Properties

Label 912.1.b.a
Level 912912
Weight 11
Character orbit 912.b
Self dual yes
Analytic conductor 0.4550.455
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -3, -228, 76
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,1,Mod(911,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.911");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 912.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.4551472915210.455147291521
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(3,19)\Q(\sqrt{-3}, \sqrt{19})
Artin image: D4D_4
Artin field: Galois closure of 4.0.2736.2
Stark unit: Root of x452x36x252x+1x^{4} - 52x^{3} - 6x^{2} - 52x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq3+q9+q19+q25q27+2q31+q49q572q61+2q672q73q752q79+q812q93+O(q100) q - q^{3} + q^{9} + q^{19} + q^{25} - q^{27} + 2 q^{31} + q^{49} - q^{57} - 2 q^{61} + 2 q^{67} - 2 q^{73} - q^{75} - 2 q^{79} + q^{81} - 2 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/912Z)×\left(\mathbb{Z}/912\mathbb{Z}\right)^\times.

nn 9797 229229 305305 799799
χ(n)\chi(n) 1-1 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
911.1
0
0 −1.00000 0 0 0 0 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
76.d even 2 1 RM by Q(19)\Q(\sqrt{19})
228.b odd 2 1 CM by Q(57)\Q(\sqrt{-57})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.1.b.a 1
3.b odd 2 1 CM 912.1.b.a 1
4.b odd 2 1 912.1.b.b yes 1
8.b even 2 1 3648.1.b.b 1
8.d odd 2 1 3648.1.b.a 1
12.b even 2 1 912.1.b.b yes 1
19.b odd 2 1 912.1.b.b yes 1
24.f even 2 1 3648.1.b.a 1
24.h odd 2 1 3648.1.b.b 1
57.d even 2 1 912.1.b.b yes 1
76.d even 2 1 RM 912.1.b.a 1
152.b even 2 1 3648.1.b.b 1
152.g odd 2 1 3648.1.b.a 1
228.b odd 2 1 CM 912.1.b.a 1
456.l odd 2 1 3648.1.b.b 1
456.p even 2 1 3648.1.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
912.1.b.a 1 1.a even 1 1 trivial
912.1.b.a 1 3.b odd 2 1 CM
912.1.b.a 1 76.d even 2 1 RM
912.1.b.a 1 228.b odd 2 1 CM
912.1.b.b yes 1 4.b odd 2 1
912.1.b.b yes 1 12.b even 2 1
912.1.b.b yes 1 19.b odd 2 1
912.1.b.b yes 1 57.d even 2 1
3648.1.b.a 1 8.d odd 2 1
3648.1.b.a 1 24.f even 2 1
3648.1.b.a 1 152.g odd 2 1
3648.1.b.a 1 456.p even 2 1
3648.1.b.b 1 8.b even 2 1
3648.1.b.b 1 24.h odd 2 1
3648.1.b.b 1 152.b even 2 1
3648.1.b.b 1 456.l odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312 T_{31} - 2 acting on S1new(912,[χ])S_{1}^{\mathrm{new}}(912, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T1 T - 1 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T2 T - 2 Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+2 T + 2 Copy content Toggle raw display
6767 T2 T - 2 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+2 T + 2 Copy content Toggle raw display
7979 T+2 T + 2 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less