 + 5.19615i −0.195283 + 0.338241i
\(237\) 0.500000 0.866025i 0.0324785 0.0562544i
\(238\) −1.50000 2.59808i −0.0972306 0.168408i
\(239\) 21.0000 1.35838 0.679189 0.733964i \(-0.262332\pi\)
0.679189 + 0.733964i \(0.262332\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) −13.0000 22.5167i −0.837404 1.45043i −0.892058 0.451920i \(-0.850739\pi\)
0.0546547 0.998505i \(-0.482594\pi\)
\(242\) 11.0000 0.707107
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) 0 0
\(247\) 20.0000 + 20.7846i 1.27257 + 1.32249i
\(248\) 4.00000 0.254000
\(249\) −4.50000 + 7.79423i −0.285176 + 0.493939i
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) −9.00000 15.5885i −0.568075 0.983935i −0.996756 0.0804789i \(-0.974355\pi\)
0.428681 0.903456i \(-0.358978\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) −11.0000 19.0526i −0.690201 1.19546i
\(255\) 3.00000 0.187867
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) −5.00000 + 8.66025i −0.311286 + 0.539164i
\(259\) 2.00000 0.124274
\(260\) −2.50000 2.59808i −0.155043 0.161126i
\(261\) −18.0000 −1.11417
\(262\) 6.00000 10.3923i 0.370681 0.642039i
\(263\) −9.00000 + 15.5885i −0.554964 + 0.961225i 0.442943 + 0.896550i \(0.353935\pi\)
−0.997906 + 0.0646755i \(0.979399\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 4.00000 + 6.92820i 0.245256 + 0.424795i
\(267\) 6.00000 + 10.3923i 0.367194 + 0.635999i
\(268\) 14.0000 0.855186
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 2.50000 4.33013i 0.152145 0.263523i
\(271\) −13.0000 + 22.5167i −0.789694 + 1.36779i 0.136461 + 0.990645i \(0.456427\pi\)
−0.926155 + 0.377144i \(0.876906\pi\)
\(272\) −3.00000 −0.181902
\(273\) −3.50000 + 0.866025i −0.211830 + 0.0524142i
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) −3.00000 + 5.19615i −0.180579 + 0.312772i
\(277\) 2.00000 + 3.46410i 0.120168 + 0.208138i 0.919834 0.392308i \(-0.128323\pi\)
−0.799666 + 0.600446i \(0.794990\pi\)
\(278\) −14.0000 −0.839664
\(279\) −4.00000 6.92820i −0.239474 0.414781i
\(280\) −0.500000 0.866025i −0.0298807 0.0517549i
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 4.50000 + 7.79423i 0.267971 + 0.464140i
\(283\) −10.0000 + 17.3205i −0.594438 + 1.02960i 0.399188 + 0.916869i \(0.369292\pi\)
−0.993626 + 0.112728i \(0.964041\pi\)
\(284\) −1.50000 + 2.59808i −0.0890086 + 0.154167i
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 + 1.73205i −0.0589256 + 0.102062i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) −7.00000 −0.410347
\(292\) 6.50000 + 11.2583i 0.380384 + 0.658844i
\(293\) 4.50000 + 7.79423i 0.262893 + 0.455344i 0.967009 0.254741i \(-0.0819901\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 3.00000 + 5.19615i 0.174667 + 0.302532i
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) 6.00000 20.7846i 0.346989 1.20201i
\(300\) 1.00000 0.0577350
\(301\) 5.00000 8.66025i 0.288195 0.499169i
\(302\) 4.00000 6.92820i 0.230174 0.398673i
\(303\) 0 0
\(304\) 8.00000 0.458831
\(305\) 1.00000 + 1.73205i 0.0572598 + 0.0991769i
\(306\) 3.00000 + 5.19615i 0.171499 + 0.297044i
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 0.500000 0.866025i 0.0284440 0.0492665i
\(310\) 2.00000 3.46410i 0.113592 0.196748i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −1.00000 + 3.46410i −0.0566139 + 0.196116i
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 2.50000 4.33013i 0.141083 0.244363i
\(315\) −1.00000 + 1.73205i −0.0563436 + 0.0975900i
\(316\) 0.500000 + 0.866025i 0.0281272 + 0.0487177i
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) −6.00000 10.3923i −0.336463 0.582772i
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 6.00000 + 10.3923i 0.334887 + 0.580042i
\(322\) 3.00000 5.19615i 0.167183 0.289570i
\(323\) 12.0000 20.7846i 0.667698 1.15649i
\(324\) 1.00000 0.0555556
\(325\) −3.50000 + 0.866025i −0.194145 + 0.0480384i
\(326\) 4.00000 0.221540
\(327\) 0.500000 0.866025i 0.0276501 0.0478913i
\(328\) 0 0
\(329\) −4.50000 7.79423i −0.248093 0.429710i
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) −4.50000 7.79423i −0.246970 0.427764i
\(333\) −4.00000 −0.219199
\(334\) 1.50000 + 2.59808i 0.0820763 + 0.142160i
\(335\) 7.00000 12.1244i 0.382451 0.662424i
\(336\) −0.500000 + 0.866025i −0.0272772 + 0.0472456i
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0.500000 12.9904i 0.0271964 0.706584i
\(339\) 6.00000 0.325875
\(340\) −1.50000 + 2.59808i −0.0813489 + 0.140900i
\(341\) 0 0
\(342\) −8.00000 13.8564i −0.432590 0.749269i
\(343\) 1.00000 0.0539949
\(344\) −5.00000 8.66025i −0.269582 0.466930i
\(345\) 3.00000 + 5.19615i 0.161515 + 0.279751i
\(346\) 18.0000 0.967686
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) −4.50000 + 7.79423i −0.241225 + 0.417815i
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 17.5000 4.33013i 0.934081 0.231125i
\(352\) 0 0
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 3.00000 5.19615i 0.159448 0.276172i
\(355\) 1.50000 + 2.59808i 0.0796117 + 0.137892i
\(356\) −12.0000 −0.635999
\(357\) 1.50000 + 2.59808i 0.0793884 + 0.137505i
\(358\) −4.50000 7.79423i −0.237832 0.411938i
\(359\) 3.00000 0.158334 0.0791670 0.996861i \(-0.474774\pi\)
0.0791670 + 0.996861i \(0.474774\pi\)
\(360\) 1.00000 + 1.73205i 0.0527046 + 0.0912871i
\(361\) −22.5000 + 38.9711i −1.18421 + 2.05111i
\(362\) −11.0000 + 19.0526i −0.578147 + 1.00138i
\(363\) −11.0000 −0.577350
\(364\) 1.00000 3.46410i 0.0524142 0.181568i
\(365\) 13.0000 0.680451
\(366\) 1.00000 1.73205i 0.0522708 0.0905357i
\(367\) −8.50000 + 14.7224i −0.443696 + 0.768505i −0.997960 0.0638362i \(-0.979666\pi\)
0.554264 + 0.832341i \(0.313000\pi\)
\(368\) −3.00000 5.19615i −0.156386 0.270868i
\(369\) 0 0
\(370\) −1.00000 1.73205i −0.0519875 0.0900450i
\(371\) 6.00000 + 10.3923i 0.311504 + 0.539542i
\(372\) −4.00000 −0.207390
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −9.00000 −0.464140
\(377\) 9.00000 31.1769i 0.463524 1.60569i
\(378\) 5.00000 0.257172
\(379\) 12.5000 21.6506i 0.642082 1.11212i −0.342885 0.939377i \(-0.611404\pi\)
0.984967 0.172741i \(-0.0552624\pi\)
\(380\) 4.00000 6.92820i 0.205196 0.355409i
\(381\) 11.0000 + 19.0526i 0.563547 + 0.976092i
\(382\) −15.0000 −0.767467
\(383\) 7.50000 + 12.9904i 0.383232 + 0.663777i 0.991522 0.129937i \(-0.0414776\pi\)
−0.608290 + 0.793715i \(0.708144\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 0 0
\(386\) 7.00000 + 12.1244i 0.356291 + 0.617113i
\(387\) −10.0000 + 17.3205i −0.508329 + 0.880451i
\(388\) 3.50000 6.06218i 0.177686 0.307760i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 2.50000 + 2.59808i 0.126592 + 0.131559i
\(391\) −18.0000 −0.910299
\(392\) 0.500000 0.866025i 0.0252538 0.0437409i
\(393\) −6.00000 + 10.3923i −0.302660 + 0.524222i
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) 1.00000 0.0503155
\(396\) 0 0
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) 16.0000 0.802008
\(399\) −4.00000 6.92820i −0.200250 0.346844i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) −14.0000 −0.698257
\(403\) 14.0000 3.46410i 0.697390 0.172559i
\(404\) 0 0
\(405\) 0.500000 0.866025i 0.0248452 0.0430331i
\(406\) 4.50000 7.79423i 0.223331 0.386821i
\(407\) 0 0
\(408\) 3.00000 0.148522
\(409\) 8.00000 + 13.8564i 0.395575 + 0.685155i 0.993174 0.116639i \(-0.0372122\pi\)
−0.597600 + 0.801795i \(0.703879\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0.500000 + 0.866025i 0.0246332 + 0.0426660i
\(413\) −3.00000 + 5.19615i −0.147620 + 0.255686i
\(414\) −6.00000 + 10.3923i −0.294884 + 0.510754i
\(415\) −9.00000 −0.441793
\(416\) −2.50000 2.59808i −0.122573 0.127381i
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) −12.0000 + 20.7846i −0.586238 + 1.01539i 0.408481 + 0.912767i \(0.366058\pi\)
−0.994720 + 0.102628i \(0.967275\pi\)
\(420\) 0.500000 + 0.866025i 0.0243975 + 0.0422577i
\(421\) −37.0000 −1.80327 −0.901635 0.432498i \(-0.857632\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(422\) −0.500000 0.866025i −0.0243396 0.0421575i
\(423\) 9.00000 + 15.5885i 0.437595 + 0.757937i
\(424\) 12.0000 0.582772
\(425\) 1.50000 + 2.59808i 0.0727607 + 0.126025i
\(426\) 1.50000 2.59808i 0.0726752 0.125877i
\(427\) −1.00000 + 1.73205i −0.0483934 + 0.0838198i
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −10.0000 −0.482243
\(431\) 1.50000 2.59808i 0.0722525 0.125145i −0.827636 0.561266i \(-0.810315\pi\)
0.899888 + 0.436121i \(0.143648\pi\)
\(432\) 2.50000 4.33013i 0.120281 0.208333i
\(433\) 17.0000 + 29.4449i 0.816968 + 1.41503i 0.907906 + 0.419173i \(0.137680\pi\)
−0.0909384 + 0.995857i \(0.528987\pi\)
\(434\) 4.00000 0.192006
\(435\) 4.50000 + 7.79423i 0.215758 + 0.373705i
\(436\) 0.500000 + 0.866025i 0.0239457 + 0.0414751i
\(437\) 48.0000 2.29615
\(438\) −6.50000 11.2583i −0.310582 0.537944i
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) −10.5000 + 2.59808i −0.499434 + 0.123578i
\(443\) 42.0000 1.99548 0.997740 0.0671913i \(-0.0214038\pi\)
0.997740 + 0.0671913i \(0.0214038\pi\)
\(444\) −1.00000 + 1.73205i −0.0474579 + 0.0821995i
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) 8.50000 + 14.7224i 0.402487 + 0.697127i
\(447\) −3.00000 −0.141895
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) 10.5000 + 18.1865i 0.495526 + 0.858276i 0.999987 0.00515887i \(-0.00164213\pi\)
−0.504461 + 0.863434i \(0.668309\pi\)
\(450\) 2.00000 0.0942809
\(451\) 0 0
\(452\) −3.00000 + 5.19615i −0.141108 + 0.244406i
\(453\) −4.00000 + 6.92820i −0.187936 + 0.325515i
\(454\) −12.0000 −0.563188
\(455\) −2.50000 2.59808i −0.117202 0.121800i
\(456\) −8.00000 −0.374634
\(457\) −4.00000 + 6.92820i −0.187112 + 0.324088i −0.944286 0.329125i \(-0.893246\pi\)
0.757174 + 0.653213i \(0.226579\pi\)
\(458\) 1.00000 1.73205i 0.0467269 0.0809334i
\(459\) −7.50000 12.9904i −0.350070 0.606339i
\(460\) −6.00000 −0.279751
\(461\) 12.0000 + 20.7846i 0.558896 + 0.968036i 0.997589 + 0.0693989i \(0.0221081\pi\)
−0.438693 + 0.898637i \(0.644559\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) −4.50000 7.79423i −0.208907 0.361838i
\(465\) −2.00000 + 3.46410i −0.0927478 + 0.160644i
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) −2.00000 + 6.92820i −0.0924500 + 0.320256i
\(469\) 14.0000 0.646460
\(470\) −4.50000 + 7.79423i −0.207570 + 0.359521i
\(471\) −2.50000 + 4.33013i −0.115194 + 0.199522i
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) 0 0
\(474\) −0.500000 0.866025i −0.0229658 0.0397779i
\(475\) −4.00000 6.92820i −0.183533 0.317888i
\(476\) −3.00000 −0.137505
\(477\) −12.0000 20.7846i −0.549442 0.951662i
\(478\) 10.5000 18.1865i 0.480259 0.831833i
\(479\) −18.0000 + 31.1769i −0.822441 + 1.42451i 0.0814184 + 0.996680i \(0.474055\pi\)
−0.903859 + 0.427830i \(0.859278\pi\)
\(480\) 1.00000 0.0456435
\(481\) 2.00000 6.92820i 0.0911922 0.315899i
\(482\) −26.0000 −1.18427
\(483\) −3.00000 + 5.19615i −0.136505 + 0.236433i
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) −3.50000 6.06218i −0.158927 0.275269i
\(486\) −16.0000 −0.725775
\(487\) 2.00000 + 3.46410i 0.0906287 + 0.156973i 0.907776 0.419456i \(-0.137779\pi\)
−0.817147 + 0.576429i \(0.804446\pi\)
\(488\) 1.00000 + 1.73205i 0.0452679 + 0.0784063i
\(489\) −4.00000 −0.180886
\(490\) −0.500000 0.866025i −0.0225877 0.0391230i
\(491\) −4.50000 + 7.79423i −0.203082 + 0.351749i −0.949520 0.313707i \(-0.898429\pi\)
0.746438 + 0.665455i \(0.231763\pi\)
\(492\) 0 0
\(493\) −27.0000 −1.21602
\(494\) 28.0000 6.92820i 1.25978 0.311715i
\(495\) 0 0
\(496\) 2.00000 3.46410i 0.0898027 0.155543i
\(497\) −1.50000 + 2.59808i −0.0672842 + 0.116540i
\(498\) 4.50000 + 7.79423i 0.201650 + 0.349268i
\(499\) 29.0000 1.29822 0.649109 0.760695i \(-0.275142\pi\)
0.649109 + 0.760695i \(0.275142\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) −1.50000 2.59808i −0.0670151 0.116073i
\(502\) −18.0000 −0.803379
\(503\) −13.5000 23.3827i −0.601935 1.04258i −0.992528 0.122019i \(-0.961063\pi\)
0.390593 0.920564i \(-0.372270\pi\)
\(504\) −1.00000 + 1.73205i −0.0445435 + 0.0771517i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 + 12.9904i −0.0222058 + 0.576923i
\(508\) −22.0000 −0.976092
\(509\) 3.00000 5.19615i 0.132973 0.230315i −0.791849 0.610718i \(-0.790881\pi\)
0.924821 + 0.380402i \(0.124214\pi\)
\(510\) 1.50000 2.59808i 0.0664211 0.115045i
\(511\) 6.50000 + 11.2583i 0.287543 + 0.498039i
\(512\) −1.00000 −0.0441942
\(513\) 20.0000 + 34.6410i 0.883022 + 1.52944i
\(514\) 9.00000 + 15.5885i 0.396973 + 0.687577i
\(515\) 1.00000 0.0440653
\(516\) 5.00000 + 8.66025i 0.220113 + 0.381246i
\(517\) 0 0
\(518\) 1.00000 1.73205i 0.0439375 0.0761019i
\(519\) −18.0000 −0.790112
\(520\) −3.50000 + 0.866025i −0.153485 + 0.0379777i
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) −9.00000 + 15.5885i −0.393919 + 0.682288i
\(523\) 6.50000 11.2583i 0.284225 0.492292i −0.688196 0.725525i \(-0.741597\pi\)
0.972421 + 0.233233i \(0.0749303\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 1.00000 0.0436436
\(526\) 9.00000 + 15.5885i 0.392419 + 0.679689i
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 6.00000 10.3923i 0.260623 0.451413i
\(531\) 6.00000 10.3923i 0.260378 0.450988i
\(532\) 8.00000 0.346844
\(533\) 0 0
\(534\) 12.0000 0.519291
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 7.00000 12.1244i 0.302354 0.523692i
\(537\) 4.50000 + 7.79423i 0.194189 + 0.336346i
\(538\) 0 0
\(539\) 0 0
\(540\) −2.50000 4.33013i −0.107583 0.186339i
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 13.0000 + 22.5167i 0.558398 + 0.967173i
\(543\) 11.0000 19.0526i 0.472055 0.817624i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 1.00000 0.0428353
\(546\) −1.00000 + 3.46410i −0.0427960 + 0.148250i
\(547\) −40.0000 −1.71028 −0.855138 0.518400i \(-0.826528\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −6.00000 + 10.3923i −0.256307 + 0.443937i
\(549\) 2.00000 3.46410i 0.0853579 0.147844i
\(550\) 0 0
\(551\) 72.0000 3.06730
\(552\) 3.00000 + 5.19615i 0.127688 + 0.221163i
\(553\) 0.500000 + 0.866025i 0.0212622 + 0.0368271i
\(554\) 4.00000 0.169944
\(555\) 1.00000 + 1.73205i 0.0424476 + 0.0735215i
\(556\) −7.00000 + 12.1244i −0.296866 + 0.514187i
\(557\) 3.00000 5.19615i 0.127114 0.220168i −0.795443 0.606028i \(-0.792762\pi\)
0.922557 + 0.385860i \(0.126095\pi\)
\(558\) −8.00000 −0.338667
\(559\) −25.0000 25.9808i −1.05739 1.09887i
\(560\) −1.00000 −0.0422577
\(561\) 0 0
\(562\) 13.5000 23.3827i 0.569463 0.986339i
\(563\) −7.50000 12.9904i −0.316087 0.547479i 0.663581 0.748105i \(-0.269036\pi\)
−0.979668 + 0.200625i \(0.935703\pi\)
\(564\) 9.00000 0.378968
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) 10.0000 + 17.3205i 0.420331 + 0.728035i
\(567\) 1.00000 0.0419961
\(568\) 1.50000 + 2.59808i 0.0629386 + 0.109013i
\(569\) −16.5000 + 28.5788i −0.691716 + 1.19809i 0.279559 + 0.960128i \(0.409812\pi\)
−0.971275 + 0.237959i \(0.923522\pi\)
\(570\) −4.00000 + 6.92820i −0.167542 + 0.290191i
\(571\) 11.0000 0.460336 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(572\) 0 0
\(573\) 15.0000 0.626634
\(574\) 0 0
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) 1.00000 + 1.73205i 0.0416667 + 0.0721688i
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) −7.00000 12.1244i −0.290910 0.503871i
\(580\) −9.00000 −0.373705
\(581\) −4.50000 7.79423i −0.186691 0.323359i
\(582\) −3.50000 + 6.06218i −0.145080 + 0.251285i
\(583\) 0 0
\(584\) 13.0000 0.537944
\(585\) 5.00000 + 5.19615i 0.206725 + 0.214834i
\(586\) 9.00000 0.371787
\(587\) −7.50000 + 12.9904i −0.309558 + 0.536170i −0.978266 0.207355i \(-0.933514\pi\)
0.668708 + 0.743525i \(0.266848\pi\)
\(588\) −0.500000 + 0.866025i −0.0206197 + 0.0357143i
\(589\) 16.0000 + 27.7128i 0.659269 + 1.14189i
\(590\) 6.00000 0.247016
\(591\) −6.00000 10.3923i −0.246807 0.427482i
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) −45.0000 −1.84793 −0.923964 0.382479i \(-0.875070\pi\)
−0.923964 + 0.382479i \(0.875070\pi\)
\(594\) 0 0
\(595\) −1.50000 + 2.59808i −0.0614940 + 0.106511i
\(596\) 1.50000 2.59808i 0.0614424 0.106421i
\(597\) −16.0000 −0.654836
\(598\) −15.0000 15.5885i −0.613396 0.637459i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0.500000 0.866025i 0.0204124 0.0353553i
\(601\) −7.00000 + 12.1244i −0.285536 + 0.494563i −0.972739 0.231903i \(-0.925505\pi\)
0.687203 + 0.726465i \(0.258838\pi\)
\(602\) −5.00000 8.66025i −0.203785 0.352966i
\(603\) −28.0000 −1.14025
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) −5.50000 9.52628i −0.223607 0.387298i
\(606\) 0 0
\(607\) −11.5000 19.9186i −0.466771 0.808470i 0.532509 0.846424i \(-0.321249\pi\)
−0.999279 + 0.0379540i \(0.987916\pi\)
\(608\) 4.00000 6.92820i 0.162221 0.280976i
\(609\) −4.50000 + 7.79423i −0.182349 + 0.315838i
\(610\) 2.00000 0.0809776
\(611\) −31.5000 + 7.79423i −1.27435 + 0.315321i
\(612\) 6.00000 0.242536
\(613\) −22.0000 + 38.1051i −0.888572 + 1.53905i −0.0470071 + 0.998895i \(0.514968\pi\)
−0.841564 + 0.540157i \(0.818365\pi\)
\(614\) −8.00000 + 13.8564i −0.322854 + 0.559199i
\(615\) 0 0
\(616\) 0 0
\(617\) −9.00000 15.5885i −0.362326 0.627568i 0.626017 0.779809i \(-0.284684\pi\)
−0.988343 + 0.152242i \(0.951351\pi\)
\(618\) −0.500000 0.866025i −0.0201129 0.0348367i
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) −2.00000 3.46410i −0.0803219 0.139122i
\(621\) 15.0000 25.9808i 0.601929 1.04257i
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 2.50000 + 2.59808i 0.100080 + 0.104006i
\(625\) 1.00000 0.0400000
\(626\) 13.0000 22.5167i 0.519584 0.899947i
\(627\) 0 0
\(628\) −2.50000 4.33013i −0.0997609 0.172791i
\(629\) −6.00000 −0.239236
\(630\) 1.00000 + 1.73205i 0.0398410 + 0.0690066i
\(631\) −23.5000 40.7032i −0.935520 1.62037i −0.773704 0.633548i \(-0.781598\pi\)
−0.161817 0.986821i \(-0.551735\pi\)
\(632\) 1.00000 0.0397779
\(633\) 0.500000 + 0.866025i 0.0198732 + 0.0344214i
\(634\) −15.0000 + 25.9808i −0.595726 + 1.03183i
\(635\) −11.0000 + 19.0526i −0.436522 + 0.756078i
\(636\) −12.0000 −0.475831
\(637\) 1.00000 3.46410i 0.0396214 0.137253i
\(638\) 0 0
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 12.0000 0.473602
\(643\) 0.500000 + 0.866025i 0.0197181 + 0.0341527i 0.875716 0.482826i \(-0.160390\pi\)
−0.855998 + 0.516979i \(0.827056\pi\)
\(644\) −3.00000 5.19615i −0.118217 0.204757i
\(645\) 10.0000 0.393750
\(646\) −12.0000 20.7846i −0.472134 0.817760i
\(647\) 1.50000 2.59808i 0.0589711 0.102141i −0.835033 0.550200i \(-0.814551\pi\)
0.894004 + 0.448059i \(0.147885\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 0 0
\(650\) −1.00000 + 3.46410i −0.0392232 + 0.135873i
\(651\) −4.00000 −0.156772
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) −0.500000 0.866025i −0.0195515 0.0338643i
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) −13.0000 22.5167i −0.507178 0.878459i
\(658\) −9.00000 −0.350857
\(659\) 4.50000 + 7.79423i 0.175295 + 0.303620i 0.940263 0.340448i \(-0.110579\pi\)
−0.764968 + 0.644068i \(0.777245\pi\)
\(660\) 0 0
\(661\) 20.0000 34.6410i 0.777910 1.34738i −0.155235 0.987878i \(-0.549613\pi\)
0.933144 0.359502i \(-0.117053\pi\)
\(662\) −20.0000 −0.777322
\(663\) 10.5000 2.59808i 0.407786 0.100901i
\(664\) −9.00000 −0.349268
\(665\) 4.00000 6.92820i 0.155113 0.268664i
\(666\) −2.00000 + 3.46410i −0.0774984 + 0.134231i
\(667\) −27.0000 46.7654i −1.04544 1.81076i
\(668\) 3.00000 0.116073
\(669\) −8.50000 14.7224i −0.328629 0.569202i
\(670\) −7.00000 12.1244i −0.270434 0.468405i
\(671\) 0 0
\(672\) 0.500000 + 0.866025i 0.0192879 + 0.0334077i
\(673\) 17.0000 29.4449i 0.655302 1.13502i −0.326516 0.945192i \(-0.605875\pi\)
0.981818 0.189824i \(-0.0607919\pi\)
\(674\) −11.0000 + 19.0526i −0.423704 + 0.733877i
\(675\) −5.00000 −0.192450
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) −27.0000 −1.03769 −0.518847 0.854867i \(-0.673639\pi\)
−0.518847 + 0.854867i \(0.673639\pi\)
\(678\) 3.00000 5.19615i 0.115214 0.199557i
\(679\) 3.50000 6.06218i 0.134318 0.232645i
\(680\) 1.50000 + 2.59808i 0.0575224 + 0.0996317i
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −6.00000 10.3923i −0.229584 0.397650i 0.728101 0.685470i \(-0.240403\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(684\) −16.0000 −0.611775
\(685\) 6.00000 + 10.3923i 0.229248 + 0.397070i
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) −1.00000 + 1.73205i −0.0381524 + 0.0660819i
\(688\) −10.0000 −0.381246
\(689\) 42.0000 10.3923i 1.60007 0.395915i
\(690\) 6.00000 0.228416
\(691\) −10.0000 + 17.3205i −0.380418 + 0.658903i −0.991122 0.132956i \(-0.957553\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(692\) 9.00000 15.5885i 0.342129 0.592584i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 7.00000 + 12.1244i 0.265525 + 0.459903i
\(696\) 4.50000 + 7.79423i 0.170572 + 0.295439i
\(697\) 0 0
\(698\) 7.00000 + 12.1244i 0.264954 + 0.458914i
\(699\) −9.00000 + 15.5885i −0.340411 + 0.589610i
\(700\) −0.500000 + 0.866025i −0.0188982 + 0.0327327i
\(701\) 21.0000 0.793159 0.396580 0.918000i \(-0.370197\pi\)
0.396580 + 0.918000i \(0.370197\pi\)
\(702\) 5.00000 17.3205i 0.188713 0.653720i
\(703\) 16.0000 0.603451
\(704\) 0 0
\(705\) 4.50000 7.79423i 0.169480 0.293548i
\(706\) 9.00000 + 15.5885i 0.338719 + 0.586679i
\(707\) 0 0
\(708\) −3.00000 5.19615i −0.112747 0.195283i
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 3.00000 0.112588
\(711\) −1.00000 1.73205i −0.0375029 0.0649570i
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) 12.0000 20.7846i 0.449404 0.778390i
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) −9.00000 −0.336346
\(717\) −10.5000 + 18.1865i −0.392130 + 0.679189i
\(718\) 1.50000 2.59808i 0.0559795 0.0969593i
\(719\) 6.00000 + 10.3923i 0.223762 + 0.387568i 0.955947 0.293538i \(-0.0948328\pi\)
−0.732185 + 0.681106i \(0.761499\pi\)
\(720\) 2.00000 0.0745356
\(721\) 0.500000 + 0.866025i 0.0186210 + 0.0322525i
\(722\) 22.5000 + 38.9711i 0.837363 + 1.45036i
\(723\) 26.0000 0.966950
\(724\) 11.0000 + 19.0526i 0.408812 + 0.708083i
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) −5.50000 + 9.52628i −0.204124 + 0.353553i
\(727\) −37.0000 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) −2.50000 2.59808i −0.0926562 0.0962911i
\(729\) 13.0000 0.481481
\(730\) 6.50000 11.2583i 0.240576 0.416689i
\(731\) −15.0000 + 25.9808i −0.554795 + 0.960933i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) 5.00000 0.184679 0.0923396 0.995728i \(-0.470565\pi\)
0.0923396 + 0.995728i \(0.470565\pi\)
\(734\) 8.50000 + 14.7224i 0.313741 + 0.543415i
\(735\) 0.500000 + 0.866025i 0.0184428 + 0.0319438i
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) 0 0
\(739\) −5.50000 + 9.52628i −0.202321 + 0.350430i −0.949276 0.314445i \(-0.898182\pi\)
0.746955 + 0.664875i \(0.231515\pi\)
\(740\) −2.00000 −0.0735215
\(741\) −28.0000 + 6.92820i −1.02861 + 0.254514i
\(742\) 12.0000 0.440534
\(743\) 21.0000 36.3731i 0.770415 1.33440i −0.166920 0.985970i \(-0.553382\pi\)
0.937336 0.348428i \(-0.113284\pi\)
\(744\) −2.00000 + 3.46410i −0.0733236 + 0.127000i
\(745\) −1.50000 2.59808i −0.0549557 0.0951861i
\(746\) 4.00000 0.146450
\(747\) 9.00000 + 15.5885i 0.329293 + 0.570352i
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) −0.500000 0.866025i −0.0182574 0.0316228i
\(751\) −16.0000 + 27.7128i −0.583848 + 1.01125i 0.411170 + 0.911559i \(0.365120\pi\)
−0.995018 + 0.0996961i \(0.968213\pi\)
\(752\) −4.50000 + 7.79423i −0.164098 + 0.284226i
\(753\) 18.0000 0.655956
\(754\) −22.5000 23.3827i −0.819402 0.851547i
\(755\) −8.00000 −0.291150
\(756\) 2.50000 4.33013i 0.0909241 0.157485i
\(757\) 17.0000 29.4449i 0.617876 1.07019i −0.371997 0.928234i \(-0.621327\pi\)
0.989873 0.141958i \(-0.0453398\pi\)
\(758\) −12.5000 21.6506i −0.454020 0.786386i
\(759\) 0 0
\(760\) −4.00000 6.92820i −0.145095 0.251312i
\(761\) 3.00000 + 5.19615i 0.108750 + 0.188360i 0.915264 0.402854i \(-0.131982\pi\)
−0.806514 + 0.591215i \(0.798649\pi\)
\(762\) 22.0000 0.796976
\(763\) 0.500000 + 0.866025i 0.0181012 + 0.0313522i
\(764\) −7.50000 + 12.9904i −0.271340 + 0.469975i
\(765\) 3.00000 5.19615i 0.108465 0.187867i
\(766\) 15.0000 0.541972
\(767\) 15.0000 + 15.5885i 0.541619 + 0.562867i
\(768\) 1.00000 0.0360844
\(769\) 14.0000 24.2487i 0.504853 0.874431i −0.495131 0.868818i \(-0.664880\pi\)
0.999984 0.00561275i \(-0.00178660\pi\)
\(770\) 0 0
\(771\) −9.00000 15.5885i −0.324127 0.561405i
\(772\) 14.0000 0.503871
\(773\) −22.5000 38.9711i −0.809269 1.40169i −0.913371 0.407128i \(-0.866530\pi\)
0.104102 0.994567i \(-0.466803\pi\)
\(774\) 10.0000 + 17.3205i 0.359443 + 0.622573i
\(775\) −4.00000 −0.143684
\(776\) −3.50000 6.06218i −0.125643 0.217620i
\(777\) −1.00000 + 1.73205i −0.0358748 + 0.0621370i
\(778\) 3.00000 5.19615i 0.107555 0.186291i
\(779\) 0 0
\(780\) 3.50000 0.866025i 0.125320 0.0310087i
\(781\) 0 0
\(782\) −9.00000 + 15.5885i −0.321839 + 0.557442i
\(783\) 22.5000 38.9711i 0.804084 1.39272i
\(784\) −0.500000 0.866025i −0.0178571 0.0309295i
\(785\) −5.00000 −0.178458
\(786\) 6.00000 + 10.3923i 0.214013 + 0.370681i
\(787\) 27.5000 + 47.6314i 0.980269 + 1.69788i 0.661320 + 0.750104i \(0.269997\pi\)
0.318950 + 0.947772i \(0.396670\pi\)
\(788\) 12.0000 0.427482
\(789\) −9.00000 15.5885i −0.320408 0.554964i
\(790\) 0.500000 0.866025i 0.0177892 0.0308118i
\(791\) −3.00000 + 5.19615i −0.106668 + 0.184754i
\(792\) 0 0
\(793\) 5.00000 + 5.19615i 0.177555 + 0.184521i
\(794\) −2.00000 −0.0709773
\(795\) −6.00000 + 10.3923i −0.212798 + 0.368577i
\(796\) 8.00000 13.8564i 0.283552 0.491127i
\(797\) −13.5000 23.3827i −0.478195 0.828257i 0.521493 0.853256i \(-0.325375\pi\)
−0.999687 + 0.0249984i \(0.992042\pi\)
\(798\) −8.00000 −0.283197
\(799\) 13.5000 + 23.3827i 0.477596 + 0.827220i
\(800\) 0.500000 + 0.866025i 0.0176777 + 0.0306186i
\(801\) 24.0000 0.847998
\(802\) −1.50000 2.59808i −0.0529668 0.0917413i
\(803\) 0 0
\(804\) −7.00000 + 12.1244i −0.246871 + 0.427593i
\(805\) −6.00000 −0.211472
\(806\) 4.00000 13.8564i 0.140894 0.488071i
\(807\) 0 0
\(808\) 0 0
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) −0.500000 0.866025i −0.0175682 0.0304290i
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) −4.50000 7.79423i −0.157919 0.273524i
\(813\) −13.0000 22.5167i −0.455930 0.789694i
\(814\) 0 0
\(815\) −2.00000 3.46410i −0.0700569 0.121342i
\(816\) 1.50000 2.59808i 0.0525105 0.0909509i
\(817\) 40.0000 69.2820i 1.39942 2.42387i
\(818\) 16.0000 0.559427
\(819\) −2.00000 + 6.92820i −0.0698857 + 0.242091i
\(820\) 0 0
\(821\) −7.50000 + 12.9904i −0.261752 + 0.453367i −0.966708 0.255884i \(-0.917634\pi\)
0.704956 + 0.709251i \(0.250967\pi\)
\(822\) 6.00000 10.3923i 0.209274 0.362473i
\(823\) −7.00000 12.1244i −0.244005 0.422628i 0.717847 0.696201i \(-0.245128\pi\)
−0.961851 + 0.273573i \(0.911795\pi\)
\(824\) 1.00000 0.0348367
\(825\) 0 0
\(826\) 3.00000 + 5.19615i 0.104383 + 0.180797i
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) 6.00000 + 10.3923i 0.208514 + 0.361158i
\(829\) −25.0000 + 43.3013i −0.868286 + 1.50392i −0.00453881 + 0.999990i \(0.501445\pi\)
−0.863747 + 0.503926i \(0.831889\pi\)
\(830\) −4.50000 + 7.79423i −0.156197 + 0.270542i
\(831\) −4.00000 −0.138758
\(832\) −3.50000 + 0.866025i −0.121341 + 0.0300240i
\(833\) −3.00000 −0.103944
\(834\) 7.00000 12.1244i 0.242390 0.419832i
\(835\) 1.50000 2.59808i 0.0519096 0.0899101i
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 12.0000 + 20.7846i 0.414533 + 0.717992i
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) 1.00000 0.0345033
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) −18.5000 + 32.0429i −0.637552 + 1.10427i
\(843\) −13.5000 + 23.3827i −0.464965 + 0.805342i
\(844\) −1.00000 −0.0344214
\(845\) −11.5000 + 6.06218i −0.395612 + 0.208545i
\(846\) 18.0000 0.618853
\(847\) 5.50000 9.52628i 0.188982 0.327327i
\(848\) 6.00000 10.3923i 0.206041 0.356873i
\(849\) −10.0000 17.3205i −0.343199 0.594438i
\(850\) 3.00000 0.102899
\(851\) −6.00000 10.3923i −0.205677 0.356244i
\(852\) −1.50000 2.59808i −0.0513892 0.0890086i
\(853\) −1.00000 −0.0342393 −0.0171197 0.999853i \(-0.505450\pi\)
−0.0171197 + 0.999853i \(0.505450\pi\)
\(854\) 1.00000 + 1.73205i 0.0342193 + 0.0592696i
\(855\) −8.00000 + 13.8564i −0.273594 + 0.473879i
\(856\) −6.00000 + 10.3923i −0.205076 + 0.355202i
\(857\) −45.0000 −1.53717 −0.768585 0.639747i \(-0.779039\pi\)
−0.768585 + 0.639747i \(0.779039\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) −5.00000 + 8.66025i −0.170499 + 0.295312i
\(861\) 0 0
\(862\) −1.50000 2.59808i −0.0510902 0.0884908i
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) −2.50000 4.33013i −0.0850517 0.147314i
\(865\) −9.00000 15.5885i −0.306009 0.530023i
\(866\) 34.0000 1.15537
\(867\) 4.00000 + 6.92820i 0.135847 + 0.235294i
\(868\) 2.00000 3.46410i 0.0678844 0.117579i
\(869\) 0 0
\(870\) 9.00000 0.305129
\(871\) 14.0000 48.4974i 0.474372 1.64327i
\(872\) 1.00000 0.0338643
\(873\) −7.00000 + 12.1244i −0.236914 + 0.410347i
\(874\) 24.0000 41.5692i 0.811812 1.40610i
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) −13.0000 −0.439229
\(877\) 20.0000 + 34.6410i 0.675352 + 1.16974i 0.976366 + 0.216124i \(0.0693416\pi\)
−0.301014 + 0.953620i \(0.597325\pi\)
\(878\) 4.00000 + 6.92820i 0.134993 + 0.233816i
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) 27.0000 46.7654i 0.909653 1.57557i 0.0951067 0.995467i \(-0.469681\pi\)
0.814546 0.580098i \(-0.196986\pi\)
\(882\) −1.00000 + 1.73205i −0.0336718 + 0.0583212i
\(883\) −46.0000 −1.54802 −0.774012 0.633171i \(-0.781753\pi\)
−0.774012 + 0.633171i \(0.781753\pi\)
\(884\) −3.00000 + 10.3923i −0.100901 + 0.349531i
\(885\) −6.00000 −0.201688
\(886\) 21.0000 36.3731i 0.705509 1.22198i
\(887\) 24.0000 41.5692i 0.805841 1.39576i −0.109881 0.993945i \(-0.535047\pi\)
0.915722 0.401813i \(-0.131620\pi\)
\(888\) 1.00000 + 1.73205i 0.0335578 + 0.0581238i
\(889\) −22.0000 −0.737856
\(890\) 6.00000 + 10.3923i 0.201120 + 0.348351i
\(891\) 0 0
\(892\) 17.0000 0.569202
\(893\) −36.0000 62.3538i −1.20469 2.08659i
\(894\) −1.50000 + 2.59808i −0.0501675 + 0.0868927i
\(895\) −4.50000 + 7.79423i −0.150418 + 0.260532i
\(896\) −1.00000 −0.0334077
\(897\) 15.0000 + 15.5885i 0.500835 + 0.520483i
\(898\) 21.0000 0.700779
\(899\) 18.0000 31.1769i 0.600334 1.03981i
\(900\) 1.00000 1.73205i 0.0333333 0.0577350i
\(901\) −18.0000 31.1769i −0.599667 1.03865i
\(902\) 0 0
\(903\) 5.00000 + 8.66025i 0.166390 + 0.288195i
\(904\) 3.00000 + 5.19615i 0.0997785 + 0.172821i
\(905\) 22.0000 0.731305
\(906\) 4.00000 + 6.92820i 0.132891 + 0.230174i
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) −6.00000 + 10.3923i −0.199117 + 0.344881i
\(909\) 0 0
\(910\) −3.50000 + 0.866025i −0.116024 + 0.0287085i
\(911\) 45.0000 1.49092 0.745458 0.666552i \(-0.232231\pi\)
0.745458 + 0.666552i \(0.232231\pi\)
\(912\) −4.00000 + 6.92820i −0.132453 + 0.229416i
\(913\) 0 0
\(914\) 4.00000 + 6.92820i 0.132308 + 0.229165i
\(915\) −2.00000 −0.0661180
\(916\) −1.00000 1.73205i −0.0330409 0.0572286i
\(917\) −6.00000 10.3923i −0.198137 0.343184i
\(918\) −15.0000 −0.495074
\(919\) −2.50000 4.33013i −0.0824674 0.142838i 0.821842 0.569716i \(-0.192947\pi\)
−0.904309 + 0.426878i \(0.859613\pi\)
\(920\) −3.00000 + 5.19615i −0.0989071 + 0.171312i
\(921\) 8.00000 13.8564i 0.263609 0.456584i
\(922\) 24.0000 0.790398
\(923\) 7.50000 + 7.79423i 0.246866 + 0.256550i
\(924\) 0 0
\(925\) −1.00000 + 1.73205i −0.0328798 + 0.0569495i
\(926\) 13.0000 22.5167i 0.427207 0.739943i
\(927\) −1.00000 1.73205i −0.0328443 0.0568880i
\(928\) −9.00000 −0.295439
\(929\) 12.0000 + 20.7846i 0.393707 + 0.681921i 0.992935 0.118657i \(-0.0378590\pi\)
−0.599228 + 0.800578i \(0.704526\pi\)
\(930\) 2.00000 + 3.46410i 0.0655826 + 0.113592i
\(931\) 8.00000 0.262189
\(932\) −9.00000 15.5885i −0.294805 0.510617i
\(933\) 0 0
\(934\) 18.0000 31.1769i 0.588978 1.02014i
\(935\) 0 0
\(936\) 5.00000 + 5.19615i 0.163430 + 0.169842i
\(937\) 41.0000 1.33941 0.669706 0.742627i \(-0.266420\pi\)
0.669706 + 0.742627i \(0.266420\pi\)
\(938\) 7.00000 12.1244i 0.228558 0.395874i
\(939\) −13.0000 + 22.5167i −0.424239 + 0.734803i
\(940\) 4.50000 + 7.79423i 0.146774 + 0.254220i
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 2.50000 + 4.33013i 0.0814544 + 0.141083i
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) −2.50000 4.33013i −0.0813250 0.140859i
\(946\) 0 0
\(947\) −3.00000 + 5.19615i −0.0974869 + 0.168852i −0.910644 0.413192i \(-0.864414\pi\)
0.813157 + 0.582045i \(0.197747\pi\)
\(948\) −1.00000 −0.0324785
\(949\) 45.5000 11.2583i 1.47699 0.365461i
\(950\) −8.00000 −0.259554
\(951\) 15.0000 25.9808i 0.486408 0.842484i
\(952\) −1.50000 + 2.59808i −0.0486153 + 0.0842041i
\(953\) 15.0000 + 25.9808i 0.485898 + 0.841599i 0.999869 0.0162081i \(-0.00515944\pi\)
−0.513971 + 0.857808i \(0.671826\pi\)
\(954\) −24.0000 −0.777029
\(955\) 7.50000 + 12.9904i 0.242694 + 0.420359i
\(956\) −10.5000 18.1865i −0.339594 0.588195i
\(957\) 0 0
\(958\) 18.0000 + 31.1769i 0.581554 + 1.00728i
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 0.500000 0.866025i 0.0161374 0.0279508i
\(961\) −15.0000 −0.483871
\(962\) −5.00000 5.19615i −0.161206 0.167531i
\(963\) 24.0000 0.773389
\(964\) −13.0000 + 22.5167i −0.418702 + 0.725213i
\(965\) 7.00000 12.1244i 0.225338 0.390297i
\(966\) 3.00000 + 5.19615i 0.0965234 + 0.167183i
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) −5.50000 9.52628i −0.176777 0.306186i
\(969\) 12.0000 + 20.7846i 0.385496 + 0.667698i
\(970\) −7.00000 −0.224756
\(971\) −12.0000 20.7846i −0.385098 0.667010i 0.606685 0.794943i \(-0.292499\pi\)
−0.991783 + 0.127933i \(0.959166\pi\)
\(972\) −8.00000 + 13.8564i −0.256600 + 0.444444i
\(973\) −7.00000 + 12.1244i −0.224410 + 0.388689i
\(974\) 4.00000 0.128168
\(975\) 1.00000 3.46410i 0.0320256 0.110940i
\(976\) 2.00000 0.0640184
\(977\) 30.0000 51.9615i 0.959785 1.66240i 0.236768 0.971566i \(-0.423912\pi\)
0.723017 0.690830i \(-0.242755\pi\)
\(978\) −2.00000 + 3.46410i −0.0639529 + 0.110770i
\(979\) 0 0
\(980\) −1.00000 −0.0319438
\(981\) −1.00000 1.73205i −0.0319275 0.0553001i
\(982\) 4.50000 + 7.79423i 0.143601 + 0.248724i
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 6.00000 10.3923i 0.191176 0.331126i
\(986\) −13.5000 + 23.3827i −0.429928 + 0.744656i
\(987\) 9.00000 0.286473
\(988\) 8.00000 27.7128i 0.254514 0.881662i
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −16.0000 + 27.7128i −0.508257 + 0.880327i 0.491698 + 0.870766i \(0.336377\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) −2.00000 3.46410i −0.0635001 0.109985i
\(993\) 20.0000 0.634681
\(994\) 1.50000 + 2.59808i 0.0475771 + 0.0824060i
\(995\) −8.00000 13.8564i −0.253617 0.439278i
\(996\) 9.00000 0.285176
\(997\) −1.00000 1.73205i −0.0316703 0.0548546i 0.849756 0.527176i \(-0.176749\pi\)
−0.881426 + 0.472322i \(0.843416\pi\)
\(998\) 14.5000 25.1147i 0.458989 0.794993i
\(999\) 5.00000 8.66025i 0.158193 0.273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 910.2.i.b.841.1 yes 2
13.3 even 3 inner 910.2.i.b.211.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
910.2.i.b.211.1 2 13.3 even 3 inner
910.2.i.b.841.1 yes 2 1.1 even 1 trivial