Properties

Label 912.2.bh.f.767.5
Level $912$
Weight $2$
Character 912.767
Analytic conductor $7.282$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(239,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 767.5
Character \(\chi\) \(=\) 912.767
Dual form 912.2.bh.f.239.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.631725 - 1.61274i) q^{3} +(1.81928 - 1.05036i) q^{5} +3.85684i q^{7} +(-2.20185 + 2.03761i) q^{9} +2.41989 q^{11} +(2.57207 - 4.45496i) q^{13} +(-2.84324 - 2.27048i) q^{15} +(2.36265 - 1.36408i) q^{17} +(1.37962 + 4.13481i) q^{19} +(6.22008 - 2.43646i) q^{21} +(-2.33855 + 4.05049i) q^{23} +(-0.293478 + 0.508318i) q^{25} +(4.67710 + 2.26379i) q^{27} +(6.26345 + 3.61620i) q^{29} -2.26379i q^{31} +(-1.52870 - 3.90265i) q^{33} +(4.05108 + 7.01668i) q^{35} -4.73110 q^{37} +(-8.80952 - 1.33377i) q^{39} +(10.1642 - 5.86833i) q^{41} +(8.19167 - 4.72946i) q^{43} +(-1.86555 + 6.01973i) q^{45} +(2.29646 - 3.97759i) q^{47} -7.87524 q^{49} +(-3.69244 - 2.94861i) q^{51} +(-8.79637 - 5.07859i) q^{53} +(4.40246 - 2.54176i) q^{55} +(5.79682 - 4.83703i) q^{57} +(-6.43172 - 11.1401i) q^{59} +(1.57207 - 2.72291i) q^{61} +(-7.85875 - 8.49218i) q^{63} -10.8064i q^{65} +(-1.92814 - 1.11321i) q^{67} +(8.00969 + 1.21268i) q^{69} +(-1.29128 - 2.23657i) q^{71} +(7.23110 + 12.5246i) q^{73} +(1.00518 + 0.152185i) q^{75} +9.33313i q^{77} +(-5.16883 + 2.98423i) q^{79} +(0.696268 - 8.97303i) q^{81} -12.8578 q^{83} +(2.86555 - 4.96328i) q^{85} +(1.87521 - 12.3857i) q^{87} +(5.45784 + 3.15109i) q^{89} +(17.1821 + 9.92007i) q^{91} +(-3.65091 + 1.43009i) q^{93} +(6.85297 + 6.07328i) q^{95} +(-1.20652 - 2.08976i) q^{97} +(-5.32823 + 4.93079i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{9} + 12 q^{13} + 12 q^{21} + 8 q^{25} + 16 q^{37} + 20 q^{45} + 40 q^{49} + 18 q^{57} - 12 q^{61} + 28 q^{69} + 44 q^{73} - 22 q^{81} + 4 q^{85} + 8 q^{93} - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.631725 1.61274i −0.364726 0.931115i
\(4\) 0 0
\(5\) 1.81928 1.05036i 0.813607 0.469736i −0.0345998 0.999401i \(-0.511016\pi\)
0.848207 + 0.529665i \(0.177682\pi\)
\(6\) 0 0
\(7\) 3.85684i 1.45775i 0.684647 + 0.728875i \(0.259956\pi\)
−0.684647 + 0.728875i \(0.740044\pi\)
\(8\) 0 0
\(9\) −2.20185 + 2.03761i −0.733949 + 0.679204i
\(10\) 0 0
\(11\) 2.41989 0.729624 0.364812 0.931081i \(-0.381133\pi\)
0.364812 + 0.931081i \(0.381133\pi\)
\(12\) 0 0
\(13\) 2.57207 4.45496i 0.713364 1.23558i −0.250223 0.968188i \(-0.580504\pi\)
0.963587 0.267395i \(-0.0861627\pi\)
\(14\) 0 0
\(15\) −2.84324 2.27048i −0.734122 0.586236i
\(16\) 0 0
\(17\) 2.36265 1.36408i 0.573027 0.330837i −0.185331 0.982676i \(-0.559336\pi\)
0.758357 + 0.651839i \(0.226002\pi\)
\(18\) 0 0
\(19\) 1.37962 + 4.13481i 0.316507 + 0.948590i
\(20\) 0 0
\(21\) 6.22008 2.43646i 1.35733 0.531680i
\(22\) 0 0
\(23\) −2.33855 + 4.05049i −0.487621 + 0.844585i −0.999899 0.0142354i \(-0.995469\pi\)
0.512278 + 0.858820i \(0.328802\pi\)
\(24\) 0 0
\(25\) −0.293478 + 0.508318i −0.0586955 + 0.101664i
\(26\) 0 0
\(27\) 4.67710 + 2.26379i 0.900108 + 0.435667i
\(28\) 0 0
\(29\) 6.26345 + 3.61620i 1.16309 + 0.671512i 0.952043 0.305964i \(-0.0989786\pi\)
0.211049 + 0.977475i \(0.432312\pi\)
\(30\) 0 0
\(31\) 2.26379i 0.406589i −0.979118 0.203295i \(-0.934835\pi\)
0.979118 0.203295i \(-0.0651649\pi\)
\(32\) 0 0
\(33\) −1.52870 3.90265i −0.266113 0.679363i
\(34\) 0 0
\(35\) 4.05108 + 7.01668i 0.684758 + 1.18604i
\(36\) 0 0
\(37\) −4.73110 −0.777788 −0.388894 0.921283i \(-0.627143\pi\)
−0.388894 + 0.921283i \(0.627143\pi\)
\(38\) 0 0
\(39\) −8.80952 1.33377i −1.41065 0.213574i
\(40\) 0 0
\(41\) 10.1642 5.86833i 1.58739 0.916479i 0.593652 0.804722i \(-0.297685\pi\)
0.993736 0.111757i \(-0.0356479\pi\)
\(42\) 0 0
\(43\) 8.19167 4.72946i 1.24922 0.721236i 0.278264 0.960505i \(-0.410241\pi\)
0.970953 + 0.239269i \(0.0769077\pi\)
\(44\) 0 0
\(45\) −1.86555 + 6.01973i −0.278100 + 0.897368i
\(46\) 0 0
\(47\) 2.29646 3.97759i 0.334974 0.580192i −0.648506 0.761210i \(-0.724606\pi\)
0.983480 + 0.181018i \(0.0579392\pi\)
\(48\) 0 0
\(49\) −7.87524 −1.12503
\(50\) 0 0
\(51\) −3.69244 2.94861i −0.517045 0.412888i
\(52\) 0 0
\(53\) −8.79637 5.07859i −1.20827 0.697598i −0.245893 0.969297i \(-0.579081\pi\)
−0.962382 + 0.271699i \(0.912414\pi\)
\(54\) 0 0
\(55\) 4.40246 2.54176i 0.593627 0.342731i
\(56\) 0 0
\(57\) 5.79682 4.83703i 0.767808 0.640680i
\(58\) 0 0
\(59\) −6.43172 11.1401i −0.837338 1.45031i −0.892112 0.451813i \(-0.850777\pi\)
0.0547744 0.998499i \(-0.482556\pi\)
\(60\) 0 0
\(61\) 1.57207 2.72291i 0.201283 0.348632i −0.747659 0.664083i \(-0.768822\pi\)
0.948942 + 0.315450i \(0.102156\pi\)
\(62\) 0 0
\(63\) −7.85875 8.49218i −0.990110 1.06991i
\(64\) 0 0
\(65\) 10.8064i 1.34037i
\(66\) 0 0
\(67\) −1.92814 1.11321i −0.235559 0.136000i 0.377575 0.925979i \(-0.376758\pi\)
−0.613134 + 0.789979i \(0.710091\pi\)
\(68\) 0 0
\(69\) 8.00969 + 1.21268i 0.964253 + 0.145989i
\(70\) 0 0
\(71\) −1.29128 2.23657i −0.153247 0.265432i 0.779172 0.626810i \(-0.215640\pi\)
−0.932419 + 0.361378i \(0.882306\pi\)
\(72\) 0 0
\(73\) 7.23110 + 12.5246i 0.846336 + 1.46590i 0.884456 + 0.466624i \(0.154530\pi\)
−0.0381202 + 0.999273i \(0.512137\pi\)
\(74\) 0 0
\(75\) 1.00518 + 0.152185i 0.116068 + 0.0175729i
\(76\) 0 0
\(77\) 9.33313i 1.06361i
\(78\) 0 0
\(79\) −5.16883 + 2.98423i −0.581539 + 0.335752i −0.761745 0.647877i \(-0.775657\pi\)
0.180206 + 0.983629i \(0.442324\pi\)
\(80\) 0 0
\(81\) 0.696268 8.97303i 0.0773632 0.997003i
\(82\) 0 0
\(83\) −12.8578 −1.41132 −0.705662 0.708549i \(-0.749350\pi\)
−0.705662 + 0.708549i \(0.749350\pi\)
\(84\) 0 0
\(85\) 2.86555 4.96328i 0.310812 0.538343i
\(86\) 0 0
\(87\) 1.87521 12.3857i 0.201044 1.32789i
\(88\) 0 0
\(89\) 5.45784 + 3.15109i 0.578530 + 0.334015i 0.760549 0.649280i \(-0.224930\pi\)
−0.182019 + 0.983295i \(0.558263\pi\)
\(90\) 0 0
\(91\) 17.1821 + 9.92007i 1.80117 + 1.03991i
\(92\) 0 0
\(93\) −3.65091 + 1.43009i −0.378581 + 0.148294i
\(94\) 0 0
\(95\) 6.85297 + 6.07328i 0.703100 + 0.623105i
\(96\) 0 0
\(97\) −1.20652 2.08976i −0.122504 0.212183i 0.798251 0.602325i \(-0.205759\pi\)
−0.920754 + 0.390143i \(0.872426\pi\)
\(98\) 0 0
\(99\) −5.32823 + 4.93079i −0.535507 + 0.495564i
\(100\) 0 0
\(101\) 7.99077 + 4.61347i 0.795111 + 0.459058i 0.841759 0.539854i \(-0.181520\pi\)
−0.0466475 + 0.998911i \(0.514854\pi\)
\(102\) 0 0
\(103\) 0.670744i 0.0660904i −0.999454 0.0330452i \(-0.989479\pi\)
0.999454 0.0330452i \(-0.0105205\pi\)
\(104\) 0 0
\(105\) 8.75690 10.9659i 0.854586 1.07017i
\(106\) 0 0
\(107\) 4.83978 0.467879 0.233939 0.972251i \(-0.424838\pi\)
0.233939 + 0.972251i \(0.424838\pi\)
\(108\) 0 0
\(109\) 4.35066 + 7.53557i 0.416718 + 0.721777i 0.995607 0.0936295i \(-0.0298469\pi\)
−0.578889 + 0.815406i \(0.696514\pi\)
\(110\) 0 0
\(111\) 2.98875 + 7.63002i 0.283680 + 0.724209i
\(112\) 0 0
\(113\) 1.27668i 0.120100i −0.998195 0.0600499i \(-0.980874\pi\)
0.998195 0.0600499i \(-0.0191260\pi\)
\(114\) 0 0
\(115\) 9.82529i 0.916213i
\(116\) 0 0
\(117\) 3.41417 + 15.0500i 0.315640 + 1.39138i
\(118\) 0 0
\(119\) 5.26103 + 9.11237i 0.482278 + 0.835329i
\(120\) 0 0
\(121\) −5.14414 −0.467649
\(122\) 0 0
\(123\) −15.8851 12.6851i −1.43231 1.14378i
\(124\) 0 0
\(125\) 11.7367i 1.04976i
\(126\) 0 0
\(127\) 7.12933 + 4.11612i 0.632626 + 0.365247i 0.781768 0.623569i \(-0.214318\pi\)
−0.149142 + 0.988816i \(0.547651\pi\)
\(128\) 0 0
\(129\) −12.8023 10.2233i −1.12718 0.900111i
\(130\) 0 0
\(131\) −4.39099 7.60543i −0.383643 0.664489i 0.607937 0.793985i \(-0.291997\pi\)
−0.991580 + 0.129496i \(0.958664\pi\)
\(132\) 0 0
\(133\) −15.9473 + 5.32098i −1.38281 + 0.461388i
\(134\) 0 0
\(135\) 10.8868 0.794170i 0.936983 0.0683513i
\(136\) 0 0
\(137\) −16.6169 9.59375i −1.41967 0.819649i −0.423405 0.905941i \(-0.639165\pi\)
−0.996270 + 0.0862912i \(0.972498\pi\)
\(138\) 0 0
\(139\) 6.13173 + 3.54016i 0.520087 + 0.300272i 0.736970 0.675925i \(-0.236256\pi\)
−0.216883 + 0.976198i \(0.569589\pi\)
\(140\) 0 0
\(141\) −7.86555 1.19085i −0.662399 0.100288i
\(142\) 0 0
\(143\) 6.22412 10.7805i 0.520487 0.901511i
\(144\) 0 0
\(145\) 15.1933 1.26173
\(146\) 0 0
\(147\) 4.97498 + 12.7007i 0.410330 + 1.04754i
\(148\) 0 0
\(149\) −14.6462 + 8.45599i −1.19986 + 0.692742i −0.960525 0.278194i \(-0.910264\pi\)
−0.239339 + 0.970936i \(0.576931\pi\)
\(150\) 0 0
\(151\) 20.0297i 1.62999i 0.579465 + 0.814997i \(0.303262\pi\)
−0.579465 + 0.814997i \(0.696738\pi\)
\(152\) 0 0
\(153\) −2.42273 + 7.81765i −0.195867 + 0.632020i
\(154\) 0 0
\(155\) −2.37780 4.11848i −0.190990 0.330804i
\(156\) 0 0
\(157\) −2.08696 3.61471i −0.166557 0.288485i 0.770650 0.637259i \(-0.219932\pi\)
−0.937207 + 0.348773i \(0.886598\pi\)
\(158\) 0 0
\(159\) −2.63355 + 17.3945i −0.208854 + 1.37947i
\(160\) 0 0
\(161\) −15.6221 9.01941i −1.23119 0.710829i
\(162\) 0 0
\(163\) 1.40349i 0.109930i 0.998488 + 0.0549650i \(0.0175047\pi\)
−0.998488 + 0.0549650i \(0.982495\pi\)
\(164\) 0 0
\(165\) −6.88033 5.49432i −0.535633 0.427732i
\(166\) 0 0
\(167\) 2.42272 4.19627i 0.187475 0.324717i −0.756932 0.653493i \(-0.773303\pi\)
0.944408 + 0.328776i \(0.106636\pi\)
\(168\) 0 0
\(169\) −6.73110 11.6586i −0.517777 0.896816i
\(170\) 0 0
\(171\) −11.4629 6.29309i −0.876586 0.481244i
\(172\) 0 0
\(173\) 0.975880 0.563425i 0.0741948 0.0428364i −0.462444 0.886649i \(-0.653027\pi\)
0.536638 + 0.843812i \(0.319694\pi\)
\(174\) 0 0
\(175\) −1.96050 1.13190i −0.148200 0.0855634i
\(176\) 0 0
\(177\) −13.9029 + 17.4101i −1.04501 + 1.30862i
\(178\) 0 0
\(179\) −4.75561 −0.355451 −0.177725 0.984080i \(-0.556874\pi\)
−0.177725 + 0.984080i \(0.556874\pi\)
\(180\) 0 0
\(181\) −6.35066 + 10.9997i −0.472041 + 0.817599i −0.999488 0.0319886i \(-0.989816\pi\)
0.527447 + 0.849588i \(0.323149\pi\)
\(182\) 0 0
\(183\) −5.38445 0.815211i −0.398030 0.0602621i
\(184\) 0 0
\(185\) −8.60719 + 4.96937i −0.632814 + 0.365355i
\(186\) 0 0
\(187\) 5.71735 3.30091i 0.418094 0.241387i
\(188\) 0 0
\(189\) −8.73110 + 18.0388i −0.635094 + 1.31213i
\(190\) 0 0
\(191\) −5.27275 −0.381523 −0.190761 0.981636i \(-0.561096\pi\)
−0.190761 + 0.981636i \(0.561096\pi\)
\(192\) 0 0
\(193\) 0.159026 + 0.275441i 0.0114469 + 0.0198267i 0.871692 0.490054i \(-0.163023\pi\)
−0.860245 + 0.509881i \(0.829690\pi\)
\(194\) 0 0
\(195\) −17.4279 + 6.82669i −1.24804 + 0.488869i
\(196\) 0 0
\(197\) 20.0334i 1.42732i 0.700493 + 0.713659i \(0.252964\pi\)
−0.700493 + 0.713659i \(0.747036\pi\)
\(198\) 0 0
\(199\) −4.20593 2.42829i −0.298150 0.172137i 0.343461 0.939167i \(-0.388401\pi\)
−0.641612 + 0.767030i \(0.721734\pi\)
\(200\) 0 0
\(201\) −0.577265 + 3.81282i −0.0407171 + 0.268936i
\(202\) 0 0
\(203\) −13.9471 + 24.1571i −0.978896 + 1.69550i
\(204\) 0 0
\(205\) 12.3277 21.3523i 0.861007 1.49131i
\(206\) 0 0
\(207\) −3.10419 13.6836i −0.215756 0.951077i
\(208\) 0 0
\(209\) 3.33853 + 10.0058i 0.230931 + 0.692114i
\(210\) 0 0
\(211\) 16.7330 9.66079i 1.15195 0.665076i 0.202586 0.979265i \(-0.435066\pi\)
0.949361 + 0.314188i \(0.101732\pi\)
\(212\) 0 0
\(213\) −2.79126 + 3.49540i −0.191254 + 0.239501i
\(214\) 0 0
\(215\) 9.93530 17.2084i 0.677582 1.17361i
\(216\) 0 0
\(217\) 8.73110 0.592705
\(218\) 0 0
\(219\) 15.6309 19.5740i 1.05624 1.32269i
\(220\) 0 0
\(221\) 14.0340i 0.944029i
\(222\) 0 0
\(223\) −22.5151 + 12.9991i −1.50772 + 0.870483i −0.507761 + 0.861498i \(0.669527\pi\)
−0.999960 + 0.00898445i \(0.997140\pi\)
\(224\) 0 0
\(225\) −0.389562 1.71723i −0.0259708 0.114482i
\(226\) 0 0
\(227\) 28.6526 1.90174 0.950869 0.309593i \(-0.100193\pi\)
0.950869 + 0.309593i \(0.100193\pi\)
\(228\) 0 0
\(229\) 24.6257 1.62731 0.813657 0.581346i \(-0.197474\pi\)
0.813657 + 0.581346i \(0.197474\pi\)
\(230\) 0 0
\(231\) 15.0519 5.89597i 0.990342 0.387926i
\(232\) 0 0
\(233\) 2.88712 1.66688i 0.189141 0.109201i −0.402439 0.915447i \(-0.631838\pi\)
0.591581 + 0.806246i \(0.298504\pi\)
\(234\) 0 0
\(235\) 9.64848i 0.629397i
\(236\) 0 0
\(237\) 8.07805 + 6.45076i 0.524726 + 0.419022i
\(238\) 0 0
\(239\) −25.6427 −1.65869 −0.829344 0.558738i \(-0.811286\pi\)
−0.829344 + 0.558738i \(0.811286\pi\)
\(240\) 0 0
\(241\) 6.08696 10.5429i 0.392095 0.679129i −0.600630 0.799527i \(-0.705084\pi\)
0.992726 + 0.120398i \(0.0384170\pi\)
\(242\) 0 0
\(243\) −14.9110 + 4.54558i −0.956541 + 0.291599i
\(244\) 0 0
\(245\) −14.3273 + 8.27185i −0.915336 + 0.528469i
\(246\) 0 0
\(247\) 21.9689 + 4.48887i 1.39785 + 0.285620i
\(248\) 0 0
\(249\) 8.12257 + 20.7362i 0.514747 + 1.31410i
\(250\) 0 0
\(251\) 0.707354 1.22517i 0.0446478 0.0773322i −0.842838 0.538167i \(-0.819117\pi\)
0.887486 + 0.460835i \(0.152450\pi\)
\(252\) 0 0
\(253\) −5.65903 + 9.80172i −0.355780 + 0.616229i
\(254\) 0 0
\(255\) −9.81470 1.48596i −0.614620 0.0930541i
\(256\) 0 0
\(257\) −17.6847 10.2103i −1.10314 0.636899i −0.166097 0.986109i \(-0.553116\pi\)
−0.937044 + 0.349210i \(0.886450\pi\)
\(258\) 0 0
\(259\) 18.2471i 1.13382i
\(260\) 0 0
\(261\) −21.1596 + 4.80015i −1.30974 + 0.297122i
\(262\) 0 0
\(263\) 0.881757 + 1.52725i 0.0543715 + 0.0941741i 0.891930 0.452173i \(-0.149351\pi\)
−0.837559 + 0.546347i \(0.816018\pi\)
\(264\) 0 0
\(265\) −21.3374 −1.31075
\(266\) 0 0
\(267\) 1.63402 10.7927i 0.100001 0.660502i
\(268\) 0 0
\(269\) −16.2574 + 9.38622i −0.991232 + 0.572288i −0.905642 0.424043i \(-0.860611\pi\)
−0.0855895 + 0.996330i \(0.527277\pi\)
\(270\) 0 0
\(271\) 13.8096 7.97297i 0.838872 0.484323i −0.0180084 0.999838i \(-0.505733\pi\)
0.856881 + 0.515515i \(0.172399\pi\)
\(272\) 0 0
\(273\) 5.14414 33.9769i 0.311338 2.05638i
\(274\) 0 0
\(275\) −0.710183 + 1.23007i −0.0428256 + 0.0741762i
\(276\) 0 0
\(277\) 1.85586 0.111508 0.0557539 0.998445i \(-0.482244\pi\)
0.0557539 + 0.998445i \(0.482244\pi\)
\(278\) 0 0
\(279\) 4.61273 + 4.98453i 0.276157 + 0.298416i
\(280\) 0 0
\(281\) 10.1831 + 5.87924i 0.607475 + 0.350726i 0.771977 0.635651i \(-0.219268\pi\)
−0.164501 + 0.986377i \(0.552602\pi\)
\(282\) 0 0
\(283\) 4.49955 2.59782i 0.267471 0.154424i −0.360267 0.932849i \(-0.617314\pi\)
0.627738 + 0.778425i \(0.283981\pi\)
\(284\) 0 0
\(285\) 5.46542 14.8887i 0.323743 0.881929i
\(286\) 0 0
\(287\) 22.6332 + 39.2019i 1.33600 + 2.31401i
\(288\) 0 0
\(289\) −4.77859 + 8.27677i −0.281094 + 0.486869i
\(290\) 0 0
\(291\) −2.60804 + 3.26596i −0.152886 + 0.191454i
\(292\) 0 0
\(293\) 13.8592i 0.809663i −0.914391 0.404832i \(-0.867330\pi\)
0.914391 0.404832i \(-0.132670\pi\)
\(294\) 0 0
\(295\) −23.4022 13.5113i −1.36253 0.786656i
\(296\) 0 0
\(297\) 11.3181 + 5.47813i 0.656740 + 0.317873i
\(298\) 0 0
\(299\) 12.0298 + 20.8363i 0.695703 + 1.20499i
\(300\) 0 0
\(301\) 18.2408 + 31.5940i 1.05138 + 1.82105i
\(302\) 0 0
\(303\) 2.39236 15.8015i 0.137437 0.907770i
\(304\) 0 0
\(305\) 6.60498i 0.378200i
\(306\) 0 0
\(307\) −23.9294 + 13.8156i −1.36572 + 0.788500i −0.990378 0.138386i \(-0.955809\pi\)
−0.375344 + 0.926886i \(0.622475\pi\)
\(308\) 0 0
\(309\) −1.08173 + 0.423726i −0.0615377 + 0.0241049i
\(310\) 0 0
\(311\) −21.6341 −1.22676 −0.613379 0.789789i \(-0.710190\pi\)
−0.613379 + 0.789789i \(0.710190\pi\)
\(312\) 0 0
\(313\) 2.20652 3.82181i 0.124720 0.216021i −0.796903 0.604107i \(-0.793530\pi\)
0.921623 + 0.388085i \(0.126863\pi\)
\(314\) 0 0
\(315\) −23.2171 7.19513i −1.30814 0.405399i
\(316\) 0 0
\(317\) −4.07107 2.35044i −0.228654 0.132014i 0.381297 0.924453i \(-0.375478\pi\)
−0.609951 + 0.792439i \(0.708811\pi\)
\(318\) 0 0
\(319\) 15.1568 + 8.75080i 0.848620 + 0.489951i
\(320\) 0 0
\(321\) −3.05741 7.80529i −0.170648 0.435649i
\(322\) 0 0
\(323\) 8.89975 + 7.88719i 0.495196 + 0.438855i
\(324\) 0 0
\(325\) 1.50969 + 2.61486i 0.0837425 + 0.145046i
\(326\) 0 0
\(327\) 9.40448 11.7769i 0.520069 0.651263i
\(328\) 0 0
\(329\) 15.3410 + 8.85710i 0.845774 + 0.488308i
\(330\) 0 0
\(331\) 13.4679i 0.740265i 0.928979 + 0.370133i \(0.120688\pi\)
−0.928979 + 0.370133i \(0.879312\pi\)
\(332\) 0 0
\(333\) 10.4172 9.64014i 0.570857 0.528277i
\(334\) 0 0
\(335\) −4.67710 −0.255537
\(336\) 0 0
\(337\) −9.71621 16.8290i −0.529276 0.916733i −0.999417 0.0341414i \(-0.989130\pi\)
0.470141 0.882591i \(-0.344203\pi\)
\(338\) 0 0
\(339\) −2.05895 + 0.806509i −0.111827 + 0.0438035i
\(340\) 0 0
\(341\) 5.47813i 0.296657i
\(342\) 0 0
\(343\) 3.37566i 0.182268i
\(344\) 0 0
\(345\) 15.8456 6.20688i 0.853100 0.334167i
\(346\) 0 0
\(347\) −14.5339 25.1734i −0.780220 1.35138i −0.931814 0.362937i \(-0.881774\pi\)
0.151594 0.988443i \(-0.451559\pi\)
\(348\) 0 0
\(349\) −17.2231 −0.921929 −0.460965 0.887419i \(-0.652496\pi\)
−0.460965 + 0.887419i \(0.652496\pi\)
\(350\) 0 0
\(351\) 22.1149 15.0136i 1.18041 0.801368i
\(352\) 0 0
\(353\) 2.53153i 0.134740i −0.997728 0.0673699i \(-0.978539\pi\)
0.997728 0.0673699i \(-0.0214608\pi\)
\(354\) 0 0
\(355\) −4.69842 2.71263i −0.249366 0.143972i
\(356\) 0 0
\(357\) 11.3723 14.2412i 0.601888 0.753722i
\(358\) 0 0
\(359\) −9.73053 16.8538i −0.513558 0.889508i −0.999876 0.0157266i \(-0.994994\pi\)
0.486318 0.873782i \(-0.338339\pi\)
\(360\) 0 0
\(361\) −15.1933 + 11.4089i −0.799647 + 0.600471i
\(362\) 0 0
\(363\) 3.24968 + 8.29615i 0.170564 + 0.435435i
\(364\) 0 0
\(365\) 26.3108 + 15.1905i 1.37717 + 0.795109i
\(366\) 0 0
\(367\) −6.76631 3.90653i −0.353199 0.203919i 0.312895 0.949788i \(-0.398701\pi\)
−0.666093 + 0.745869i \(0.732035\pi\)
\(368\) 0 0
\(369\) −10.4227 + 33.6320i −0.542586 + 1.75081i
\(370\) 0 0
\(371\) 19.5873 33.9262i 1.01692 1.76136i
\(372\) 0 0
\(373\) −24.7207 −1.27999 −0.639995 0.768379i \(-0.721064\pi\)
−0.639995 + 0.768379i \(0.721064\pi\)
\(374\) 0 0
\(375\) 18.9282 7.41433i 0.977445 0.382875i
\(376\) 0 0
\(377\) 32.2201 18.6023i 1.65942 0.958065i
\(378\) 0 0
\(379\) 33.0438i 1.69735i −0.528918 0.848673i \(-0.677402\pi\)
0.528918 0.848673i \(-0.322598\pi\)
\(380\) 0 0
\(381\) 2.13445 14.0980i 0.109351 0.722263i
\(382\) 0 0
\(383\) −9.02601 15.6335i −0.461207 0.798835i 0.537814 0.843064i \(-0.319250\pi\)
−0.999021 + 0.0442288i \(0.985917\pi\)
\(384\) 0 0
\(385\) 9.80317 + 16.9796i 0.499616 + 0.865360i
\(386\) 0 0
\(387\) −8.39999 + 27.1050i −0.426996 + 1.37782i
\(388\) 0 0
\(389\) 17.9847 + 10.3835i 0.911862 + 0.526464i 0.881030 0.473061i \(-0.156851\pi\)
0.0308324 + 0.999525i \(0.490184\pi\)
\(390\) 0 0
\(391\) 12.7598i 0.645292i
\(392\) 0 0
\(393\) −9.49166 + 11.8861i −0.478791 + 0.599572i
\(394\) 0 0
\(395\) −6.26904 + 10.8583i −0.315429 + 0.546340i
\(396\) 0 0
\(397\) −11.4473 19.8273i −0.574524 0.995105i −0.996093 0.0883085i \(-0.971854\pi\)
0.421569 0.906796i \(-0.361479\pi\)
\(398\) 0 0
\(399\) 18.6557 + 22.3574i 0.933951 + 1.11927i
\(400\) 0 0
\(401\) −14.7245 + 8.50121i −0.735308 + 0.424530i −0.820361 0.571846i \(-0.806227\pi\)
0.0850530 + 0.996376i \(0.472894\pi\)
\(402\) 0 0
\(403\) −10.0851 5.82264i −0.502375 0.290046i
\(404\) 0 0
\(405\) −8.15822 17.0558i −0.405385 0.847509i
\(406\) 0 0
\(407\) −11.4487 −0.567492
\(408\) 0 0
\(409\) 8.81286 15.2643i 0.435768 0.754772i −0.561590 0.827416i \(-0.689810\pi\)
0.997358 + 0.0726436i \(0.0231436\pi\)
\(410\) 0 0
\(411\) −4.97492 + 32.8593i −0.245395 + 1.62083i
\(412\) 0 0
\(413\) 42.9655 24.8061i 2.11419 1.22063i
\(414\) 0 0
\(415\) −23.3919 + 13.5053i −1.14826 + 0.662950i
\(416\) 0 0
\(417\) 1.83578 12.1253i 0.0898985 0.593778i
\(418\) 0 0
\(419\) 6.26014 0.305828 0.152914 0.988240i \(-0.451134\pi\)
0.152914 + 0.988240i \(0.451134\pi\)
\(420\) 0 0
\(421\) 7.11153 + 12.3175i 0.346595 + 0.600320i 0.985642 0.168848i \(-0.0540046\pi\)
−0.639047 + 0.769167i \(0.720671\pi\)
\(422\) 0 0
\(423\) 3.04833 + 13.4374i 0.148215 + 0.653347i
\(424\) 0 0
\(425\) 1.60130i 0.0776746i
\(426\) 0 0
\(427\) 10.5018 + 6.06323i 0.508219 + 0.293420i
\(428\) 0 0
\(429\) −21.3181 3.22757i −1.02925 0.155829i
\(430\) 0 0
\(431\) −10.3145 + 17.8652i −0.496830 + 0.860535i −0.999993 0.00365638i \(-0.998836\pi\)
0.503163 + 0.864191i \(0.332169\pi\)
\(432\) 0 0
\(433\) 4.98512 8.63447i 0.239569 0.414946i −0.721021 0.692913i \(-0.756327\pi\)
0.960591 + 0.277966i \(0.0896604\pi\)
\(434\) 0 0
\(435\) −9.59798 24.5028i −0.460188 1.17482i
\(436\) 0 0
\(437\) −19.9743 4.08132i −0.955500 0.195236i
\(438\) 0 0
\(439\) −23.0612 + 13.3144i −1.10065 + 0.635462i −0.936393 0.350954i \(-0.885857\pi\)
−0.164261 + 0.986417i \(0.552524\pi\)
\(440\) 0 0
\(441\) 17.3401 16.0467i 0.825718 0.764128i
\(442\) 0 0
\(443\) −0.870033 + 1.50694i −0.0413365 + 0.0715969i −0.885953 0.463774i \(-0.846495\pi\)
0.844617 + 0.535371i \(0.179828\pi\)
\(444\) 0 0
\(445\) 13.2391 0.627595
\(446\) 0 0
\(447\) 22.8897 + 18.2786i 1.08264 + 0.864550i
\(448\) 0 0
\(449\) 10.7002i 0.504976i −0.967600 0.252488i \(-0.918751\pi\)
0.967600 0.252488i \(-0.0812488\pi\)
\(450\) 0 0
\(451\) 24.5963 14.2007i 1.15820 0.668685i
\(452\) 0 0
\(453\) 32.3027 12.6533i 1.51771 0.594502i
\(454\) 0 0
\(455\) 41.6787 1.95393
\(456\) 0 0
\(457\) −30.3374 −1.41913 −0.709563 0.704642i \(-0.751107\pi\)
−0.709563 + 0.704642i \(0.751107\pi\)
\(458\) 0 0
\(459\) 14.1383 1.03137i 0.659921 0.0481401i
\(460\) 0 0
\(461\) −18.5875 + 10.7315i −0.865707 + 0.499816i −0.865919 0.500184i \(-0.833266\pi\)
0.000212046 1.00000i \(0.499933\pi\)
\(462\) 0 0
\(463\) 22.9242i 1.06538i −0.846311 0.532688i \(-0.821182\pi\)
0.846311 0.532688i \(-0.178818\pi\)
\(464\) 0 0
\(465\) −5.13991 + 6.43652i −0.238357 + 0.298486i
\(466\) 0 0
\(467\) −12.1957 −0.564352 −0.282176 0.959363i \(-0.591056\pi\)
−0.282176 + 0.959363i \(0.591056\pi\)
\(468\) 0 0
\(469\) 4.29348 7.43652i 0.198254 0.343387i
\(470\) 0 0
\(471\) −4.51120 + 5.64921i −0.207865 + 0.260302i
\(472\) 0 0
\(473\) 19.8229 11.4448i 0.911459 0.526231i
\(474\) 0 0
\(475\) −2.50669 0.512187i −0.115015 0.0235008i
\(476\) 0 0
\(477\) 29.7165 6.74132i 1.36062 0.308664i
\(478\) 0 0
\(479\) −2.45914 + 4.25936i −0.112361 + 0.194615i −0.916722 0.399526i \(-0.869175\pi\)
0.804361 + 0.594141i \(0.202508\pi\)
\(480\) 0 0
\(481\) −12.1687 + 21.0768i −0.554846 + 0.961021i
\(482\) 0 0
\(483\) −4.67710 + 30.8921i −0.212815 + 1.40564i
\(484\) 0 0
\(485\) −4.39001 2.53457i −0.199340 0.115089i
\(486\) 0 0
\(487\) 8.01806i 0.363333i 0.983360 + 0.181666i \(0.0581491\pi\)
−0.983360 + 0.181666i \(0.941851\pi\)
\(488\) 0 0
\(489\) 2.26346 0.886620i 0.102357 0.0400943i
\(490\) 0 0
\(491\) 21.8417 + 37.8309i 0.985702 + 1.70729i 0.638775 + 0.769394i \(0.279442\pi\)
0.346927 + 0.937892i \(0.387225\pi\)
\(492\) 0 0
\(493\) 19.7311 0.888644
\(494\) 0 0
\(495\) −4.51442 + 14.5671i −0.202908 + 0.654741i
\(496\) 0 0
\(497\) 8.62609 4.98028i 0.386933 0.223396i
\(498\) 0 0
\(499\) 6.34959 3.66594i 0.284247 0.164110i −0.351098 0.936339i \(-0.614191\pi\)
0.635344 + 0.772229i \(0.280858\pi\)
\(500\) 0 0
\(501\) −8.29797 1.25632i −0.370726 0.0561283i
\(502\) 0 0
\(503\) 21.0166 36.4018i 0.937083 1.62308i 0.166206 0.986091i \(-0.446848\pi\)
0.770877 0.636984i \(-0.219818\pi\)
\(504\) 0 0
\(505\) 19.3833 0.862544
\(506\) 0 0
\(507\) −14.5501 + 18.2205i −0.646191 + 0.809202i
\(508\) 0 0
\(509\) 21.3800 + 12.3437i 0.947650 + 0.547126i 0.892350 0.451344i \(-0.149055\pi\)
0.0553000 + 0.998470i \(0.482388\pi\)
\(510\) 0 0
\(511\) −48.3055 + 27.8892i −2.13691 + 1.23375i
\(512\) 0 0
\(513\) −2.90773 + 22.4621i −0.128379 + 0.991725i
\(514\) 0 0
\(515\) −0.704524 1.22027i −0.0310451 0.0537716i
\(516\) 0 0
\(517\) 5.55719 9.62533i 0.244405 0.423322i
\(518\) 0 0
\(519\) −1.52514 1.21791i −0.0669464 0.0534603i
\(520\) 0 0
\(521\) 15.6978i 0.687735i 0.939018 + 0.343867i \(0.111737\pi\)
−0.939018 + 0.343867i \(0.888263\pi\)
\(522\) 0 0
\(523\) −5.52082 3.18745i −0.241409 0.139377i 0.374415 0.927261i \(-0.377843\pi\)
−0.615824 + 0.787884i \(0.711177\pi\)
\(524\) 0 0
\(525\) −0.586955 + 3.87682i −0.0256168 + 0.169198i
\(526\) 0 0
\(527\) −3.08799 5.34855i −0.134515 0.232986i
\(528\) 0 0
\(529\) 0.562381 + 0.974072i 0.0244513 + 0.0423510i
\(530\) 0 0
\(531\) 36.8608 + 11.4234i 1.59962 + 0.495732i
\(532\) 0 0
\(533\) 60.3750i 2.61513i
\(534\) 0 0
\(535\) 8.80491 5.08352i 0.380670 0.219780i
\(536\) 0 0
\(537\) 3.00423 + 7.66955i 0.129642 + 0.330965i
\(538\) 0 0
\(539\) −19.0572 −0.820852
\(540\) 0 0
\(541\) 9.05719 15.6875i 0.389399 0.674459i −0.602970 0.797764i \(-0.706016\pi\)
0.992369 + 0.123305i \(0.0393494\pi\)
\(542\) 0 0
\(543\) 21.7515 + 3.29319i 0.933445 + 0.141324i
\(544\) 0 0
\(545\) 15.8302 + 9.13955i 0.678090 + 0.391495i
\(546\) 0 0
\(547\) −28.0335 16.1852i −1.19863 0.692028i −0.238379 0.971172i \(-0.576616\pi\)
−0.960249 + 0.279144i \(0.909949\pi\)
\(548\) 0 0
\(549\) 2.08677 + 9.19870i 0.0890611 + 0.392591i
\(550\) 0 0
\(551\) −6.31112 + 30.8871i −0.268863 + 1.31584i
\(552\) 0 0
\(553\) −11.5097 19.9354i −0.489442 0.847738i
\(554\) 0 0
\(555\) 13.4517 + 10.7419i 0.570991 + 0.455967i
\(556\) 0 0
\(557\) 16.6547 + 9.61557i 0.705681 + 0.407425i 0.809460 0.587175i \(-0.199760\pi\)
−0.103779 + 0.994600i \(0.533093\pi\)
\(558\) 0 0
\(559\) 48.6580i 2.05802i
\(560\) 0 0
\(561\) −8.93529 7.13531i −0.377248 0.301253i
\(562\) 0 0
\(563\) −21.0441 −0.886903 −0.443452 0.896298i \(-0.646246\pi\)
−0.443452 + 0.896298i \(0.646246\pi\)
\(564\) 0 0
\(565\) −1.34097 2.32264i −0.0564152 0.0977140i
\(566\) 0 0
\(567\) 34.6076 + 2.68540i 1.45338 + 0.112776i
\(568\) 0 0
\(569\) 11.8647i 0.497392i 0.968582 + 0.248696i \(0.0800021\pi\)
−0.968582 + 0.248696i \(0.919998\pi\)
\(570\) 0 0
\(571\) 0.291628i 0.0122042i 0.999981 + 0.00610212i \(0.00194238\pi\)
−0.999981 + 0.00610212i \(0.998058\pi\)
\(572\) 0 0
\(573\) 3.33093 + 8.50357i 0.139151 + 0.355242i
\(574\) 0 0
\(575\) −1.37262 2.37745i −0.0572423 0.0991466i
\(576\) 0 0
\(577\) 22.2424 0.925965 0.462982 0.886367i \(-0.346779\pi\)
0.462982 + 0.886367i \(0.346779\pi\)
\(578\) 0 0
\(579\) 0.343754 0.430470i 0.0142859 0.0178897i
\(580\) 0 0
\(581\) 49.5904i 2.05736i
\(582\) 0 0
\(583\) −21.2862 12.2896i −0.881586 0.508984i
\(584\) 0 0
\(585\) 22.0193 + 23.7941i 0.910387 + 0.983765i
\(586\) 0 0
\(587\) −21.6369 37.4763i −0.893052 1.54681i −0.836197 0.548429i \(-0.815226\pi\)
−0.0568545 0.998382i \(-0.518107\pi\)
\(588\) 0 0
\(589\) 9.36035 3.12318i 0.385687 0.128688i
\(590\) 0 0
\(591\) 32.3086 12.6556i 1.32900 0.520581i
\(592\) 0 0
\(593\) −10.1831 5.87924i −0.418171 0.241431i 0.276123 0.961122i \(-0.410950\pi\)
−0.694295 + 0.719691i \(0.744284\pi\)
\(594\) 0 0
\(595\) 19.1426 + 11.0520i 0.784769 + 0.453087i
\(596\) 0 0
\(597\) −1.25921 + 8.31707i −0.0515362 + 0.340395i
\(598\) 0 0
\(599\) 18.2119 31.5439i 0.744117 1.28885i −0.206490 0.978449i \(-0.566204\pi\)
0.950606 0.310399i \(-0.100463\pi\)
\(600\) 0 0
\(601\) 35.7401 1.45787 0.728934 0.684584i \(-0.240016\pi\)
0.728934 + 0.684584i \(0.240016\pi\)
\(602\) 0 0
\(603\) 6.51376 1.47768i 0.265261 0.0601756i
\(604\) 0 0
\(605\) −9.35864 + 5.40321i −0.380483 + 0.219672i
\(606\) 0 0
\(607\) 4.03366i 0.163721i −0.996644 0.0818606i \(-0.973914\pi\)
0.996644 0.0818606i \(-0.0260862\pi\)
\(608\) 0 0
\(609\) 47.7699 + 7.23240i 1.93573 + 0.293072i
\(610\) 0 0
\(611\) −11.8133 20.4613i −0.477916 0.827776i
\(612\) 0 0
\(613\) −21.7831 37.7294i −0.879811 1.52388i −0.851548 0.524276i \(-0.824336\pi\)
−0.0282624 0.999601i \(-0.508997\pi\)
\(614\) 0 0
\(615\) −42.2234 6.39266i −1.70261 0.257777i
\(616\) 0 0
\(617\) 18.7714 + 10.8377i 0.755710 + 0.436309i 0.827753 0.561092i \(-0.189619\pi\)
−0.0720436 + 0.997401i \(0.522952\pi\)
\(618\) 0 0
\(619\) 30.4136i 1.22243i 0.791466 + 0.611213i \(0.209318\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(620\) 0 0
\(621\) −20.1071 + 13.6505i −0.806869 + 0.547777i
\(622\) 0 0
\(623\) −12.1532 + 21.0500i −0.486910 + 0.843352i
\(624\) 0 0
\(625\) 10.8604 + 18.8107i 0.434414 + 0.752427i
\(626\) 0 0
\(627\) 14.0277 11.7051i 0.560211 0.467455i
\(628\) 0 0
\(629\) −11.1779 + 6.45358i −0.445693 + 0.257321i
\(630\) 0 0
\(631\) −16.2515 9.38283i −0.646963 0.373524i 0.140328 0.990105i \(-0.455184\pi\)
−0.787292 + 0.616581i \(0.788517\pi\)
\(632\) 0 0
\(633\) −26.1510 20.8830i −1.03941 0.830023i
\(634\) 0 0
\(635\) 17.2937 0.686279
\(636\) 0 0
\(637\) −20.2557 + 35.0839i −0.802559 + 1.39007i
\(638\) 0 0
\(639\) 7.40047 + 2.29345i 0.292758 + 0.0907274i
\(640\) 0 0
\(641\) 6.00121 3.46480i 0.237034 0.136851i −0.376779 0.926303i \(-0.622968\pi\)
0.613813 + 0.789452i \(0.289635\pi\)
\(642\) 0 0
\(643\) 37.8250 21.8383i 1.49167 0.861218i 0.491719 0.870754i \(-0.336369\pi\)
0.999955 + 0.00953590i \(0.00303542\pi\)
\(644\) 0 0
\(645\) −34.0291 5.15203i −1.33989 0.202861i
\(646\) 0 0
\(647\) −49.4320 −1.94337 −0.971687 0.236271i \(-0.924075\pi\)
−0.971687 + 0.236271i \(0.924075\pi\)
\(648\) 0 0
\(649\) −15.5640 26.9577i −0.610942 1.05818i
\(650\) 0 0
\(651\) −5.51565 14.0810i −0.216175 0.551877i
\(652\) 0 0
\(653\) 6.80160i 0.266167i 0.991105 + 0.133084i \(0.0424879\pi\)
−0.991105 + 0.133084i \(0.957512\pi\)
\(654\) 0 0
\(655\) −15.9769 9.22427i −0.624269 0.360422i
\(656\) 0 0
\(657\) −41.4421 12.8431i −1.61681 0.501059i
\(658\) 0 0
\(659\) 12.6862 21.9731i 0.494184 0.855952i −0.505793 0.862655i \(-0.668800\pi\)
0.999978 + 0.00670258i \(0.00213351\pi\)
\(660\) 0 0
\(661\) −8.56688 + 14.8383i −0.333213 + 0.577142i −0.983140 0.182855i \(-0.941466\pi\)
0.649927 + 0.759997i \(0.274799\pi\)
\(662\) 0 0
\(663\) −22.6332 + 8.86562i −0.878999 + 0.344312i
\(664\) 0 0
\(665\) −23.4237 + 26.4308i −0.908331 + 1.02494i
\(666\) 0 0
\(667\) −29.2947 + 16.9133i −1.13430 + 0.654887i
\(668\) 0 0
\(669\) 35.1874 + 28.0991i 1.36042 + 1.08637i
\(670\) 0 0
\(671\) 3.80424 6.58913i 0.146861 0.254371i
\(672\) 0 0
\(673\) 14.5870 0.562286 0.281143 0.959666i \(-0.409287\pi\)
0.281143 + 0.959666i \(0.409287\pi\)
\(674\) 0 0
\(675\) −2.52335 + 1.71308i −0.0971238 + 0.0659365i
\(676\) 0 0
\(677\) 2.25370i 0.0866167i 0.999062 + 0.0433083i \(0.0137898\pi\)
−0.999062 + 0.0433083i \(0.986210\pi\)
\(678\) 0 0
\(679\) 8.05987 4.65337i 0.309309 0.178580i
\(680\) 0 0
\(681\) −18.1005 46.2091i −0.693614 1.77074i
\(682\) 0 0
\(683\) 21.4658 0.821365 0.410682 0.911778i \(-0.365291\pi\)
0.410682 + 0.911778i \(0.365291\pi\)
\(684\) 0 0
\(685\) −40.3077 −1.54008
\(686\) 0 0
\(687\) −15.5567 39.7148i −0.593524 1.51522i
\(688\) 0 0
\(689\) −45.2498 + 26.1250i −1.72388 + 0.995282i
\(690\) 0 0
\(691\) 26.4019i 1.00438i −0.864759 0.502188i \(-0.832529\pi\)
0.864759 0.502188i \(-0.167471\pi\)
\(692\) 0 0
\(693\) −19.0173 20.5501i −0.722408 0.780635i
\(694\) 0 0
\(695\) 14.8738 0.564195
\(696\) 0 0
\(697\) 16.0097 27.7296i 0.606410 1.05033i
\(698\) 0 0
\(699\) −4.51210 3.60316i −0.170663 0.136284i
\(700\) 0 0
\(701\) 17.0441 9.84042i 0.643747 0.371668i −0.142309 0.989822i \(-0.545453\pi\)
0.786057 + 0.618155i \(0.212119\pi\)
\(702\) 0 0
\(703\) −6.52712 19.5622i −0.246175 0.737802i
\(704\) 0 0
\(705\) −15.5605 + 6.09518i −0.586041 + 0.229558i
\(706\) 0 0
\(707\) −17.7934 + 30.8191i −0.669191 + 1.15907i
\(708\) 0 0
\(709\) −7.39816 + 12.8140i −0.277844 + 0.481240i −0.970849 0.239693i \(-0.922953\pi\)
0.693005 + 0.720933i \(0.256286\pi\)
\(710\) 0 0
\(711\) 5.30028 17.1029i 0.198776 0.641408i
\(712\) 0 0
\(713\) 9.16946 + 5.29399i 0.343399 + 0.198262i
\(714\) 0 0
\(715\) 26.1503i 0.977967i
\(716\) 0 0
\(717\) 16.1991 + 41.3549i 0.604967 + 1.54443i
\(718\) 0 0
\(719\) 15.6176 + 27.0504i 0.582437 + 1.00881i 0.995190 + 0.0979676i \(0.0312341\pi\)
−0.412752 + 0.910843i \(0.635433\pi\)
\(720\) 0 0
\(721\) 2.58696 0.0963432
\(722\) 0 0
\(723\) −20.8482 3.15644i −0.775354 0.117389i
\(724\) 0 0
\(725\) −3.67636 + 2.12255i −0.136537 + 0.0788295i
\(726\) 0 0
\(727\) −33.8804 + 19.5608i −1.25655 + 0.725471i −0.972403 0.233309i \(-0.925045\pi\)
−0.284150 + 0.958780i \(0.591711\pi\)
\(728\) 0 0
\(729\) 16.7505 + 21.1760i 0.620388 + 0.784295i
\(730\) 0 0
\(731\) 12.9027 22.3481i 0.477223 0.826575i
\(732\) 0 0
\(733\) 36.4920 1.34786 0.673931 0.738795i \(-0.264605\pi\)
0.673931 + 0.738795i \(0.264605\pi\)
\(734\) 0 0
\(735\) 22.3912 + 17.8806i 0.825913 + 0.659536i
\(736\) 0 0
\(737\) −4.66588 2.69384i −0.171870 0.0992290i
\(738\) 0 0
\(739\) 19.4038 11.2028i 0.713782 0.412102i −0.0986781 0.995119i \(-0.531461\pi\)
0.812460 + 0.583017i \(0.198128\pi\)
\(740\) 0 0
\(741\) −6.63892 38.2658i −0.243887 1.40573i
\(742\) 0 0
\(743\) 1.76634 + 3.05940i 0.0648008 + 0.112238i 0.896606 0.442830i \(-0.146025\pi\)
−0.831805 + 0.555068i \(0.812692\pi\)
\(744\) 0 0
\(745\) −17.7637 + 30.7676i −0.650812 + 1.12724i
\(746\) 0 0
\(747\) 28.3109 26.1992i 1.03584 0.958577i
\(748\) 0 0
\(749\) 18.6663i 0.682050i
\(750\) 0 0
\(751\) −17.9831 10.3826i −0.656214 0.378865i 0.134619 0.990897i \(-0.457019\pi\)
−0.790833 + 0.612032i \(0.790352\pi\)
\(752\) 0 0
\(753\) −2.42273 0.366804i −0.0882894 0.0133671i
\(754\) 0 0
\(755\) 21.0385 + 36.4397i 0.765668 + 1.32618i
\(756\) 0 0
\(757\) −11.5915 20.0770i −0.421298 0.729710i 0.574768 0.818316i \(-0.305092\pi\)
−0.996067 + 0.0886059i \(0.971759\pi\)
\(758\) 0 0
\(759\) 19.3826 + 2.93454i 0.703542 + 0.106517i
\(760\) 0 0
\(761\) 27.6529i 1.00242i 0.865326 + 0.501209i \(0.167111\pi\)
−0.865326 + 0.501209i \(0.832889\pi\)
\(762\) 0 0
\(763\) −29.0635 + 16.7798i −1.05217 + 0.607471i
\(764\) 0 0
\(765\) 3.80373 + 16.7673i 0.137524 + 0.606221i
\(766\) 0 0
\(767\) −66.1713 −2.38931
\(768\) 0 0
\(769\) −15.3455 + 26.5791i −0.553372 + 0.958468i 0.444656 + 0.895701i \(0.353326\pi\)
−0.998028 + 0.0627669i \(0.980008\pi\)
\(770\) 0 0
\(771\) −5.29462 + 34.9709i −0.190681 + 1.25945i
\(772\) 0 0
\(773\) −26.8920 15.5261i −0.967237 0.558434i −0.0688440 0.997627i \(-0.521931\pi\)
−0.898393 + 0.439193i \(0.855264\pi\)
\(774\) 0 0
\(775\) 1.15073 + 0.664373i 0.0413353 + 0.0238650i
\(776\) 0 0
\(777\) −29.4278 + 11.5271i −1.05572 + 0.413534i
\(778\) 0 0
\(779\) 38.2872 + 33.9311i 1.37178 + 1.21571i
\(780\) 0 0
\(781\) −3.12476 5.41225i −0.111813 0.193665i
\(782\) 0 0
\(783\) 21.1084 + 31.0925i 0.754353 + 1.11115i
\(784\) 0 0
\(785\) −7.59352 4.38412i −0.271024 0.156476i
\(786\) 0 0
\(787\) 17.2100i 0.613470i −0.951795 0.306735i \(-0.900764\pi\)
0.951795 0.306735i \(-0.0992365\pi\)
\(788\) 0 0
\(789\) 1.90602 2.38684i 0.0678562 0.0849739i
\(790\) 0 0
\(791\) 4.92394 0.175075
\(792\) 0 0
\(793\) −8.08696 14.0070i −0.287176 0.497404i
\(794\) 0 0
\(795\) 13.4794 + 34.4117i 0.478064 + 1.22046i
\(796\) 0 0
\(797\) 14.5989i 0.517119i −0.965995 0.258560i \(-0.916752\pi\)
0.965995 0.258560i \(-0.0832479\pi\)
\(798\) 0 0
\(799\) 12.5302i 0.443287i
\(800\) 0 0
\(801\) −18.4380 + 4.18276i −0.651476 + 0.147790i
\(802\) 0 0
\(803\) 17.4984 + 30.3082i 0.617507 + 1.06955i
\(804\) 0 0
\(805\) −37.8946 −1.33561
\(806\) 0 0
\(807\) 25.4077 + 20.2894i 0.894394 + 0.714222i
\(808\) 0 0
\(809\) 33.4557i 1.17624i 0.808774 + 0.588120i \(0.200132\pi\)
−0.808774 + 0.588120i \(0.799868\pi\)
\(810\) 0 0
\(811\) 47.1461 + 27.2198i 1.65552 + 0.955817i 0.974743 + 0.223329i \(0.0716923\pi\)
0.680780 + 0.732488i \(0.261641\pi\)
\(812\) 0 0
\(813\) −21.5822 17.2345i −0.756919 0.604441i
\(814\) 0 0
\(815\) 1.47417 + 2.55334i 0.0516381 + 0.0894398i
\(816\) 0 0
\(817\) 30.8568 + 27.3461i 1.07954 + 0.956719i
\(818\) 0 0
\(819\) −58.0456 + 13.1679i −2.02828 + 0.460124i
\(820\) 0 0
\(821\) −29.8899 17.2570i −1.04317 0.602272i −0.122438 0.992476i \(-0.539071\pi\)
−0.920728 + 0.390204i \(0.872404\pi\)
\(822\) 0 0
\(823\) −9.12453 5.26805i −0.318061 0.183633i 0.332467 0.943115i \(-0.392119\pi\)
−0.650528 + 0.759482i \(0.725452\pi\)
\(824\) 0 0
\(825\) 2.43243 + 0.368272i 0.0846862 + 0.0128216i
\(826\) 0 0
\(827\) 11.5782 20.0541i 0.402614 0.697348i −0.591427 0.806359i \(-0.701435\pi\)
0.994041 + 0.109011i \(0.0347684\pi\)
\(828\) 0 0
\(829\) 7.98961 0.277491 0.138745 0.990328i \(-0.455693\pi\)
0.138745 + 0.990328i \(0.455693\pi\)
\(830\) 0 0
\(831\) −1.17239 2.99301i −0.0406698 0.103826i
\(832\) 0 0
\(833\) −18.6064 + 10.7424i −0.644674 + 0.372203i
\(834\) 0 0
\(835\) 10.1789i 0.352256i
\(836\) 0 0
\(837\) 5.12476 10.5880i 0.177138 0.365974i
\(838\) 0 0
\(839\) 12.1808 + 21.0977i 0.420527 + 0.728375i 0.995991 0.0894527i \(-0.0285118\pi\)
−0.575464 + 0.817827i \(0.695178\pi\)
\(840\) 0 0
\(841\) 11.6538 + 20.1850i 0.401856 + 0.696035i
\(842\) 0 0
\(843\) 3.04873 20.1368i 0.105004 0.693548i
\(844\) 0 0
\(845\) −24.4915 14.1402i −0.842534 0.486437i
\(846\) 0 0
\(847\) 19.8401i 0.681716i
\(848\) 0 0
\(849\) −7.03208 5.61550i −0.241340 0.192723i
\(850\) 0 0
\(851\) 11.0639 19.1632i 0.379266 0.656907i
\(852\) 0 0
\(853\) 12.6933 + 21.9854i 0.434610 + 0.752767i 0.997264 0.0739261i \(-0.0235529\pi\)
−0.562654 + 0.826693i \(0.690220\pi\)
\(854\) 0 0
\(855\) −27.4642 + 0.591260i −0.939255 + 0.0202207i
\(856\) 0 0
\(857\) −24.6024 + 14.2042i −0.840401 + 0.485206i −0.857400 0.514650i \(-0.827922\pi\)
0.0169995 + 0.999855i \(0.494589\pi\)
\(858\) 0 0
\(859\) 32.1077 + 18.5374i 1.09550 + 0.632487i 0.935035 0.354554i \(-0.115367\pi\)
0.160465 + 0.987042i \(0.448701\pi\)
\(860\) 0 0
\(861\) 48.9244 61.2663i 1.66734 2.08795i
\(862\) 0 0
\(863\) 7.15205 0.243459 0.121729 0.992563i \(-0.461156\pi\)
0.121729 + 0.992563i \(0.461156\pi\)
\(864\) 0 0
\(865\) 1.18360 2.05006i 0.0402436 0.0697040i
\(866\) 0 0
\(867\) 16.3670 + 2.47798i 0.555853 + 0.0841567i
\(868\) 0 0
\(869\) −12.5080 + 7.22149i −0.424305 + 0.244972i
\(870\) 0 0
\(871\) −9.91861 + 5.72651i −0.336079 + 0.194035i
\(872\) 0 0
\(873\) 6.91470 + 2.14290i 0.234027 + 0.0725263i
\(874\) 0 0
\(875\) −45.2664 −1.53028
\(876\) 0 0
\(877\) 5.93243 + 10.2753i 0.200324 + 0.346971i 0.948633 0.316379i \(-0.102467\pi\)
−0.748309 + 0.663350i \(0.769134\pi\)
\(878\) 0 0
\(879\) −22.3513 + 8.75520i −0.753889 + 0.295306i
\(880\) 0 0
\(881\) 28.9982i 0.976975i −0.872571 0.488488i \(-0.837549\pi\)
0.872571 0.488488i \(-0.162451\pi\)
\(882\) 0 0
\(883\) 19.4922 + 11.2538i 0.655966 + 0.378722i 0.790738 0.612155i \(-0.209697\pi\)
−0.134772 + 0.990877i \(0.543030\pi\)
\(884\) 0 0
\(885\) −7.00639 + 46.2770i −0.235517 + 1.55558i
\(886\) 0 0
\(887\) −16.5442 + 28.6555i −0.555501 + 0.962157i 0.442363 + 0.896836i \(0.354140\pi\)
−0.997864 + 0.0653204i \(0.979193\pi\)
\(888\) 0 0
\(889\) −15.8752 + 27.4967i −0.532438 + 0.922210i
\(890\) 0 0
\(891\) 1.68489 21.7137i 0.0564460 0.727437i
\(892\) 0 0
\(893\) 19.6148 + 4.00787i 0.656386 + 0.134118i
\(894\) 0 0
\(895\) −8.65179 + 4.99511i −0.289197 + 0.166968i
\(896\) 0 0
\(897\) 26.0039 32.5637i 0.868245 1.08727i
\(898\) 0 0
\(899\) 8.18633 14.1791i 0.273030 0.472901i
\(900\) 0 0
\(901\) −27.7103 −0.923165
\(902\) 0 0
\(903\) 39.4296 49.3763i 1.31214 1.64314i
\(904\) 0 0
\(905\) 26.6820i 0.886940i
\(906\) 0 0
\(907\) −32.1834 + 18.5811i −1.06863 + 0.616976i −0.927808 0.373058i \(-0.878309\pi\)
−0.140826 + 0.990034i \(0.544976\pi\)
\(908\) 0 0
\(909\) −26.9949 + 6.12393i −0.895365 + 0.203118i
\(910\) 0 0
\(911\) 0.180469 0.00597922 0.00298961 0.999996i \(-0.499048\pi\)
0.00298961 + 0.999996i \(0.499048\pi\)
\(912\) 0 0
\(913\) −31.1144 −1.02974
\(914\) 0 0
\(915\) −10.6521 + 4.17253i −0.352147 + 0.137939i
\(916\) 0 0
\(917\) 29.3329 16.9354i 0.968659 0.559255i
\(918\) 0 0
\(919\) 43.0085i 1.41872i 0.704846 + 0.709360i \(0.251016\pi\)
−0.704846 + 0.709360i \(0.748984\pi\)
\(920\) 0 0
\(921\) 37.3978 + 29.8641i 1.23230 + 0.984057i
\(922\) 0 0
\(923\) −13.2851 −0.437284
\(924\) 0 0
\(925\) 1.38847 2.40490i 0.0456526 0.0790727i
\(926\) 0 0
\(927\) 1.36672 + 1.47688i 0.0448889 + 0.0485070i
\(928\) 0 0
\(929\) −26.0080 + 15.0157i −0.853296 + 0.492651i −0.861762 0.507313i \(-0.830639\pi\)
0.00846555 + 0.999964i \(0.497305\pi\)
\(930\) 0 0
\(931\) −10.8648 32.5626i −0.356081 1.06720i
\(932\) 0 0
\(933\) 13.6668 + 34.8901i 0.447431 + 1.14225i
\(934\) 0 0
\(935\) 6.93431 12.0106i 0.226776 0.392788i
\(936\) 0 0
\(937\) 10.4473 18.0953i 0.341299 0.591147i −0.643375 0.765551i \(-0.722467\pi\)
0.984674 + 0.174404i \(0.0557999\pi\)
\(938\) 0 0
\(939\) −7.55749 1.14421i −0.246629 0.0373399i
\(940\) 0 0
\(941\) −19.5365 11.2794i −0.636872 0.367698i 0.146536 0.989205i \(-0.453187\pi\)
−0.783409 + 0.621507i \(0.786521\pi\)
\(942\) 0 0
\(943\) 54.8935i 1.78758i
\(944\) 0 0
\(945\) 3.06299 + 41.9885i 0.0996391 + 1.36589i
\(946\) 0 0
\(947\) 12.7343 + 22.0565i 0.413811 + 0.716741i 0.995303 0.0968108i \(-0.0308642\pi\)
−0.581492 + 0.813552i \(0.697531\pi\)
\(948\) 0 0
\(949\) 74.3956 2.41498
\(950\) 0 0
\(951\) −1.21884 + 8.05040i −0.0395236 + 0.261052i
\(952\) 0 0
\(953\) −27.1758 + 15.6900i −0.880311 + 0.508248i −0.870761 0.491707i \(-0.836373\pi\)
−0.00955016 + 0.999954i \(0.503040\pi\)
\(954\) 0 0
\(955\) −9.59262 + 5.53830i −0.310410 + 0.179215i
\(956\) 0 0
\(957\) 4.53781 29.9721i 0.146686 0.968861i
\(958\) 0 0
\(959\) 37.0016 64.0886i 1.19484 2.06953i
\(960\) 0 0
\(961\) 25.8752 0.834685
\(962\) 0 0
\(963\) −10.6565 + 9.86159i −0.343399 + 0.317785i
\(964\) 0 0
\(965\) 0.578626 + 0.334070i 0.0186266 + 0.0107541i
\(966\) 0 0
\(967\) 7.55709 4.36309i 0.243020 0.140307i −0.373544 0.927612i \(-0.621858\pi\)
0.616564 + 0.787305i \(0.288524\pi\)
\(968\) 0 0
\(969\) 7.09778 19.3355i 0.228014 0.621146i
\(970\) 0 0
\(971\) −4.14415 7.17787i −0.132992 0.230349i 0.791837 0.610733i \(-0.209125\pi\)
−0.924829 + 0.380384i \(0.875792\pi\)
\(972\) 0 0
\(973\) −13.6538 + 23.6491i −0.437722 + 0.758156i
\(974\) 0 0
\(975\) 3.26338 4.08661i 0.104512 0.130876i
\(976\) 0 0
\(977\) 27.3720i 0.875707i −0.899046 0.437853i \(-0.855739\pi\)
0.899046 0.437853i \(-0.144261\pi\)
\(978\) 0 0
\(979\) 13.2074 + 7.62528i 0.422109 + 0.243705i
\(980\) 0 0
\(981\) −24.9341 7.72721i −0.796084 0.246711i
\(982\) 0 0
\(983\) 10.1821 + 17.6360i 0.324760 + 0.562501i 0.981464 0.191648i \(-0.0613832\pi\)
−0.656704 + 0.754149i \(0.728050\pi\)
\(984\) 0 0
\(985\) 21.0423 + 36.4463i 0.670464 + 1.16128i
\(986\) 0 0
\(987\) 4.59293 30.3362i 0.146195 0.965611i
\(988\) 0 0
\(989\) 44.2403i 1.40676i
\(990\) 0 0
\(991\) 39.5977 22.8617i 1.25786 0.726227i 0.285204 0.958467i \(-0.407939\pi\)
0.972659 + 0.232240i \(0.0746053\pi\)
\(992\) 0 0
\(993\) 21.7203 8.50804i 0.689272 0.269994i
\(994\) 0 0
\(995\) −10.2024 −0.323436
\(996\) 0 0
\(997\) 12.2609 21.2364i 0.388305 0.672565i −0.603916 0.797048i \(-0.706394\pi\)
0.992222 + 0.124483i \(0.0397272\pi\)
\(998\) 0 0
\(999\) −22.1278 10.7102i −0.700093 0.338857i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bh.f.767.5 yes 24
3.2 odd 2 inner 912.2.bh.f.767.9 yes 24
4.3 odd 2 inner 912.2.bh.f.767.8 yes 24
12.11 even 2 inner 912.2.bh.f.767.4 yes 24
19.11 even 3 inner 912.2.bh.f.239.4 24
57.11 odd 6 inner 912.2.bh.f.239.8 yes 24
76.11 odd 6 inner 912.2.bh.f.239.9 yes 24
228.11 even 6 inner 912.2.bh.f.239.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
912.2.bh.f.239.4 24 19.11 even 3 inner
912.2.bh.f.239.5 yes 24 228.11 even 6 inner
912.2.bh.f.239.8 yes 24 57.11 odd 6 inner
912.2.bh.f.239.9 yes 24 76.11 odd 6 inner
912.2.bh.f.767.4 yes 24 12.11 even 2 inner
912.2.bh.f.767.5 yes 24 1.1 even 1 trivial
912.2.bh.f.767.8 yes 24 4.3 odd 2 inner
912.2.bh.f.767.9 yes 24 3.2 odd 2 inner