Properties

Label 912.2.bh.f.239.2
Level $912$
Weight $2$
Character 912.239
Analytic conductor $7.282$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(239,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 239.2
Character \(\chi\) \(=\) 912.239
Dual form 912.2.bh.f.767.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.63249 - 0.578768i) q^{3} +(3.06808 + 1.77136i) q^{5} +0.587143i q^{7} +(2.33006 + 1.88967i) q^{9} +3.00869 q^{11} +(0.973896 + 1.68684i) q^{13} +(-3.98341 - 4.66744i) q^{15} +(-1.36968 - 0.790785i) q^{17} +(-4.34794 - 0.308898i) q^{19} +(0.339819 - 0.958506i) q^{21} +(1.35506 + 2.34703i) q^{23} +(3.77542 + 6.53922i) q^{25} +(-2.71012 - 4.43343i) q^{27} +(-4.59794 + 2.65462i) q^{29} +4.43343i q^{31} +(-4.91166 - 1.74133i) q^{33} +(-1.04004 + 1.80140i) q^{35} +6.60305 q^{37} +(-0.613589 - 3.31741i) q^{39} +(-7.82621 - 4.51846i) q^{41} +(5.77246 + 3.33273i) q^{43} +(3.80153 + 9.92502i) q^{45} +(3.48944 + 6.04389i) q^{47} +6.65526 q^{49} +(1.77831 + 2.08368i) q^{51} +(3.87735 - 2.23859i) q^{53} +(9.23091 + 5.32947i) q^{55} +(6.91919 + 3.02072i) q^{57} +(7.23960 - 12.5394i) q^{59} +(-0.0261043 - 0.0452140i) q^{61} +(-1.10950 + 1.36808i) q^{63} +6.90047i q^{65} +(0.662494 - 0.382491i) q^{67} +(-0.853736 - 4.61577i) q^{69} +(-5.86809 + 10.1638i) q^{71} +(-4.10305 + 7.10670i) q^{73} +(-2.37865 - 12.8603i) q^{75} +1.76653i q^{77} +(7.80639 + 4.50702i) q^{79} +(1.85832 + 8.80606i) q^{81} -13.6263 q^{83} +(-2.80153 - 4.85239i) q^{85} +(9.04251 - 1.67251i) q^{87} +(9.20425 - 5.31408i) q^{89} +(-0.990414 + 0.571816i) q^{91} +(2.56592 - 7.23753i) q^{93} +(-12.7927 - 8.64949i) q^{95} +(-5.27542 + 9.13730i) q^{97} +(7.01041 + 5.68542i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{9} + 12 q^{13} + 12 q^{21} + 8 q^{25} + 16 q^{37} + 20 q^{45} + 40 q^{49} + 18 q^{57} - 12 q^{61} + 28 q^{69} + 44 q^{73} - 22 q^{81} + 4 q^{85} + 8 q^{93} - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.63249 0.578768i −0.942519 0.334152i
\(4\) 0 0
\(5\) 3.06808 + 1.77136i 1.37209 + 0.792176i 0.991191 0.132442i \(-0.0422817\pi\)
0.380898 + 0.924617i \(0.375615\pi\)
\(6\) 0 0
\(7\) 0.587143i 0.221919i 0.993825 + 0.110960i \(0.0353924\pi\)
−0.993825 + 0.110960i \(0.964608\pi\)
\(8\) 0 0
\(9\) 2.33006 + 1.88967i 0.776685 + 0.629889i
\(10\) 0 0
\(11\) 3.00869 0.907154 0.453577 0.891217i \(-0.350148\pi\)
0.453577 + 0.891217i \(0.350148\pi\)
\(12\) 0 0
\(13\) 0.973896 + 1.68684i 0.270110 + 0.467844i 0.968890 0.247493i \(-0.0796066\pi\)
−0.698780 + 0.715337i \(0.746273\pi\)
\(14\) 0 0
\(15\) −3.98341 4.66744i −1.02851 1.20513i
\(16\) 0 0
\(17\) −1.36968 0.790785i −0.332196 0.191794i 0.324620 0.945845i \(-0.394764\pi\)
−0.656816 + 0.754051i \(0.728097\pi\)
\(18\) 0 0
\(19\) −4.34794 0.308898i −0.997486 0.0708662i
\(20\) 0 0
\(21\) 0.339819 0.958506i 0.0741547 0.209163i
\(22\) 0 0
\(23\) 1.35506 + 2.34703i 0.282549 + 0.489390i 0.972012 0.234932i \(-0.0754866\pi\)
−0.689463 + 0.724321i \(0.742153\pi\)
\(24\) 0 0
\(25\) 3.77542 + 6.53922i 0.755085 + 1.30784i
\(26\) 0 0
\(27\) −2.71012 4.43343i −0.521562 0.853213i
\(28\) 0 0
\(29\) −4.59794 + 2.65462i −0.853817 + 0.492951i −0.861937 0.507016i \(-0.830749\pi\)
0.00812014 + 0.999967i \(0.497415\pi\)
\(30\) 0 0
\(31\) 4.43343i 0.796267i 0.917328 + 0.398133i \(0.130342\pi\)
−0.917328 + 0.398133i \(0.869658\pi\)
\(32\) 0 0
\(33\) −4.91166 1.74133i −0.855010 0.303127i
\(34\) 0 0
\(35\) −1.04004 + 1.80140i −0.175799 + 0.304493i
\(36\) 0 0
\(37\) 6.60305 1.08554 0.542768 0.839883i \(-0.317376\pi\)
0.542768 + 0.839883i \(0.317376\pi\)
\(38\) 0 0
\(39\) −0.613589 3.31741i −0.0982529 0.531210i
\(40\) 0 0
\(41\) −7.82621 4.51846i −1.22225 0.705665i −0.256851 0.966451i \(-0.582685\pi\)
−0.965397 + 0.260786i \(0.916018\pi\)
\(42\) 0 0
\(43\) 5.77246 + 3.33273i 0.880292 + 0.508237i 0.870755 0.491718i \(-0.163631\pi\)
0.00953750 + 0.999955i \(0.496964\pi\)
\(44\) 0 0
\(45\) 3.80153 + 9.92502i 0.566698 + 1.47953i
\(46\) 0 0
\(47\) 3.48944 + 6.04389i 0.508987 + 0.881591i 0.999946 + 0.0104086i \(0.00331322\pi\)
−0.490959 + 0.871183i \(0.663353\pi\)
\(48\) 0 0
\(49\) 6.65526 0.950752
\(50\) 0 0
\(51\) 1.77831 + 2.08368i 0.249013 + 0.291773i
\(52\) 0 0
\(53\) 3.87735 2.23859i 0.532595 0.307494i −0.209478 0.977813i \(-0.567176\pi\)
0.742072 + 0.670320i \(0.233843\pi\)
\(54\) 0 0
\(55\) 9.23091 + 5.32947i 1.24470 + 0.718625i
\(56\) 0 0
\(57\) 6.91919 + 3.02072i 0.916470 + 0.400104i
\(58\) 0 0
\(59\) 7.23960 12.5394i 0.942515 1.63248i 0.181864 0.983324i \(-0.441787\pi\)
0.760651 0.649161i \(-0.224880\pi\)
\(60\) 0 0
\(61\) −0.0261043 0.0452140i −0.00334232 0.00578907i 0.864349 0.502892i \(-0.167731\pi\)
−0.867692 + 0.497103i \(0.834397\pi\)
\(62\) 0 0
\(63\) −1.10950 + 1.36808i −0.139784 + 0.172361i
\(64\) 0 0
\(65\) 6.90047i 0.855898i
\(66\) 0 0
\(67\) 0.662494 0.382491i 0.0809366 0.0467288i −0.458986 0.888444i \(-0.651787\pi\)
0.539922 + 0.841715i \(0.318454\pi\)
\(68\) 0 0
\(69\) −0.853736 4.61577i −0.102778 0.555674i
\(70\) 0 0
\(71\) −5.86809 + 10.1638i −0.696414 + 1.20623i 0.273287 + 0.961932i \(0.411889\pi\)
−0.969702 + 0.244293i \(0.921444\pi\)
\(72\) 0 0
\(73\) −4.10305 + 7.10670i −0.480226 + 0.831776i −0.999743 0.0226842i \(-0.992779\pi\)
0.519516 + 0.854460i \(0.326112\pi\)
\(74\) 0 0
\(75\) −2.37865 12.8603i −0.274663 1.48498i
\(76\) 0 0
\(77\) 1.76653i 0.201315i
\(78\) 0 0
\(79\) 7.80639 + 4.50702i 0.878287 + 0.507079i 0.870093 0.492887i \(-0.164058\pi\)
0.00819375 + 0.999966i \(0.497392\pi\)
\(80\) 0 0
\(81\) 1.85832 + 8.80606i 0.206480 + 0.978451i
\(82\) 0 0
\(83\) −13.6263 −1.49568 −0.747840 0.663879i \(-0.768909\pi\)
−0.747840 + 0.663879i \(0.768909\pi\)
\(84\) 0 0
\(85\) −2.80153 4.85239i −0.303868 0.526315i
\(86\) 0 0
\(87\) 9.04251 1.67251i 0.969459 0.179312i
\(88\) 0 0
\(89\) 9.20425 5.31408i 0.975648 0.563291i 0.0746949 0.997206i \(-0.476202\pi\)
0.900954 + 0.433916i \(0.142868\pi\)
\(90\) 0 0
\(91\) −0.990414 + 0.571816i −0.103824 + 0.0599426i
\(92\) 0 0
\(93\) 2.56592 7.23753i 0.266074 0.750497i
\(94\) 0 0
\(95\) −12.7927 8.64949i −1.31250 0.887419i
\(96\) 0 0
\(97\) −5.27542 + 9.13730i −0.535638 + 0.927752i 0.463494 + 0.886100i \(0.346596\pi\)
−0.999132 + 0.0416523i \(0.986738\pi\)
\(98\) 0 0
\(99\) 7.01041 + 5.68542i 0.704573 + 0.571406i
\(100\) 0 0
\(101\) 9.92484 5.73011i 0.987559 0.570167i 0.0830152 0.996548i \(-0.473545\pi\)
0.904544 + 0.426381i \(0.140212\pi\)
\(102\) 0 0
\(103\) 9.45399i 0.931530i 0.884909 + 0.465765i \(0.154221\pi\)
−0.884909 + 0.465765i \(0.845779\pi\)
\(104\) 0 0
\(105\) 2.74045 2.33883i 0.267441 0.228247i
\(106\) 0 0
\(107\) 6.01738 0.581722 0.290861 0.956765i \(-0.406058\pi\)
0.290861 + 0.956765i \(0.406058\pi\)
\(108\) 0 0
\(109\) 5.22321 9.04687i 0.500293 0.866533i −0.499707 0.866195i \(-0.666559\pi\)
1.00000 0.000338577i \(-0.000107772\pi\)
\(110\) 0 0
\(111\) −10.7794 3.82164i −1.02314 0.362734i
\(112\) 0 0
\(113\) 6.25336i 0.588267i 0.955764 + 0.294133i \(0.0950310\pi\)
−0.955764 + 0.294133i \(0.904969\pi\)
\(114\) 0 0
\(115\) 9.60118i 0.895315i
\(116\) 0 0
\(117\) −0.918328 + 5.77076i −0.0848995 + 0.533507i
\(118\) 0 0
\(119\) 0.464304 0.804198i 0.0425627 0.0737207i
\(120\) 0 0
\(121\) −1.94779 −0.177072
\(122\) 0 0
\(123\) 10.1611 + 11.9059i 0.916193 + 1.07352i
\(124\) 0 0
\(125\) 9.03693i 0.808287i
\(126\) 0 0
\(127\) −3.96693 + 2.29031i −0.352008 + 0.203232i −0.665569 0.746336i \(-0.731811\pi\)
0.313561 + 0.949568i \(0.398478\pi\)
\(128\) 0 0
\(129\) −7.49462 8.78157i −0.659864 0.773174i
\(130\) 0 0
\(131\) 10.9569 18.9778i 0.957306 1.65810i 0.228304 0.973590i \(-0.426682\pi\)
0.729002 0.684512i \(-0.239985\pi\)
\(132\) 0 0
\(133\) 0.181368 2.55286i 0.0157266 0.221361i
\(134\) 0 0
\(135\) −0.461679 18.4027i −0.0397350 1.58385i
\(136\) 0 0
\(137\) −3.95722 + 2.28470i −0.338088 + 0.195195i −0.659426 0.751769i \(-0.729201\pi\)
0.321338 + 0.946965i \(0.395867\pi\)
\(138\) 0 0
\(139\) −4.70241 + 2.71494i −0.398853 + 0.230278i −0.685989 0.727612i \(-0.740630\pi\)
0.287136 + 0.957890i \(0.407297\pi\)
\(140\) 0 0
\(141\) −2.19847 11.8862i −0.185145 1.00100i
\(142\) 0 0
\(143\) 2.93015 + 5.07517i 0.245031 + 0.424407i
\(144\) 0 0
\(145\) −18.8092 −1.56202
\(146\) 0 0
\(147\) −10.8647 3.85185i −0.896102 0.317695i
\(148\) 0 0
\(149\) −13.0900 7.55749i −1.07237 0.619134i −0.143543 0.989644i \(-0.545850\pi\)
−0.928828 + 0.370510i \(0.879183\pi\)
\(150\) 0 0
\(151\) 16.9151i 1.37653i −0.725459 0.688266i \(-0.758372\pi\)
0.725459 0.688266i \(-0.241628\pi\)
\(152\) 0 0
\(153\) −1.69711 4.43081i −0.137203 0.358210i
\(154\) 0 0
\(155\) −7.85319 + 13.6021i −0.630783 + 1.09255i
\(156\) 0 0
\(157\) 6.05085 10.4804i 0.482910 0.836425i −0.516897 0.856047i \(-0.672913\pi\)
0.999807 + 0.0196226i \(0.00624647\pi\)
\(158\) 0 0
\(159\) −7.62536 + 1.41039i −0.604730 + 0.111851i
\(160\) 0 0
\(161\) −1.37804 + 0.795613i −0.108605 + 0.0627031i
\(162\) 0 0
\(163\) 23.0793i 1.80771i 0.427839 + 0.903855i \(0.359275\pi\)
−0.427839 + 0.903855i \(0.640725\pi\)
\(164\) 0 0
\(165\) −11.9849 14.0429i −0.933020 1.09324i
\(166\) 0 0
\(167\) −11.0441 19.1289i −0.854615 1.48024i −0.877002 0.480487i \(-0.840460\pi\)
0.0223875 0.999749i \(-0.492873\pi\)
\(168\) 0 0
\(169\) 4.60305 7.97272i 0.354081 0.613286i
\(170\) 0 0
\(171\) −9.54723 8.93591i −0.730095 0.683346i
\(172\) 0 0
\(173\) −11.7119 6.76188i −0.890441 0.514096i −0.0163541 0.999866i \(-0.505206\pi\)
−0.874087 + 0.485770i \(0.838539\pi\)
\(174\) 0 0
\(175\) −3.83946 + 2.21671i −0.290236 + 0.167568i
\(176\) 0 0
\(177\) −19.0760 + 16.2803i −1.43384 + 1.22370i
\(178\) 0 0
\(179\) −15.7064 −1.17395 −0.586975 0.809605i \(-0.699681\pi\)
−0.586975 + 0.809605i \(0.699681\pi\)
\(180\) 0 0
\(181\) −7.22321 12.5110i −0.536897 0.929933i −0.999069 0.0431429i \(-0.986263\pi\)
0.462172 0.886790i \(-0.347070\pi\)
\(182\) 0 0
\(183\) 0.0164467 + 0.0889199i 0.00121577 + 0.00657315i
\(184\) 0 0
\(185\) 20.2587 + 11.6964i 1.48945 + 0.859935i
\(186\) 0 0
\(187\) −4.12094 2.37923i −0.301353 0.173986i
\(188\) 0 0
\(189\) 2.60305 1.59123i 0.189344 0.115745i
\(190\) 0 0
\(191\) 12.8548 0.930138 0.465069 0.885274i \(-0.346029\pi\)
0.465069 + 0.885274i \(0.346029\pi\)
\(192\) 0 0
\(193\) −9.57695 + 16.5878i −0.689364 + 1.19401i 0.282680 + 0.959214i \(0.408777\pi\)
−0.972044 + 0.234799i \(0.924557\pi\)
\(194\) 0 0
\(195\) 3.99377 11.2650i 0.286000 0.806701i
\(196\) 0 0
\(197\) 18.3607i 1.30815i −0.756432 0.654073i \(-0.773059\pi\)
0.756432 0.654073i \(-0.226941\pi\)
\(198\) 0 0
\(199\) 10.9104 6.29910i 0.773415 0.446531i −0.0606764 0.998157i \(-0.519326\pi\)
0.834092 + 0.551626i \(0.185992\pi\)
\(200\) 0 0
\(201\) −1.30289 + 0.240983i −0.0918988 + 0.0169977i
\(202\) 0 0
\(203\) −1.55864 2.69965i −0.109395 0.189478i
\(204\) 0 0
\(205\) −16.0076 27.7260i −1.11802 1.93647i
\(206\) 0 0
\(207\) −1.27774 + 8.02932i −0.0888093 + 0.558076i
\(208\) 0 0
\(209\) −13.0816 0.929379i −0.904873 0.0642865i
\(210\) 0 0
\(211\) 1.95955 + 1.13135i 0.134901 + 0.0778851i 0.565932 0.824452i \(-0.308517\pi\)
−0.431031 + 0.902337i \(0.641850\pi\)
\(212\) 0 0
\(213\) 15.4621 13.1961i 1.05945 0.904182i
\(214\) 0 0
\(215\) 11.8069 + 20.4502i 0.805226 + 1.39469i
\(216\) 0 0
\(217\) −2.60305 −0.176707
\(218\) 0 0
\(219\) 10.8113 9.22691i 0.730562 0.623497i
\(220\) 0 0
\(221\) 3.08057i 0.207221i
\(222\) 0 0
\(223\) −6.84252 3.95053i −0.458209 0.264547i 0.253082 0.967445i \(-0.418556\pi\)
−0.711291 + 0.702898i \(0.751889\pi\)
\(224\) 0 0
\(225\) −3.56001 + 22.3710i −0.237334 + 1.49140i
\(226\) 0 0
\(227\) 1.70014 0.112842 0.0564210 0.998407i \(-0.482031\pi\)
0.0564210 + 0.998407i \(0.482031\pi\)
\(228\) 0 0
\(229\) −18.9658 −1.25329 −0.626647 0.779303i \(-0.715573\pi\)
−0.626647 + 0.779303i \(0.715573\pi\)
\(230\) 0 0
\(231\) 1.02241 2.88385i 0.0672697 0.189743i
\(232\) 0 0
\(233\) −20.0985 11.6039i −1.31670 0.760197i −0.333503 0.942749i \(-0.608231\pi\)
−0.983196 + 0.182552i \(0.941564\pi\)
\(234\) 0 0
\(235\) 24.7242i 1.61283i
\(236\) 0 0
\(237\) −10.1353 11.8758i −0.658361 0.771413i
\(238\) 0 0
\(239\) 19.2694 1.24643 0.623217 0.782049i \(-0.285825\pi\)
0.623217 + 0.782049i \(0.285825\pi\)
\(240\) 0 0
\(241\) −2.05085 3.55217i −0.132107 0.228815i 0.792382 0.610025i \(-0.208841\pi\)
−0.924488 + 0.381210i \(0.875507\pi\)
\(242\) 0 0
\(243\) 2.06297 15.4513i 0.132340 0.991204i
\(244\) 0 0
\(245\) 20.4189 + 11.7889i 1.30452 + 0.753163i
\(246\) 0 0
\(247\) −3.71338 7.63510i −0.236277 0.485810i
\(248\) 0 0
\(249\) 22.2448 + 7.88646i 1.40971 + 0.499784i
\(250\) 0 0
\(251\) 2.69367 + 4.66557i 0.170023 + 0.294488i 0.938428 0.345476i \(-0.112282\pi\)
−0.768405 + 0.639964i \(0.778949\pi\)
\(252\) 0 0
\(253\) 4.07695 + 7.06148i 0.256316 + 0.443952i
\(254\) 0 0
\(255\) 1.76506 + 9.54291i 0.110533 + 0.597600i
\(256\) 0 0
\(257\) 19.2094 11.0906i 1.19825 0.691810i 0.238085 0.971244i \(-0.423480\pi\)
0.960165 + 0.279435i \(0.0901470\pi\)
\(258\) 0 0
\(259\) 3.87694i 0.240901i
\(260\) 0 0
\(261\) −15.7298 2.50316i −0.973651 0.154942i
\(262\) 0 0
\(263\) −1.89790 + 3.28726i −0.117030 + 0.202701i −0.918589 0.395214i \(-0.870671\pi\)
0.801560 + 0.597915i \(0.204004\pi\)
\(264\) 0 0
\(265\) 15.8614 0.974356
\(266\) 0 0
\(267\) −18.1015 + 3.34806i −1.10779 + 0.204898i
\(268\) 0 0
\(269\) 14.5144 + 8.37991i 0.884960 + 0.510932i 0.872291 0.488988i \(-0.162634\pi\)
0.0126695 + 0.999920i \(0.495967\pi\)
\(270\) 0 0
\(271\) −4.98389 2.87745i −0.302750 0.174793i 0.340928 0.940089i \(-0.389259\pi\)
−0.643677 + 0.765297i \(0.722592\pi\)
\(272\) 0 0
\(273\) 1.94779 0.360265i 0.117886 0.0218042i
\(274\) 0 0
\(275\) 11.3591 + 19.6745i 0.684978 + 1.18642i
\(276\) 0 0
\(277\) 5.05221 0.303558 0.151779 0.988414i \(-0.451500\pi\)
0.151779 + 0.988414i \(0.451500\pi\)
\(278\) 0 0
\(279\) −8.37770 + 10.3301i −0.501560 + 0.618449i
\(280\) 0 0
\(281\) 6.46489 3.73251i 0.385663 0.222663i −0.294616 0.955616i \(-0.595192\pi\)
0.680279 + 0.732953i \(0.261858\pi\)
\(282\) 0 0
\(283\) 22.7368 + 13.1271i 1.35156 + 0.780324i 0.988468 0.151429i \(-0.0483876\pi\)
0.363093 + 0.931753i \(0.381721\pi\)
\(284\) 0 0
\(285\) 15.8779 + 21.5242i 0.940524 + 1.27498i
\(286\) 0 0
\(287\) 2.65298 4.59510i 0.156601 0.271240i
\(288\) 0 0
\(289\) −7.24932 12.5562i −0.426431 0.738599i
\(290\) 0 0
\(291\) 13.9005 11.8633i 0.814859 0.695440i
\(292\) 0 0
\(293\) 11.0077i 0.643078i 0.946896 + 0.321539i \(0.104200\pi\)
−0.946896 + 0.321539i \(0.895800\pi\)
\(294\) 0 0
\(295\) 44.4234 25.6478i 2.58643 1.49328i
\(296\) 0 0
\(297\) −8.15390 13.3388i −0.473137 0.773996i
\(298\) 0 0
\(299\) −2.63937 + 4.57153i −0.152639 + 0.264378i
\(300\) 0 0
\(301\) −1.95679 + 3.38926i −0.112788 + 0.195354i
\(302\) 0 0
\(303\) −19.5186 + 3.61018i −1.12132 + 0.207399i
\(304\) 0 0
\(305\) 0.184961i 0.0105908i
\(306\) 0 0
\(307\) −0.126081 0.0727927i −0.00719580 0.00415450i 0.496398 0.868095i \(-0.334656\pi\)
−0.503594 + 0.863941i \(0.667989\pi\)
\(308\) 0 0
\(309\) 5.47167 15.4336i 0.311272 0.877985i
\(310\) 0 0
\(311\) −19.8181 −1.12378 −0.561889 0.827212i \(-0.689925\pi\)
−0.561889 + 0.827212i \(0.689925\pi\)
\(312\) 0 0
\(313\) 6.27542 + 10.8694i 0.354708 + 0.614372i 0.987068 0.160303i \(-0.0512470\pi\)
−0.632360 + 0.774675i \(0.717914\pi\)
\(314\) 0 0
\(315\) −5.82740 + 2.23204i −0.328337 + 0.125761i
\(316\) 0 0
\(317\) 1.13799 0.657019i 0.0639159 0.0369018i −0.467702 0.883886i \(-0.654918\pi\)
0.531617 + 0.846985i \(0.321584\pi\)
\(318\) 0 0
\(319\) −13.8338 + 7.98694i −0.774543 + 0.447183i
\(320\) 0 0
\(321\) −9.82332 3.48266i −0.548284 0.194383i
\(322\) 0 0
\(323\) 5.71101 + 3.86138i 0.317769 + 0.214853i
\(324\) 0 0
\(325\) −7.35374 + 12.7370i −0.407912 + 0.706524i
\(326\) 0 0
\(327\) −13.7629 + 11.7459i −0.761090 + 0.649550i
\(328\) 0 0
\(329\) −3.54862 + 2.04880i −0.195642 + 0.112954i
\(330\) 0 0
\(331\) 18.9386i 1.04096i −0.853873 0.520481i \(-0.825753\pi\)
0.853873 0.520481i \(-0.174247\pi\)
\(332\) 0 0
\(333\) 15.3855 + 12.4776i 0.843119 + 0.683767i
\(334\) 0 0
\(335\) 2.71012 0.148070
\(336\) 0 0
\(337\) −4.92169 + 8.52461i −0.268101 + 0.464365i −0.968372 0.249513i \(-0.919730\pi\)
0.700270 + 0.713878i \(0.253063\pi\)
\(338\) 0 0
\(339\) 3.61925 10.2086i 0.196570 0.554453i
\(340\) 0 0
\(341\) 13.3388i 0.722336i
\(342\) 0 0
\(343\) 8.01759i 0.432909i
\(344\) 0 0
\(345\) 5.55685 15.6738i 0.299171 0.843851i
\(346\) 0 0
\(347\) 9.31968 16.1422i 0.500307 0.866556i −0.499693 0.866202i \(-0.666554\pi\)
1.00000 0.000354038i \(-0.000112694\pi\)
\(348\) 0 0
\(349\) 29.8586 1.59830 0.799148 0.601134i \(-0.205284\pi\)
0.799148 + 0.601134i \(0.205284\pi\)
\(350\) 0 0
\(351\) 4.83909 8.88922i 0.258292 0.474471i
\(352\) 0 0
\(353\) 3.99521i 0.212644i −0.994332 0.106322i \(-0.966093\pi\)
0.994332 0.106322i \(-0.0339074\pi\)
\(354\) 0 0
\(355\) −36.0076 + 20.7890i −1.91108 + 1.10337i
\(356\) 0 0
\(357\) −1.22342 + 1.04412i −0.0647500 + 0.0552608i
\(358\) 0 0
\(359\) −7.92393 + 13.7247i −0.418209 + 0.724360i −0.995759 0.0919956i \(-0.970675\pi\)
0.577550 + 0.816355i \(0.304009\pi\)
\(360\) 0 0
\(361\) 18.8092 + 2.68614i 0.989956 + 0.141376i
\(362\) 0 0
\(363\) 3.17975 + 1.12732i 0.166894 + 0.0591689i
\(364\) 0 0
\(365\) −25.1770 + 14.5360i −1.31783 + 0.760847i
\(366\) 0 0
\(367\) 32.8771 18.9816i 1.71617 0.990830i 0.790529 0.612425i \(-0.209806\pi\)
0.925640 0.378406i \(-0.123528\pi\)
\(368\) 0 0
\(369\) −9.69711 25.3172i −0.504811 1.31796i
\(370\) 0 0
\(371\) 1.31437 + 2.27656i 0.0682388 + 0.118193i
\(372\) 0 0
\(373\) −8.73896 −0.452486 −0.226243 0.974071i \(-0.572644\pi\)
−0.226243 + 0.974071i \(0.572644\pi\)
\(374\) 0 0
\(375\) 5.23028 14.7527i 0.270091 0.761826i
\(376\) 0 0
\(377\) −8.95583 5.17065i −0.461249 0.266302i
\(378\) 0 0
\(379\) 10.6605i 0.547595i −0.961787 0.273797i \(-0.911720\pi\)
0.961787 0.273797i \(-0.0882798\pi\)
\(380\) 0 0
\(381\) 7.80153 1.44298i 0.399684 0.0739259i
\(382\) 0 0
\(383\) 8.82248 15.2810i 0.450808 0.780822i −0.547629 0.836722i \(-0.684469\pi\)
0.998436 + 0.0558996i \(0.0178027\pi\)
\(384\) 0 0
\(385\) −3.12916 + 5.41986i −0.159477 + 0.276222i
\(386\) 0 0
\(387\) 7.15240 + 18.6735i 0.363577 + 0.949226i
\(388\) 0 0
\(389\) 0.00836282 0.00482828i 0.000424012 0.000244803i −0.499788 0.866148i \(-0.666589\pi\)
0.500212 + 0.865903i \(0.333255\pi\)
\(390\) 0 0
\(391\) 4.28624i 0.216764i
\(392\) 0 0
\(393\) −28.8707 + 24.6397i −1.45634 + 1.24291i
\(394\) 0 0
\(395\) 15.9671 + 27.6558i 0.803392 + 1.39152i
\(396\) 0 0
\(397\) 4.68137 8.10837i 0.234951 0.406947i −0.724307 0.689477i \(-0.757840\pi\)
0.959258 + 0.282530i \(0.0911737\pi\)
\(398\) 0 0
\(399\) −1.77360 + 4.06256i −0.0887908 + 0.203382i
\(400\) 0 0
\(401\) −26.6349 15.3777i −1.33009 0.767925i −0.344773 0.938686i \(-0.612044\pi\)
−0.985312 + 0.170761i \(0.945377\pi\)
\(402\) 0 0
\(403\) −7.47847 + 4.31769i −0.372529 + 0.215080i
\(404\) 0 0
\(405\) −9.89721 + 30.3095i −0.491796 + 1.50609i
\(406\) 0 0
\(407\) 19.8665 0.984748
\(408\) 0 0
\(409\) −12.9829 22.4870i −0.641963 1.11191i −0.984994 0.172588i \(-0.944787\pi\)
0.343031 0.939324i \(-0.388546\pi\)
\(410\) 0 0
\(411\) 7.78244 1.43945i 0.383880 0.0710026i
\(412\) 0 0
\(413\) 7.36239 + 4.25068i 0.362280 + 0.209162i
\(414\) 0 0
\(415\) −41.8066 24.1371i −2.05221 1.18484i
\(416\) 0 0
\(417\) 9.24796 1.71051i 0.452874 0.0837639i
\(418\) 0 0
\(419\) −16.7008 −0.815886 −0.407943 0.913007i \(-0.633754\pi\)
−0.407943 + 0.913007i \(0.633754\pi\)
\(420\) 0 0
\(421\) −16.4293 + 28.4564i −0.800716 + 1.38688i 0.118429 + 0.992963i \(0.462214\pi\)
−0.919145 + 0.393919i \(0.871119\pi\)
\(422\) 0 0
\(423\) −3.29034 + 20.6765i −0.159982 + 1.00532i
\(424\) 0 0
\(425\) 11.9422i 0.579281i
\(426\) 0 0
\(427\) 0.0265471 0.0153270i 0.00128470 0.000741725i
\(428\) 0 0
\(429\) −1.84610 9.98104i −0.0891305 0.481889i
\(430\) 0 0
\(431\) −11.0984 19.2229i −0.534589 0.925935i −0.999183 0.0404114i \(-0.987133\pi\)
0.464594 0.885524i \(-0.346200\pi\)
\(432\) 0 0
\(433\) 11.5247 + 19.9614i 0.553844 + 0.959285i 0.997992 + 0.0633324i \(0.0201728\pi\)
−0.444149 + 0.895953i \(0.646494\pi\)
\(434\) 0 0
\(435\) 30.7058 + 10.8861i 1.47223 + 0.521950i
\(436\) 0 0
\(437\) −5.16672 10.6233i −0.247158 0.508182i
\(438\) 0 0
\(439\) −17.3984 10.0450i −0.830381 0.479421i 0.0236021 0.999721i \(-0.492487\pi\)
−0.853983 + 0.520301i \(0.825820\pi\)
\(440\) 0 0
\(441\) 15.5071 + 12.5762i 0.738435 + 0.598868i
\(442\) 0 0
\(443\) −11.4212 19.7820i −0.542636 0.939873i −0.998752 0.0499526i \(-0.984093\pi\)
0.456116 0.889921i \(-0.349240\pi\)
\(444\) 0 0
\(445\) 37.6525 1.78490
\(446\) 0 0
\(447\) 16.9952 + 19.9136i 0.803846 + 0.941880i
\(448\) 0 0
\(449\) 20.1272i 0.949863i 0.880023 + 0.474931i \(0.157527\pi\)
−0.880023 + 0.474931i \(0.842473\pi\)
\(450\) 0 0
\(451\) −23.5466 13.5946i −1.10877 0.640147i
\(452\) 0 0
\(453\) −9.78991 + 27.6137i −0.459970 + 1.29741i
\(454\) 0 0
\(455\) −4.05156 −0.189940
\(456\) 0 0
\(457\) 6.86137 0.320961 0.160481 0.987039i \(-0.448696\pi\)
0.160481 + 0.987039i \(0.448696\pi\)
\(458\) 0 0
\(459\) 0.206107 + 8.21549i 0.00962023 + 0.383466i
\(460\) 0 0
\(461\) 5.17552 + 2.98809i 0.241048 + 0.139169i 0.615658 0.788013i \(-0.288890\pi\)
−0.374610 + 0.927182i \(0.622224\pi\)
\(462\) 0 0
\(463\) 33.5374i 1.55862i 0.626641 + 0.779308i \(0.284429\pi\)
−0.626641 + 0.779308i \(0.715571\pi\)
\(464\) 0 0
\(465\) 20.6927 17.6602i 0.959602 0.818971i
\(466\) 0 0
\(467\) −34.9273 −1.61624 −0.808121 0.589016i \(-0.799515\pi\)
−0.808121 + 0.589016i \(0.799515\pi\)
\(468\) 0 0
\(469\) 0.224577 + 0.388979i 0.0103700 + 0.0179614i
\(470\) 0 0
\(471\) −15.9437 + 13.6071i −0.734645 + 0.626981i
\(472\) 0 0
\(473\) 17.3675 + 10.0272i 0.798560 + 0.461049i
\(474\) 0 0
\(475\) −14.3954 29.5984i −0.660504 1.35807i
\(476\) 0 0
\(477\) 13.2646 + 2.11086i 0.607345 + 0.0966497i
\(478\) 0 0
\(479\) −12.2169 21.1604i −0.558206 0.966841i −0.997646 0.0685694i \(-0.978157\pi\)
0.439440 0.898272i \(-0.355177\pi\)
\(480\) 0 0
\(481\) 6.43069 + 11.1383i 0.293214 + 0.507862i
\(482\) 0 0
\(483\) 2.71012 0.501265i 0.123315 0.0228083i
\(484\) 0 0
\(485\) −32.3709 + 18.6893i −1.46989 + 0.848639i
\(486\) 0 0
\(487\) 24.5464i 1.11230i −0.831081 0.556151i \(-0.812278\pi\)
0.831081 0.556151i \(-0.187722\pi\)
\(488\) 0 0
\(489\) 13.3576 37.6768i 0.604049 1.70380i
\(490\) 0 0
\(491\) 9.64831 16.7114i 0.435422 0.754173i −0.561908 0.827200i \(-0.689932\pi\)
0.997330 + 0.0730266i \(0.0232658\pi\)
\(492\) 0 0
\(493\) 8.39695 0.378179
\(494\) 0 0
\(495\) 11.4376 + 29.8613i 0.514082 + 1.34217i
\(496\) 0 0
\(497\) −5.96762 3.44541i −0.267684 0.154548i
\(498\) 0 0
\(499\) −25.4251 14.6792i −1.13819 0.657132i −0.192205 0.981355i \(-0.561564\pi\)
−0.945981 + 0.324223i \(0.894897\pi\)
\(500\) 0 0
\(501\) 6.95815 + 37.6196i 0.310867 + 1.68072i
\(502\) 0 0
\(503\) −20.6701 35.8017i −0.921634 1.59632i −0.796887 0.604129i \(-0.793521\pi\)
−0.124747 0.992189i \(-0.539812\pi\)
\(504\) 0 0
\(505\) 40.6003 1.80669
\(506\) 0 0
\(507\) −12.1288 + 10.3513i −0.538659 + 0.459718i
\(508\) 0 0
\(509\) 29.8001 17.2051i 1.32086 0.762601i 0.336998 0.941505i \(-0.390589\pi\)
0.983867 + 0.178904i \(0.0572552\pi\)
\(510\) 0 0
\(511\) −4.17265 2.40908i −0.184587 0.106571i
\(512\) 0 0
\(513\) 10.4139 + 20.1134i 0.459787 + 0.888029i
\(514\) 0 0
\(515\) −16.7464 + 29.0056i −0.737935 + 1.27814i
\(516\) 0 0
\(517\) 10.4986 + 18.1842i 0.461730 + 0.799739i
\(518\) 0 0
\(519\) 15.2060 + 17.8172i 0.667471 + 0.782088i
\(520\) 0 0
\(521\) 37.3690i 1.63717i 0.574388 + 0.818583i \(0.305240\pi\)
−0.574388 + 0.818583i \(0.694760\pi\)
\(522\) 0 0
\(523\) 24.2622 14.0078i 1.06091 0.612518i 0.135228 0.990815i \(-0.456823\pi\)
0.925684 + 0.378296i \(0.123490\pi\)
\(524\) 0 0
\(525\) 7.55085 1.39661i 0.329546 0.0609530i
\(526\) 0 0
\(527\) 3.50589 6.07237i 0.152719 0.264517i
\(528\) 0 0
\(529\) 7.82763 13.5579i 0.340332 0.589472i
\(530\) 0 0
\(531\) 40.5639 15.5370i 1.76032 0.674247i
\(532\) 0 0
\(533\) 17.6020i 0.762429i
\(534\) 0 0
\(535\) 18.4618 + 10.6589i 0.798174 + 0.460826i
\(536\) 0 0
\(537\) 25.6405 + 9.09034i 1.10647 + 0.392277i
\(538\) 0 0
\(539\) 20.0236 0.862478
\(540\) 0 0
\(541\) 13.9986 + 24.2464i 0.601848 + 1.04243i 0.992541 + 0.121911i \(0.0389022\pi\)
−0.390693 + 0.920521i \(0.627764\pi\)
\(542\) 0 0
\(543\) 4.55089 + 24.6046i 0.195297 + 1.05589i
\(544\) 0 0
\(545\) 32.0505 18.5044i 1.37289 0.792640i
\(546\) 0 0
\(547\) 10.5492 6.09061i 0.451053 0.260416i −0.257222 0.966352i \(-0.582807\pi\)
0.708275 + 0.705937i \(0.249474\pi\)
\(548\) 0 0
\(549\) 0.0246149 0.154680i 0.00105054 0.00660157i
\(550\) 0 0
\(551\) 20.8116 10.1218i 0.886604 0.431205i
\(552\) 0 0
\(553\) −2.64626 + 4.58346i −0.112531 + 0.194909i
\(554\) 0 0
\(555\) −26.3027 30.8193i −1.11649 1.30821i
\(556\) 0 0
\(557\) 32.5394 18.7866i 1.37874 0.796016i 0.386732 0.922192i \(-0.373604\pi\)
0.992008 + 0.126177i \(0.0402707\pi\)
\(558\) 0 0
\(559\) 12.9829i 0.549120i
\(560\) 0 0
\(561\) 5.35038 + 6.26913i 0.225893 + 0.264683i
\(562\) 0 0
\(563\) −1.85721 −0.0782723 −0.0391361 0.999234i \(-0.512461\pi\)
−0.0391361 + 0.999234i \(0.512461\pi\)
\(564\) 0 0
\(565\) −11.0770 + 19.1858i −0.466011 + 0.807154i
\(566\) 0 0
\(567\) −5.17041 + 1.09110i −0.217137 + 0.0458219i
\(568\) 0 0
\(569\) 5.76174i 0.241545i 0.992680 + 0.120772i \(0.0385371\pi\)
−0.992680 + 0.120772i \(0.961463\pi\)
\(570\) 0 0
\(571\) 26.6635i 1.11583i 0.829898 + 0.557916i \(0.188399\pi\)
−0.829898 + 0.557916i \(0.811601\pi\)
\(572\) 0 0
\(573\) −20.9853 7.43992i −0.876673 0.310807i
\(574\) 0 0
\(575\) −10.2318 + 17.7221i −0.426697 + 0.739061i
\(576\) 0 0
\(577\) −42.5661 −1.77205 −0.886025 0.463637i \(-0.846544\pi\)
−0.886025 + 0.463637i \(0.846544\pi\)
\(578\) 0 0
\(579\) 25.2348 21.5366i 1.04872 0.895029i
\(580\) 0 0
\(581\) 8.00058i 0.331920i
\(582\) 0 0
\(583\) 11.6657 6.73522i 0.483145 0.278944i
\(584\) 0 0
\(585\) −13.0396 + 16.0785i −0.539121 + 0.664764i
\(586\) 0 0
\(587\) −5.76531 + 9.98581i −0.237960 + 0.412159i −0.960129 0.279558i \(-0.909812\pi\)
0.722169 + 0.691717i \(0.243145\pi\)
\(588\) 0 0
\(589\) 1.36948 19.2763i 0.0564284 0.794265i
\(590\) 0 0
\(591\) −10.6266 + 29.9737i −0.437119 + 1.23295i
\(592\) 0 0
\(593\) −6.46489 + 3.73251i −0.265481 + 0.153276i −0.626832 0.779154i \(-0.715649\pi\)
0.361351 + 0.932430i \(0.382316\pi\)
\(594\) 0 0
\(595\) 2.84904 1.64490i 0.116799 0.0674342i
\(596\) 0 0
\(597\) −21.4568 + 3.96866i −0.878168 + 0.162426i
\(598\) 0 0
\(599\) 5.13528 + 8.89456i 0.209822 + 0.363422i 0.951658 0.307159i \(-0.0993783\pi\)
−0.741837 + 0.670581i \(0.766045\pi\)
\(600\) 0 0
\(601\) 2.03148 0.0828660 0.0414330 0.999141i \(-0.486808\pi\)
0.0414330 + 0.999141i \(0.486808\pi\)
\(602\) 0 0
\(603\) 2.26643 + 0.360668i 0.0922962 + 0.0146875i
\(604\) 0 0
\(605\) −5.97599 3.45024i −0.242958 0.140272i
\(606\) 0 0
\(607\) 34.9125i 1.41706i −0.705683 0.708528i \(-0.749360\pi\)
0.705683 0.708528i \(-0.250640\pi\)
\(608\) 0 0
\(609\) 0.982002 + 5.30925i 0.0397927 + 0.215142i
\(610\) 0 0
\(611\) −6.79670 + 11.7722i −0.274965 + 0.476253i
\(612\) 0 0
\(613\) −13.0666 + 22.6320i −0.527755 + 0.914098i 0.471722 + 0.881747i \(0.343633\pi\)
−0.999477 + 0.0323504i \(0.989701\pi\)
\(614\) 0 0
\(615\) 10.0854 + 54.5272i 0.406682 + 2.19875i
\(616\) 0 0
\(617\) −28.0849 + 16.2148i −1.13066 + 0.652785i −0.944100 0.329659i \(-0.893066\pi\)
−0.186557 + 0.982444i \(0.559733\pi\)
\(618\) 0 0
\(619\) 1.17269i 0.0471342i −0.999722 0.0235671i \(-0.992498\pi\)
0.999722 0.0235671i \(-0.00750234\pi\)
\(620\) 0 0
\(621\) 6.73302 12.3683i 0.270187 0.496322i
\(622\) 0 0
\(623\) 3.12012 + 5.40421i 0.125005 + 0.216515i
\(624\) 0 0
\(625\) 2.86948 4.97008i 0.114779 0.198803i
\(626\) 0 0
\(627\) 20.8177 + 9.08841i 0.831379 + 0.362956i
\(628\) 0 0
\(629\) −9.04407 5.22160i −0.360611 0.208199i
\(630\) 0 0
\(631\) −0.407561 + 0.235306i −0.0162248 + 0.00936737i −0.508090 0.861304i \(-0.669648\pi\)
0.491866 + 0.870671i \(0.336315\pi\)
\(632\) 0 0
\(633\) −2.54416 2.98104i −0.101121 0.118486i
\(634\) 0 0
\(635\) −16.2278 −0.643981
\(636\) 0 0
\(637\) 6.48153 + 11.2263i 0.256808 + 0.444804i
\(638\) 0 0
\(639\) −32.8792 + 12.5936i −1.30068 + 0.498194i
\(640\) 0 0
\(641\) 4.76649 + 2.75193i 0.188265 + 0.108695i 0.591170 0.806547i \(-0.298666\pi\)
−0.402905 + 0.915242i \(0.632000\pi\)
\(642\) 0 0
\(643\) −36.7179 21.1991i −1.44801 0.836011i −0.449650 0.893205i \(-0.648451\pi\)
−0.998363 + 0.0571942i \(0.981785\pi\)
\(644\) 0 0
\(645\) −7.43879 40.2182i −0.292902 1.58359i
\(646\) 0 0
\(647\) −3.05150 −0.119967 −0.0599834 0.998199i \(-0.519105\pi\)
−0.0599834 + 0.998199i \(0.519105\pi\)
\(648\) 0 0
\(649\) 21.7817 37.7270i 0.855006 1.48091i
\(650\) 0 0
\(651\) 4.24946 + 1.50656i 0.166550 + 0.0590469i
\(652\) 0 0
\(653\) 2.22868i 0.0872150i −0.999049 0.0436075i \(-0.986115\pi\)
0.999049 0.0436075i \(-0.0138851\pi\)
\(654\) 0 0
\(655\) 67.2331 38.8171i 2.62702 1.51671i
\(656\) 0 0
\(657\) −22.9896 + 8.80560i −0.896911 + 0.343539i
\(658\) 0 0
\(659\) 4.16512 + 7.21420i 0.162250 + 0.281025i 0.935675 0.352862i \(-0.114792\pi\)
−0.773425 + 0.633888i \(0.781458\pi\)
\(660\) 0 0
\(661\) −4.64490 8.04520i −0.180666 0.312922i 0.761442 0.648233i \(-0.224492\pi\)
−0.942107 + 0.335311i \(0.891159\pi\)
\(662\) 0 0
\(663\) −1.78293 + 5.02900i −0.0692434 + 0.195310i
\(664\) 0 0
\(665\) 5.07849 7.51113i 0.196935 0.291269i
\(666\) 0 0
\(667\) −12.4610 7.19434i −0.482491 0.278566i
\(668\) 0 0
\(669\) 8.88391 + 10.4094i 0.343472 + 0.402452i
\(670\) 0 0
\(671\) −0.0785398 0.136035i −0.00303200 0.00525157i
\(672\) 0 0
\(673\) 6.44915 0.248597 0.124298 0.992245i \(-0.460332\pi\)
0.124298 + 0.992245i \(0.460332\pi\)
\(674\) 0 0
\(675\) 18.7593 34.4601i 0.722047 1.32637i
\(676\) 0 0
\(677\) 27.0475i 1.03952i 0.854312 + 0.519760i \(0.173979\pi\)
−0.854312 + 0.519760i \(0.826021\pi\)
\(678\) 0 0
\(679\) −5.36490 3.09743i −0.205886 0.118868i
\(680\) 0 0
\(681\) −2.77546 0.983984i −0.106356 0.0377063i
\(682\) 0 0
\(683\) 39.1960 1.49980 0.749898 0.661554i \(-0.230103\pi\)
0.749898 + 0.661554i \(0.230103\pi\)
\(684\) 0 0
\(685\) −16.1881 −0.618516
\(686\) 0 0
\(687\) 30.9615 + 10.9768i 1.18125 + 0.418791i
\(688\) 0 0
\(689\) 7.55227 + 4.36030i 0.287718 + 0.166114i
\(690\) 0 0
\(691\) 3.16718i 0.120485i −0.998184 0.0602426i \(-0.980813\pi\)
0.998184 0.0602426i \(-0.0191874\pi\)
\(692\) 0 0
\(693\) −3.33815 + 4.11611i −0.126806 + 0.156358i
\(694\) 0 0
\(695\) −19.2365 −0.729682
\(696\) 0 0
\(697\) 7.14626 + 12.3777i 0.270684 + 0.468839i
\(698\) 0 0
\(699\) 26.0947 + 30.5756i 0.986993 + 1.15648i
\(700\) 0 0
\(701\) −42.6077 24.5996i −1.60927 0.929113i −0.989533 0.144304i \(-0.953906\pi\)
−0.619738 0.784809i \(-0.712761\pi\)
\(702\) 0 0
\(703\) −28.7097 2.03967i −1.08281 0.0769277i
\(704\) 0 0
\(705\) 14.3096 40.3620i 0.538929 1.52012i
\(706\) 0 0
\(707\) 3.36439 + 5.82730i 0.126531 + 0.219158i
\(708\) 0 0
\(709\) −22.0756 38.2360i −0.829066 1.43598i −0.898772 0.438417i \(-0.855539\pi\)
0.0697056 0.997568i \(-0.477794\pi\)
\(710\) 0 0
\(711\) 9.67255 + 25.2531i 0.362749 + 0.947064i
\(712\) 0 0
\(713\) −10.4054 + 6.00755i −0.389685 + 0.224985i
\(714\) 0 0
\(715\) 20.7614i 0.776432i
\(716\) 0 0
\(717\) −31.4571 11.1525i −1.17479 0.416498i
\(718\) 0 0
\(719\) 6.71816 11.6362i 0.250545 0.433957i −0.713131 0.701031i \(-0.752724\pi\)
0.963676 + 0.267074i \(0.0860568\pi\)
\(720\) 0 0
\(721\) −5.55085 −0.206724
\(722\) 0 0
\(723\) 1.29211 + 6.98585i 0.0480540 + 0.259807i
\(724\) 0 0
\(725\) −34.7184 20.0447i −1.28941 0.744440i
\(726\) 0 0
\(727\) −3.33763 1.92698i −0.123786 0.0714679i 0.436828 0.899545i \(-0.356102\pi\)
−0.560614 + 0.828077i \(0.689435\pi\)
\(728\) 0 0
\(729\) −12.3105 + 24.0302i −0.455945 + 0.890008i
\(730\) 0 0
\(731\) −5.27095 9.12955i −0.194953 0.337669i
\(732\) 0 0
\(733\) 0.744408 0.0274953 0.0137477 0.999905i \(-0.495624\pi\)
0.0137477 + 0.999905i \(0.495624\pi\)
\(734\) 0 0
\(735\) −26.5107 31.0630i −0.977861 1.14578i
\(736\) 0 0
\(737\) 1.99324 1.15080i 0.0734219 0.0423902i
\(738\) 0 0
\(739\) 31.9942 + 18.4719i 1.17693 + 0.679499i 0.955302 0.295633i \(-0.0955306\pi\)
0.221625 + 0.975132i \(0.428864\pi\)
\(740\) 0 0
\(741\) 1.64311 + 14.6134i 0.0603611 + 0.536837i
\(742\) 0 0
\(743\) −17.8485 + 30.9146i −0.654800 + 1.13415i 0.327144 + 0.944974i \(0.393914\pi\)
−0.981944 + 0.189172i \(0.939420\pi\)
\(744\) 0 0
\(745\) −26.7741 46.3740i −0.980926 1.69901i
\(746\) 0 0
\(747\) −31.7500 25.7492i −1.16167 0.942112i
\(748\) 0 0
\(749\) 3.53306i 0.129095i
\(750\) 0 0
\(751\) 20.3962 11.7758i 0.744268 0.429703i −0.0793510 0.996847i \(-0.525285\pi\)
0.823619 + 0.567143i \(0.191951\pi\)
\(752\) 0 0
\(753\) −1.69711 9.17552i −0.0618461 0.334375i
\(754\) 0 0
\(755\) 29.9627 51.8969i 1.09045 1.88872i
\(756\) 0 0
\(757\) 7.73358 13.3949i 0.281082 0.486848i −0.690570 0.723266i \(-0.742640\pi\)
0.971651 + 0.236418i \(0.0759735\pi\)
\(758\) 0 0
\(759\) −2.56863 13.8874i −0.0932352 0.504081i
\(760\) 0 0
\(761\) 27.4904i 0.996525i 0.867026 + 0.498262i \(0.166028\pi\)
−0.867026 + 0.498262i \(0.833972\pi\)
\(762\) 0 0
\(763\) 5.31181 + 3.06677i 0.192300 + 0.111025i
\(764\) 0 0
\(765\) 2.64168 16.6003i 0.0955102 0.600185i
\(766\) 0 0
\(767\) 28.2025 1.01833
\(768\) 0 0
\(769\) −13.8942 24.0655i −0.501038 0.867824i −0.999999 0.00119943i \(-0.999618\pi\)
0.498961 0.866624i \(-0.333715\pi\)
\(770\) 0 0
\(771\) −37.7780 + 6.98745i −1.36054 + 0.251647i
\(772\) 0 0
\(773\) 1.03259 0.596168i 0.0371398 0.0214427i −0.481315 0.876548i \(-0.659841\pi\)
0.518455 + 0.855105i \(0.326507\pi\)
\(774\) 0 0
\(775\) −28.9912 + 16.7381i −1.04139 + 0.601249i
\(776\) 0 0
\(777\) 2.24385 6.32907i 0.0804975 0.227054i
\(778\) 0 0
\(779\) 32.6321 + 22.0635i 1.16917 + 0.790507i
\(780\) 0 0
\(781\) −17.6553 + 30.5798i −0.631755 + 1.09423i
\(782\) 0 0
\(783\) 24.2300 + 13.1903i 0.865911 + 0.471383i
\(784\) 0 0
\(785\) 37.1290 21.4364i 1.32519 0.765099i
\(786\) 0 0
\(787\) 10.6896i 0.381043i 0.981683 + 0.190521i \(0.0610178\pi\)
−0.981683 + 0.190521i \(0.938982\pi\)
\(788\) 0 0
\(789\) 5.00087 4.26798i 0.178036 0.151944i
\(790\) 0 0
\(791\) −3.67162 −0.130548
\(792\) 0 0
\(793\) 0.0508458 0.0880675i 0.00180559 0.00312737i
\(794\) 0 0
\(795\) −25.8936 9.18005i −0.918350 0.325583i
\(796\) 0 0
\(797\) 38.0258i 1.34694i 0.739214 + 0.673471i \(0.235197\pi\)
−0.739214 + 0.673471i \(0.764803\pi\)
\(798\) 0 0
\(799\) 11.0376i 0.390482i
\(800\) 0 0
\(801\) 31.4882 + 5.01087i 1.11258 + 0.177050i
\(802\) 0 0
\(803\) −12.3448 + 21.3818i −0.435639 + 0.754549i
\(804\) 0 0
\(805\) −5.63726 −0.198687
\(806\) 0 0
\(807\) −18.8447 22.0806i −0.663363 0.777274i
\(808\) 0 0
\(809\) 8.46273i 0.297534i 0.988872 + 0.148767i \(0.0475304\pi\)
−0.988872 + 0.148767i \(0.952470\pi\)
\(810\) 0 0
\(811\) −19.0726 + 11.0116i −0.669730 + 0.386669i −0.795974 0.605331i \(-0.793041\pi\)
0.126245 + 0.991999i \(0.459708\pi\)
\(812\) 0 0
\(813\) 6.47078 + 7.58192i 0.226940 + 0.265910i
\(814\) 0 0
\(815\) −40.8817 + 70.8092i −1.43202 + 2.48034i
\(816\) 0 0
\(817\) −24.0688 16.2736i −0.842062 0.569342i
\(818\) 0 0
\(819\) −3.38826 0.539190i −0.118395 0.0188408i
\(820\) 0 0
\(821\) 18.2947 10.5625i 0.638491 0.368633i −0.145542 0.989352i \(-0.546493\pi\)
0.784033 + 0.620719i \(0.213159\pi\)
\(822\) 0 0
\(823\) 2.49596 1.44105i 0.0870038 0.0502317i −0.455867 0.890048i \(-0.650671\pi\)
0.542871 + 0.839816i \(0.317337\pi\)
\(824\) 0 0
\(825\) −7.15663 38.6927i −0.249162 1.34711i
\(826\) 0 0
\(827\) −5.56087 9.63171i −0.193370 0.334927i 0.752995 0.658027i \(-0.228609\pi\)
−0.946365 + 0.323099i \(0.895275\pi\)
\(828\) 0 0
\(829\) 3.34201 0.116073 0.0580364 0.998314i \(-0.481516\pi\)
0.0580364 + 0.998314i \(0.481516\pi\)
\(830\) 0 0
\(831\) −8.24769 2.92406i −0.286109 0.101434i
\(832\) 0 0
\(833\) −9.11558 5.26288i −0.315836 0.182348i
\(834\) 0 0
\(835\) 78.2519i 2.70802i
\(836\) 0 0
\(837\) 19.6553 12.0151i 0.679385 0.415303i
\(838\) 0 0
\(839\) 19.4072 33.6142i 0.670011 1.16049i −0.307890 0.951422i \(-0.599623\pi\)
0.977901 0.209071i \(-0.0670438\pi\)
\(840\) 0 0
\(841\) −0.405945 + 0.703117i −0.0139981 + 0.0242454i
\(842\) 0 0
\(843\) −12.7141 + 2.35161i −0.437898 + 0.0809939i
\(844\) 0 0
\(845\) 28.2451 16.3073i 0.971661 0.560989i
\(846\) 0 0
\(847\) 1.14363i 0.0392957i
\(848\) 0 0
\(849\) −29.5200 34.5892i −1.01313 1.18710i
\(850\) 0 0
\(851\) 8.94753 + 15.4976i 0.306717 + 0.531250i
\(852\) 0 0
\(853\) −21.3092 + 36.9086i −0.729612 + 1.26372i 0.227435 + 0.973793i \(0.426966\pi\)
−0.957047 + 0.289932i \(0.906367\pi\)
\(854\) 0 0
\(855\) −13.4630 44.3277i −0.460425 1.51597i
\(856\) 0 0
\(857\) 25.4087 + 14.6697i 0.867945 + 0.501108i 0.866665 0.498891i \(-0.166259\pi\)
0.00128031 + 0.999999i \(0.499592\pi\)
\(858\) 0 0
\(859\) −32.5970 + 18.8199i −1.11219 + 0.642126i −0.939397 0.342832i \(-0.888614\pi\)
−0.172797 + 0.984957i \(0.555281\pi\)
\(860\) 0 0
\(861\) −6.99047 + 5.96600i −0.238235 + 0.203321i
\(862\) 0 0
\(863\) 45.3532 1.54384 0.771920 0.635719i \(-0.219296\pi\)
0.771920 + 0.635719i \(0.219296\pi\)
\(864\) 0 0
\(865\) −23.9554 41.4920i −0.814509 1.41077i
\(866\) 0 0
\(867\) 4.56733 + 24.6935i 0.155115 + 0.838637i
\(868\) 0 0
\(869\) 23.4870 + 13.5602i 0.796741 + 0.459999i
\(870\) 0 0
\(871\) 1.29040 + 0.745013i 0.0437236 + 0.0252438i
\(872\) 0 0
\(873\) −29.5585 + 11.3216i −1.00040 + 0.383179i
\(874\) 0 0
\(875\) −5.30597 −0.179374
\(876\) 0 0
\(877\) −3.65663 + 6.33346i −0.123475 + 0.213866i −0.921136 0.389241i \(-0.872737\pi\)
0.797661 + 0.603107i \(0.206071\pi\)
\(878\) 0 0
\(879\) 6.37092 17.9700i 0.214886 0.606114i
\(880\) 0 0
\(881\) 22.0985i 0.744519i −0.928129 0.372259i \(-0.878583\pi\)
0.928129 0.372259i \(-0.121417\pi\)
\(882\) 0 0
\(883\) −6.73633 + 3.88922i −0.226696 + 0.130883i −0.609047 0.793134i \(-0.708448\pi\)
0.382351 + 0.924017i \(0.375114\pi\)
\(884\) 0 0
\(885\) −87.3649 + 16.1591i −2.93674 + 0.543181i
\(886\) 0 0
\(887\) 14.0770 + 24.3821i 0.472659 + 0.818669i 0.999510 0.0312881i \(-0.00996095\pi\)
−0.526852 + 0.849957i \(0.676628\pi\)
\(888\) 0 0
\(889\) −1.34474 2.32915i −0.0451010 0.0781173i
\(890\) 0 0
\(891\) 5.59110 + 26.4947i 0.187309 + 0.887605i
\(892\) 0 0
\(893\) −13.3049 27.3563i −0.445232 0.915445i
\(894\) 0 0
\(895\) −48.1885 27.8216i −1.61076 0.929974i
\(896\) 0 0
\(897\) 6.95460 5.93539i 0.232207 0.198177i
\(898\) 0 0
\(899\) −11.7691 20.3846i −0.392521 0.679866i
\(900\) 0 0
\(901\) −7.08097 −0.235901
\(902\) 0 0
\(903\) 5.15604 4.40041i 0.171582 0.146437i
\(904\) 0 0
\(905\) 51.1796i 1.70127i
\(906\) 0 0
\(907\) −21.7729 12.5706i −0.722957 0.417400i 0.0928829 0.995677i \(-0.470392\pi\)
−0.815840 + 0.578277i \(0.803725\pi\)
\(908\) 0 0
\(909\) 33.9534 + 5.40317i 1.12616 + 0.179212i
\(910\) 0 0
\(911\) 10.1948 0.337770 0.168885 0.985636i \(-0.445983\pi\)
0.168885 + 0.985636i \(0.445983\pi\)
\(912\) 0 0
\(913\) −40.9973 −1.35681
\(914\) 0 0
\(915\) −0.107049 + 0.301947i −0.00353894 + 0.00998205i
\(916\) 0 0
\(917\) 11.1427 + 6.43324i 0.367965 + 0.212444i
\(918\) 0 0
\(919\) 59.7855i 1.97214i 0.166326 + 0.986071i \(0.446810\pi\)
−0.166326 + 0.986071i \(0.553190\pi\)
\(920\) 0 0
\(921\) 0.163696 + 0.191805i 0.00539395 + 0.00632019i
\(922\) 0 0
\(923\) −22.8596 −0.752434
\(924\) 0 0
\(925\) 24.9293 + 43.1789i 0.819671 + 1.41971i
\(926\) 0 0
\(927\) −17.8649 + 22.0283i −0.586760 + 0.723505i
\(928\) 0 0
\(929\) 0.775378 + 0.447665i 0.0254393 + 0.0146874i 0.512666 0.858588i \(-0.328658\pi\)
−0.487226 + 0.873276i \(0.661991\pi\)
\(930\) 0 0
\(931\) −28.9367 2.05580i −0.948362 0.0673761i
\(932\) 0 0
\(933\) 32.3528 + 11.4701i 1.05918 + 0.375513i
\(934\) 0 0
\(935\) −8.42892 14.5993i −0.275655 0.477449i
\(936\) 0 0
\(937\) −5.68137 9.84042i −0.185602 0.321472i 0.758177 0.652049i \(-0.226090\pi\)
−0.943779 + 0.330576i \(0.892757\pi\)
\(938\) 0 0
\(939\) −3.95374 21.3761i −0.129026 0.697584i
\(940\) 0 0
\(941\) 26.8499 15.5018i 0.875282 0.505344i 0.00618199 0.999981i \(-0.498032\pi\)
0.869100 + 0.494637i \(0.164699\pi\)
\(942\) 0 0
\(943\) 24.4911i 0.797541i
\(944\) 0 0
\(945\) 10.8050 0.271072i 0.351487 0.00881796i
\(946\) 0 0
\(947\) 14.1070 24.4341i 0.458417 0.794002i −0.540460 0.841370i \(-0.681750\pi\)
0.998878 + 0.0473675i \(0.0150832\pi\)
\(948\) 0 0
\(949\) −15.9838 −0.518856
\(950\) 0 0
\(951\) −2.23802 + 0.413946i −0.0725728 + 0.0134231i
\(952\) 0 0
\(953\) 39.7253 + 22.9354i 1.28683 + 0.742952i 0.978088 0.208194i \(-0.0667586\pi\)
0.308742 + 0.951146i \(0.400092\pi\)
\(954\) 0 0
\(955\) 39.4395 + 22.7704i 1.27623 + 0.736833i
\(956\) 0 0
\(957\) 27.2061 5.03206i 0.879449 0.162663i
\(958\) 0 0
\(959\) −1.34145 2.32345i −0.0433176 0.0750283i
\(960\) 0 0
\(961\) 11.3447 0.365959
\(962\) 0 0
\(963\) 14.0208 + 11.3708i 0.451815 + 0.366420i
\(964\) 0 0
\(965\) −58.7658 + 33.9284i −1.89174 + 1.09219i
\(966\) 0 0
\(967\) 33.9471 + 19.5994i 1.09167 + 0.630274i 0.934019 0.357222i \(-0.116276\pi\)
0.157646 + 0.987496i \(0.449609\pi\)
\(968\) 0 0
\(969\) −7.08834 9.60901i −0.227710 0.308686i
\(970\) 0 0
\(971\) 9.99536 17.3125i 0.320766 0.555584i −0.659880 0.751371i \(-0.729393\pi\)
0.980646 + 0.195787i \(0.0627262\pi\)
\(972\) 0 0
\(973\) −1.59406 2.76098i −0.0511031 0.0885131i
\(974\) 0 0
\(975\) 19.3767 16.5370i 0.620551 0.529608i
\(976\) 0 0
\(977\) 0.175304i 0.00560847i −0.999996 0.00280424i \(-0.999107\pi\)
0.999996 0.00280424i \(-0.000892618\pi\)
\(978\) 0 0
\(979\) 27.6927 15.9884i 0.885063 0.510992i
\(980\) 0 0
\(981\) 29.2660 11.2096i 0.934390 0.357894i
\(982\) 0 0
\(983\) 10.8454 18.7848i 0.345915 0.599143i −0.639604 0.768704i \(-0.720902\pi\)
0.985520 + 0.169561i \(0.0542351\pi\)
\(984\) 0 0
\(985\) 32.5234 56.3321i 1.03628 1.79489i
\(986\) 0 0
\(987\) 6.97888 1.29082i 0.222140 0.0410872i
\(988\) 0 0
\(989\) 18.0642i 0.574408i
\(990\) 0 0
\(991\) −0.783306 0.452242i −0.0248825 0.0143659i 0.487507 0.873119i \(-0.337906\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(992\) 0 0
\(993\) −10.9611 + 30.9172i −0.347839 + 0.981127i
\(994\) 0 0
\(995\) 44.6319 1.41493
\(996\) 0 0
\(997\) −12.1525 21.0488i −0.384875 0.666623i 0.606877 0.794796i \(-0.292422\pi\)
−0.991752 + 0.128173i \(0.959089\pi\)
\(998\) 0 0
\(999\) −17.8951 29.2742i −0.566174 0.926193i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bh.f.239.2 24
3.2 odd 2 inner 912.2.bh.f.239.3 yes 24
4.3 odd 2 inner 912.2.bh.f.239.11 yes 24
12.11 even 2 inner 912.2.bh.f.239.10 yes 24
19.7 even 3 inner 912.2.bh.f.767.10 yes 24
57.26 odd 6 inner 912.2.bh.f.767.11 yes 24
76.7 odd 6 inner 912.2.bh.f.767.3 yes 24
228.83 even 6 inner 912.2.bh.f.767.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
912.2.bh.f.239.2 24 1.1 even 1 trivial
912.2.bh.f.239.3 yes 24 3.2 odd 2 inner
912.2.bh.f.239.10 yes 24 12.11 even 2 inner
912.2.bh.f.239.11 yes 24 4.3 odd 2 inner
912.2.bh.f.767.2 yes 24 228.83 even 6 inner
912.2.bh.f.767.3 yes 24 76.7 odd 6 inner
912.2.bh.f.767.10 yes 24 19.7 even 3 inner
912.2.bh.f.767.11 yes 24 57.26 odd 6 inner