Properties

Label 912.2.bh.f.767.7
Level $912$
Weight $2$
Character 912.767
Analytic conductor $7.282$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(239,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 767.7
Character \(\chi\) \(=\) 912.767
Dual form 912.2.bh.f.239.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.325205 - 1.70125i) q^{3} +(-0.164566 + 0.0950122i) q^{5} +0.883190i q^{7} +(-2.78848 - 1.10651i) q^{9} -3.88483 q^{11} +(-2.04597 + 3.54372i) q^{13} +(0.108122 + 0.310866i) q^{15} +(-3.97390 + 2.29433i) q^{17} +(-3.03184 - 3.13176i) q^{19} +(1.50252 + 0.287218i) q^{21} +(1.39463 - 2.41558i) q^{23} +(-2.48195 + 4.29886i) q^{25} +(-2.78927 + 4.38406i) q^{27} +(-2.80681 - 1.62051i) q^{29} -4.38406i q^{31} +(-1.26337 + 6.60906i) q^{33} +(-0.0839138 - 0.145343i) q^{35} +0.128042 q^{37} +(5.36338 + 4.63313i) q^{39} +(-1.63972 + 0.946691i) q^{41} +(3.36531 - 1.94296i) q^{43} +(0.564021 - 0.0828466i) q^{45} +(2.07366 - 3.59168i) q^{47} +6.21998 q^{49} +(2.61089 + 7.50671i) q^{51} +(-11.2845 - 6.51511i) q^{53} +(0.639311 - 0.369107i) q^{55} +(-6.31387 + 4.13945i) q^{57} +(4.94684 + 8.56818i) q^{59} +(-3.04597 + 5.27577i) q^{61} +(0.977256 - 2.46276i) q^{63} -0.777567i q^{65} +(-12.7119 - 7.33924i) q^{67} +(-3.65595 - 3.15818i) q^{69} +(4.43262 + 7.67752i) q^{71} +(2.37196 + 4.10835i) q^{73} +(6.50628 + 5.62041i) q^{75} -3.43105i q^{77} +(0.305846 - 0.176580i) q^{79} +(6.55129 + 6.17095i) q^{81} +1.00091 q^{83} +(0.435979 - 0.755138i) q^{85} +(-3.66968 + 4.24808i) q^{87} +(-0.493698 - 0.285037i) q^{89} +(-3.12978 - 1.80698i) q^{91} +(-7.45837 - 1.42572i) q^{93} +(0.796493 + 0.227320i) q^{95} +(0.981945 + 1.70078i) q^{97} +(10.8328 + 4.29860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{9} + 12 q^{13} + 12 q^{21} + 8 q^{25} + 16 q^{37} + 20 q^{45} + 40 q^{49} + 18 q^{57} - 12 q^{61} + 28 q^{69} + 44 q^{73} - 22 q^{81} + 4 q^{85} + 8 q^{93} - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.325205 1.70125i 0.187757 0.982216i
\(4\) 0 0
\(5\) −0.164566 + 0.0950122i −0.0735961 + 0.0424907i −0.536346 0.843998i \(-0.680196\pi\)
0.462750 + 0.886489i \(0.346863\pi\)
\(6\) 0 0
\(7\) 0.883190i 0.333814i 0.985973 + 0.166907i \(0.0533780\pi\)
−0.985973 + 0.166907i \(0.946622\pi\)
\(8\) 0 0
\(9\) −2.78848 1.10651i −0.929495 0.368836i
\(10\) 0 0
\(11\) −3.88483 −1.17132 −0.585661 0.810556i \(-0.699165\pi\)
−0.585661 + 0.810556i \(0.699165\pi\)
\(12\) 0 0
\(13\) −2.04597 + 3.54372i −0.567449 + 0.982851i 0.429368 + 0.903130i \(0.358736\pi\)
−0.996817 + 0.0797210i \(0.974597\pi\)
\(14\) 0 0
\(15\) 0.108122 + 0.310866i 0.0279169 + 0.0802652i
\(16\) 0 0
\(17\) −3.97390 + 2.29433i −0.963812 + 0.556457i −0.897344 0.441332i \(-0.854506\pi\)
−0.0664678 + 0.997789i \(0.521173\pi\)
\(18\) 0 0
\(19\) −3.03184 3.13176i −0.695552 0.718476i
\(20\) 0 0
\(21\) 1.50252 + 0.287218i 0.327878 + 0.0626760i
\(22\) 0 0
\(23\) 1.39463 2.41558i 0.290801 0.503683i −0.683198 0.730233i \(-0.739411\pi\)
0.973999 + 0.226550i \(0.0727448\pi\)
\(24\) 0 0
\(25\) −2.48195 + 4.29886i −0.496389 + 0.859771i
\(26\) 0 0
\(27\) −2.78927 + 4.38406i −0.536795 + 0.843713i
\(28\) 0 0
\(29\) −2.80681 1.62051i −0.521211 0.300921i 0.216219 0.976345i \(-0.430628\pi\)
−0.737430 + 0.675424i \(0.763961\pi\)
\(30\) 0 0
\(31\) 4.38406i 0.787400i −0.919239 0.393700i \(-0.871195\pi\)
0.919239 0.393700i \(-0.128805\pi\)
\(32\) 0 0
\(33\) −1.26337 + 6.60906i −0.219924 + 1.15049i
\(34\) 0 0
\(35\) −0.0839138 0.145343i −0.0141840 0.0245675i
\(36\) 0 0
\(37\) 0.128042 0.0210500 0.0105250 0.999945i \(-0.496650\pi\)
0.0105250 + 0.999945i \(0.496650\pi\)
\(38\) 0 0
\(39\) 5.36338 + 4.63313i 0.858829 + 0.741894i
\(40\) 0 0
\(41\) −1.63972 + 0.946691i −0.256081 + 0.147848i −0.622545 0.782584i \(-0.713901\pi\)
0.366465 + 0.930432i \(0.380568\pi\)
\(42\) 0 0
\(43\) 3.36531 1.94296i 0.513204 0.296299i −0.220945 0.975286i \(-0.570914\pi\)
0.734150 + 0.678987i \(0.237581\pi\)
\(44\) 0 0
\(45\) 0.564021 0.0828466i 0.0840793 0.0123500i
\(46\) 0 0
\(47\) 2.07366 3.59168i 0.302474 0.523901i −0.674221 0.738529i \(-0.735521\pi\)
0.976696 + 0.214628i \(0.0688540\pi\)
\(48\) 0 0
\(49\) 6.21998 0.888568
\(50\) 0 0
\(51\) 2.61089 + 7.50671i 0.365598 + 1.05115i
\(52\) 0 0
\(53\) −11.2845 6.51511i −1.55005 0.894919i −0.998137 0.0610148i \(-0.980566\pi\)
−0.551909 0.833904i \(-0.686100\pi\)
\(54\) 0 0
\(55\) 0.639311 0.369107i 0.0862047 0.0497703i
\(56\) 0 0
\(57\) −6.31387 + 4.13945i −0.836293 + 0.548283i
\(58\) 0 0
\(59\) 4.94684 + 8.56818i 0.644024 + 1.11548i 0.984526 + 0.175239i \(0.0560697\pi\)
−0.340502 + 0.940244i \(0.610597\pi\)
\(60\) 0 0
\(61\) −3.04597 + 5.27577i −0.389996 + 0.675493i −0.992449 0.122662i \(-0.960857\pi\)
0.602452 + 0.798155i \(0.294190\pi\)
\(62\) 0 0
\(63\) 0.977256 2.46276i 0.123123 0.310279i
\(64\) 0 0
\(65\) 0.777567i 0.0964453i
\(66\) 0 0
\(67\) −12.7119 7.33924i −1.55301 0.896631i −0.997894 0.0648581i \(-0.979341\pi\)
−0.555116 0.831773i \(-0.687326\pi\)
\(68\) 0 0
\(69\) −3.65595 3.15818i −0.440125 0.380200i
\(70\) 0 0
\(71\) 4.43262 + 7.67752i 0.526055 + 0.911153i 0.999539 + 0.0303514i \(0.00966263\pi\)
−0.473485 + 0.880802i \(0.657004\pi\)
\(72\) 0 0
\(73\) 2.37196 + 4.10835i 0.277617 + 0.480846i 0.970792 0.239923i \(-0.0771222\pi\)
−0.693175 + 0.720769i \(0.743789\pi\)
\(74\) 0 0
\(75\) 6.50628 + 5.62041i 0.751280 + 0.648989i
\(76\) 0 0
\(77\) 3.43105i 0.391004i
\(78\) 0 0
\(79\) 0.305846 0.176580i 0.0344104 0.0198669i −0.482696 0.875788i \(-0.660342\pi\)
0.517107 + 0.855921i \(0.327009\pi\)
\(80\) 0 0
\(81\) 6.55129 + 6.17095i 0.727921 + 0.685661i
\(82\) 0 0
\(83\) 1.00091 0.109864 0.0549318 0.998490i \(-0.482506\pi\)
0.0549318 + 0.998490i \(0.482506\pi\)
\(84\) 0 0
\(85\) 0.435979 0.755138i 0.0472885 0.0819062i
\(86\) 0 0
\(87\) −3.66968 + 4.24808i −0.393431 + 0.455442i
\(88\) 0 0
\(89\) −0.493698 0.285037i −0.0523319 0.0302138i 0.473606 0.880737i \(-0.342952\pi\)
−0.525938 + 0.850523i \(0.676285\pi\)
\(90\) 0 0
\(91\) −3.12978 1.80698i −0.328090 0.189423i
\(92\) 0 0
\(93\) −7.45837 1.42572i −0.773397 0.147840i
\(94\) 0 0
\(95\) 0.796493 + 0.227320i 0.0817185 + 0.0233225i
\(96\) 0 0
\(97\) 0.981945 + 1.70078i 0.0997014 + 0.172688i 0.911561 0.411165i \(-0.134878\pi\)
−0.811860 + 0.583853i \(0.801545\pi\)
\(98\) 0 0
\(99\) 10.8328 + 4.29860i 1.08874 + 0.432025i
\(100\) 0 0
\(101\) 13.5976 + 7.85059i 1.35301 + 0.781162i 0.988670 0.150103i \(-0.0479604\pi\)
0.364343 + 0.931265i \(0.381294\pi\)
\(102\) 0 0
\(103\) 7.88493i 0.776925i −0.921465 0.388463i \(-0.873006\pi\)
0.921465 0.388463i \(-0.126994\pi\)
\(104\) 0 0
\(105\) −0.274554 + 0.0954919i −0.0267937 + 0.00931906i
\(106\) 0 0
\(107\) −7.76967 −0.751122 −0.375561 0.926798i \(-0.622550\pi\)
−0.375561 + 0.926798i \(0.622550\pi\)
\(108\) 0 0
\(109\) −7.07388 12.2523i −0.677555 1.17356i −0.975715 0.219043i \(-0.929706\pi\)
0.298160 0.954516i \(-0.403627\pi\)
\(110\) 0 0
\(111\) 0.0416399 0.217832i 0.00395229 0.0206757i
\(112\) 0 0
\(113\) 16.6513i 1.56642i 0.621756 + 0.783211i \(0.286420\pi\)
−0.621756 + 0.783211i \(0.713580\pi\)
\(114\) 0 0
\(115\) 0.530029i 0.0494255i
\(116\) 0 0
\(117\) 9.62629 7.61772i 0.889951 0.704259i
\(118\) 0 0
\(119\) −2.02633 3.50971i −0.185753 0.321734i
\(120\) 0 0
\(121\) 4.09193 0.371994
\(122\) 0 0
\(123\) 1.07731 + 3.09743i 0.0971379 + 0.279286i
\(124\) 0 0
\(125\) 1.89338i 0.169349i
\(126\) 0 0
\(127\) 3.49086 + 2.01545i 0.309764 + 0.178842i 0.646821 0.762642i \(-0.276098\pi\)
−0.337057 + 0.941484i \(0.609432\pi\)
\(128\) 0 0
\(129\) −2.21104 6.35708i −0.194671 0.559710i
\(130\) 0 0
\(131\) −8.14962 14.1156i −0.712036 1.23328i −0.964092 0.265569i \(-0.914440\pi\)
0.252056 0.967713i \(-0.418893\pi\)
\(132\) 0 0
\(133\) 2.76594 2.67769i 0.239838 0.232185i
\(134\) 0 0
\(135\) 0.0424797 0.986481i 0.00365607 0.0849028i
\(136\) 0 0
\(137\) −6.81691 3.93574i −0.582408 0.336253i 0.179682 0.983725i \(-0.442493\pi\)
−0.762090 + 0.647472i \(0.775826\pi\)
\(138\) 0 0
\(139\) −14.2141 8.20649i −1.20562 0.696065i −0.243821 0.969820i \(-0.578401\pi\)
−0.961799 + 0.273755i \(0.911734\pi\)
\(140\) 0 0
\(141\) −5.43598 4.69584i −0.457792 0.395461i
\(142\) 0 0
\(143\) 7.94824 13.7668i 0.664665 1.15123i
\(144\) 0 0
\(145\) 0.615873 0.0511455
\(146\) 0 0
\(147\) 2.02276 10.5817i 0.166835 0.872765i
\(148\) 0 0
\(149\) 17.8855 10.3262i 1.46524 0.845956i 0.465993 0.884789i \(-0.345697\pi\)
0.999246 + 0.0388328i \(0.0123640\pi\)
\(150\) 0 0
\(151\) 8.28797i 0.674465i −0.941421 0.337233i \(-0.890509\pi\)
0.941421 0.337233i \(-0.109491\pi\)
\(152\) 0 0
\(153\) 13.6198 2.00056i 1.10110 0.161736i
\(154\) 0 0
\(155\) 0.416539 + 0.721467i 0.0334572 + 0.0579496i
\(156\) 0 0
\(157\) −6.46389 11.1958i −0.515875 0.893521i −0.999830 0.0184285i \(-0.994134\pi\)
0.483956 0.875093i \(-0.339200\pi\)
\(158\) 0 0
\(159\) −14.7536 + 17.0790i −1.17004 + 1.35445i
\(160\) 0 0
\(161\) 2.13341 + 1.23173i 0.168137 + 0.0970737i
\(162\) 0 0
\(163\) 1.17314i 0.0918877i 0.998944 + 0.0459439i \(0.0146295\pi\)
−0.998944 + 0.0459439i \(0.985370\pi\)
\(164\) 0 0
\(165\) −0.420034 1.20766i −0.0326996 0.0940163i
\(166\) 0 0
\(167\) −8.33122 + 14.4301i −0.644689 + 1.11663i 0.339684 + 0.940540i \(0.389680\pi\)
−0.984373 + 0.176095i \(0.943653\pi\)
\(168\) 0 0
\(169\) −1.87196 3.24233i −0.143997 0.249410i
\(170\) 0 0
\(171\) 4.98892 + 12.0876i 0.381513 + 0.924364i
\(172\) 0 0
\(173\) 15.7521 9.09448i 1.19761 0.691440i 0.237588 0.971366i \(-0.423643\pi\)
0.960022 + 0.279926i \(0.0903098\pi\)
\(174\) 0 0
\(175\) −3.79671 2.19203i −0.287004 0.165702i
\(176\) 0 0
\(177\) 16.1853 5.62939i 1.21656 0.423131i
\(178\) 0 0
\(179\) 0.833078 0.0622672 0.0311336 0.999515i \(-0.490088\pi\)
0.0311336 + 0.999515i \(0.490088\pi\)
\(180\) 0 0
\(181\) 5.07388 8.78822i 0.377138 0.653223i −0.613506 0.789690i \(-0.710241\pi\)
0.990645 + 0.136467i \(0.0435748\pi\)
\(182\) 0 0
\(183\) 7.98482 + 6.89765i 0.590255 + 0.509889i
\(184\) 0 0
\(185\) −0.0210714 + 0.0121656i −0.00154920 + 0.000894431i
\(186\) 0 0
\(187\) 15.4379 8.91310i 1.12893 0.651790i
\(188\) 0 0
\(189\) −3.87196 2.46346i −0.281643 0.179190i
\(190\) 0 0
\(191\) −20.6144 −1.49160 −0.745802 0.666167i \(-0.767934\pi\)
−0.745802 + 0.666167i \(0.767934\pi\)
\(192\) 0 0
\(193\) −0.0820758 0.142159i −0.00590794 0.0102329i 0.863056 0.505108i \(-0.168547\pi\)
−0.868964 + 0.494875i \(0.835214\pi\)
\(194\) 0 0
\(195\) −1.32283 0.252868i −0.0947301 0.0181083i
\(196\) 0 0
\(197\) 16.4787i 1.17406i 0.809565 + 0.587031i \(0.199703\pi\)
−0.809565 + 0.587031i \(0.800297\pi\)
\(198\) 0 0
\(199\) −13.6024 7.85332i −0.964246 0.556707i −0.0667685 0.997768i \(-0.521269\pi\)
−0.897477 + 0.441061i \(0.854602\pi\)
\(200\) 0 0
\(201\) −16.6198 + 19.2394i −1.17227 + 1.35704i
\(202\) 0 0
\(203\) 1.43122 2.47894i 0.100452 0.173988i
\(204\) 0 0
\(205\) 0.179894 0.311586i 0.0125644 0.0217621i
\(206\) 0 0
\(207\) −6.56177 + 5.19263i −0.456075 + 0.360913i
\(208\) 0 0
\(209\) 11.7782 + 12.1664i 0.814715 + 0.841566i
\(210\) 0 0
\(211\) −5.09091 + 2.93924i −0.350472 + 0.202345i −0.664893 0.746938i \(-0.731523\pi\)
0.314421 + 0.949284i \(0.398190\pi\)
\(212\) 0 0
\(213\) 14.5029 5.04421i 0.993720 0.345624i
\(214\) 0 0
\(215\) −0.369210 + 0.639490i −0.0251799 + 0.0436129i
\(216\) 0 0
\(217\) 3.87196 0.262846
\(218\) 0 0
\(219\) 7.76069 2.69923i 0.524419 0.182397i
\(220\) 0 0
\(221\) 18.7765i 1.26304i
\(222\) 0 0
\(223\) 7.48344 4.32056i 0.501128 0.289326i −0.228051 0.973649i \(-0.573235\pi\)
0.729179 + 0.684323i \(0.239902\pi\)
\(224\) 0 0
\(225\) 11.6776 9.24100i 0.778505 0.616067i
\(226\) 0 0
\(227\) 15.5608 1.03281 0.516404 0.856345i \(-0.327270\pi\)
0.516404 + 0.856345i \(0.327270\pi\)
\(228\) 0 0
\(229\) −17.6599 −1.16700 −0.583500 0.812113i \(-0.698317\pi\)
−0.583500 + 0.812113i \(0.698317\pi\)
\(230\) 0 0
\(231\) −5.83706 1.11579i −0.384050 0.0734137i
\(232\) 0 0
\(233\) −0.981453 + 0.566642i −0.0642971 + 0.0371220i −0.531804 0.846868i \(-0.678486\pi\)
0.467507 + 0.883989i \(0.345152\pi\)
\(234\) 0 0
\(235\) 0.788092i 0.0514094i
\(236\) 0 0
\(237\) −0.200944 0.577745i −0.0130527 0.0375286i
\(238\) 0 0
\(239\) 12.8508 0.831248 0.415624 0.909537i \(-0.363563\pi\)
0.415624 + 0.909537i \(0.363563\pi\)
\(240\) 0 0
\(241\) 10.4639 18.1240i 0.674038 1.16747i −0.302710 0.953083i \(-0.597892\pi\)
0.976749 0.214386i \(-0.0687751\pi\)
\(242\) 0 0
\(243\) 12.6288 9.13853i 0.810140 0.586237i
\(244\) 0 0
\(245\) −1.02360 + 0.590973i −0.0653952 + 0.0377559i
\(246\) 0 0
\(247\) 17.3011 4.33651i 1.10084 0.275926i
\(248\) 0 0
\(249\) 0.325499 1.70279i 0.0206277 0.107910i
\(250\) 0 0
\(251\) −5.19555 + 8.99896i −0.327941 + 0.568010i −0.982103 0.188344i \(-0.939688\pi\)
0.654163 + 0.756354i \(0.273021\pi\)
\(252\) 0 0
\(253\) −5.41792 + 9.38412i −0.340622 + 0.589975i
\(254\) 0 0
\(255\) −1.14289 0.987282i −0.0715708 0.0618260i
\(256\) 0 0
\(257\) −6.00002 3.46411i −0.374271 0.216085i 0.301052 0.953608i \(-0.402662\pi\)
−0.675323 + 0.737522i \(0.735996\pi\)
\(258\) 0 0
\(259\) 0.113086i 0.00702680i
\(260\) 0 0
\(261\) 6.03363 + 7.62452i 0.373472 + 0.471946i
\(262\) 0 0
\(263\) 12.4648 + 21.5896i 0.768611 + 1.33127i 0.938316 + 0.345778i \(0.112385\pi\)
−0.169706 + 0.985495i \(0.554282\pi\)
\(264\) 0 0
\(265\) 2.47606 0.152103
\(266\) 0 0
\(267\) −0.645470 + 0.747207i −0.0395022 + 0.0457283i
\(268\) 0 0
\(269\) 22.5117 12.9972i 1.37256 0.792451i 0.381314 0.924445i \(-0.375472\pi\)
0.991250 + 0.131995i \(0.0421383\pi\)
\(270\) 0 0
\(271\) 5.02059 2.89864i 0.304979 0.176080i −0.339698 0.940534i \(-0.610325\pi\)
0.644678 + 0.764455i \(0.276992\pi\)
\(272\) 0 0
\(273\) −4.09193 + 4.73689i −0.247655 + 0.286689i
\(274\) 0 0
\(275\) 9.64195 16.7003i 0.581431 1.00707i
\(276\) 0 0
\(277\) 11.0919 0.666450 0.333225 0.942847i \(-0.391863\pi\)
0.333225 + 0.942847i \(0.391863\pi\)
\(278\) 0 0
\(279\) −4.85099 + 12.2249i −0.290421 + 0.731884i
\(280\) 0 0
\(281\) −8.44149 4.87370i −0.503577 0.290741i 0.226612 0.973985i \(-0.427235\pi\)
−0.730190 + 0.683245i \(0.760568\pi\)
\(282\) 0 0
\(283\) −26.1064 + 15.0725i −1.55186 + 0.895969i −0.553873 + 0.832601i \(0.686851\pi\)
−0.997990 + 0.0633678i \(0.979816\pi\)
\(284\) 0 0
\(285\) 0.645750 1.28111i 0.0382509 0.0758862i
\(286\) 0 0
\(287\) −0.836108 1.44818i −0.0493539 0.0854835i
\(288\) 0 0
\(289\) 2.02791 3.51245i 0.119289 0.206614i
\(290\) 0 0
\(291\) 3.21278 1.11743i 0.188336 0.0655049i
\(292\) 0 0
\(293\) 9.93742i 0.580550i 0.956943 + 0.290275i \(0.0937469\pi\)
−0.956943 + 0.290275i \(0.906253\pi\)
\(294\) 0 0
\(295\) −1.62816 0.940021i −0.0947954 0.0547301i
\(296\) 0 0
\(297\) 10.8358 17.0313i 0.628760 0.988259i
\(298\) 0 0
\(299\) 5.70675 + 9.88438i 0.330030 + 0.571629i
\(300\) 0 0
\(301\) 1.71600 + 2.97221i 0.0989088 + 0.171315i
\(302\) 0 0
\(303\) 17.7778 20.5799i 1.02131 1.18228i
\(304\) 0 0
\(305\) 1.15762i 0.0662849i
\(306\) 0 0
\(307\) −21.0978 + 12.1808i −1.20412 + 0.695197i −0.961468 0.274917i \(-0.911350\pi\)
−0.242649 + 0.970114i \(0.578016\pi\)
\(308\) 0 0
\(309\) −13.4142 2.56422i −0.763108 0.145873i
\(310\) 0 0
\(311\) −24.1911 −1.37175 −0.685876 0.727718i \(-0.740581\pi\)
−0.685876 + 0.727718i \(0.740581\pi\)
\(312\) 0 0
\(313\) 0.0180546 0.0312715i 0.00102051 0.00176757i −0.865515 0.500884i \(-0.833008\pi\)
0.866535 + 0.499116i \(0.166342\pi\)
\(314\) 0 0
\(315\) 0.0731693 + 0.498138i 0.00412262 + 0.0280669i
\(316\) 0 0
\(317\) −19.2323 11.1038i −1.08019 0.623650i −0.149245 0.988800i \(-0.547684\pi\)
−0.930949 + 0.365150i \(0.881018\pi\)
\(318\) 0 0
\(319\) 10.9040 + 6.29542i 0.610506 + 0.352476i
\(320\) 0 0
\(321\) −2.52673 + 13.2181i −0.141028 + 0.737764i
\(322\) 0 0
\(323\) 19.2335 + 5.48926i 1.07018 + 0.305430i
\(324\) 0 0
\(325\) −10.1560 17.5906i −0.563351 0.975753i
\(326\) 0 0
\(327\) −23.1447 + 8.04991i −1.27990 + 0.445161i
\(328\) 0 0
\(329\) 3.17214 + 1.83144i 0.174886 + 0.100970i
\(330\) 0 0
\(331\) 10.3895i 0.571060i 0.958370 + 0.285530i \(0.0921696\pi\)
−0.958370 + 0.285530i \(0.907830\pi\)
\(332\) 0 0
\(333\) −0.357044 0.141680i −0.0195659 0.00776400i
\(334\) 0 0
\(335\) 2.78927 0.152394
\(336\) 0 0
\(337\) 4.13790 + 7.16705i 0.225406 + 0.390414i 0.956441 0.291925i \(-0.0942959\pi\)
−0.731035 + 0.682340i \(0.760963\pi\)
\(338\) 0 0
\(339\) 28.3280 + 5.41508i 1.53856 + 0.294107i
\(340\) 0 0
\(341\) 17.0313i 0.922299i
\(342\) 0 0
\(343\) 11.6758i 0.630431i
\(344\) 0 0
\(345\) 0.901711 + 0.172368i 0.0485465 + 0.00927998i
\(346\) 0 0
\(347\) 5.11467 + 8.85887i 0.274570 + 0.475569i 0.970027 0.242999i \(-0.0781312\pi\)
−0.695457 + 0.718568i \(0.744798\pi\)
\(348\) 0 0
\(349\) −20.6356 −1.10460 −0.552299 0.833646i \(-0.686249\pi\)
−0.552299 + 0.833646i \(0.686249\pi\)
\(350\) 0 0
\(351\) −9.82912 18.8540i −0.524639 1.00635i
\(352\) 0 0
\(353\) 25.4486i 1.35449i 0.735757 + 0.677245i \(0.236826\pi\)
−0.735757 + 0.677245i \(0.763174\pi\)
\(354\) 0 0
\(355\) −1.45892 0.842305i −0.0774312 0.0447049i
\(356\) 0 0
\(357\) −6.62985 + 2.30592i −0.350889 + 0.122042i
\(358\) 0 0
\(359\) −8.07948 13.9941i −0.426419 0.738579i 0.570133 0.821552i \(-0.306892\pi\)
−0.996552 + 0.0829734i \(0.973558\pi\)
\(360\) 0 0
\(361\) −0.615873 + 18.9900i −0.0324144 + 0.999475i
\(362\) 0 0
\(363\) 1.33072 6.96139i 0.0698445 0.365378i
\(364\) 0 0
\(365\) −0.780687 0.450730i −0.0408630 0.0235923i
\(366\) 0 0
\(367\) 20.0266 + 11.5624i 1.04538 + 0.603551i 0.921353 0.388727i \(-0.127085\pi\)
0.124029 + 0.992279i \(0.460419\pi\)
\(368\) 0 0
\(369\) 5.61984 0.825475i 0.292557 0.0429725i
\(370\) 0 0
\(371\) 5.75408 9.96636i 0.298737 0.517428i
\(372\) 0 0
\(373\) 21.4597 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(374\) 0 0
\(375\) −3.22111 0.615737i −0.166337 0.0317965i
\(376\) 0 0
\(377\) 11.4853 6.63102i 0.591521 0.341515i
\(378\) 0 0
\(379\) 32.0384i 1.64570i −0.568256 0.822852i \(-0.692382\pi\)
0.568256 0.822852i \(-0.307618\pi\)
\(380\) 0 0
\(381\) 4.56402 5.28338i 0.233822 0.270676i
\(382\) 0 0
\(383\) −8.82865 15.2917i −0.451123 0.781368i 0.547333 0.836915i \(-0.315643\pi\)
−0.998456 + 0.0555472i \(0.982310\pi\)
\(384\) 0 0
\(385\) 0.325991 + 0.564633i 0.0166141 + 0.0287764i
\(386\) 0 0
\(387\) −11.5340 + 1.69418i −0.586306 + 0.0861200i
\(388\) 0 0
\(389\) −6.10731 3.52606i −0.309653 0.178778i 0.337118 0.941462i \(-0.390548\pi\)
−0.646771 + 0.762684i \(0.723881\pi\)
\(390\) 0 0
\(391\) 12.7990i 0.647274i
\(392\) 0 0
\(393\) −26.6643 + 9.27408i −1.34504 + 0.467815i
\(394\) 0 0
\(395\) −0.0335546 + 0.0581183i −0.00168831 + 0.00292425i
\(396\) 0 0
\(397\) 7.26594 + 12.5850i 0.364667 + 0.631622i 0.988723 0.149758i \(-0.0478494\pi\)
−0.624056 + 0.781380i \(0.714516\pi\)
\(398\) 0 0
\(399\) −3.65592 5.57635i −0.183025 0.279167i
\(400\) 0 0
\(401\) −16.7487 + 9.66986i −0.836389 + 0.482890i −0.856035 0.516917i \(-0.827079\pi\)
0.0196460 + 0.999807i \(0.493746\pi\)
\(402\) 0 0
\(403\) 15.5359 + 8.96964i 0.773897 + 0.446810i
\(404\) 0 0
\(405\) −1.66443 0.393077i −0.0827064 0.0195321i
\(406\) 0 0
\(407\) −0.497423 −0.0246563
\(408\) 0 0
\(409\) −12.3300 + 21.3561i −0.609677 + 1.05599i 0.381616 + 0.924321i \(0.375368\pi\)
−0.991293 + 0.131671i \(0.957966\pi\)
\(410\) 0 0
\(411\) −8.91256 + 10.3173i −0.439624 + 0.508916i
\(412\) 0 0
\(413\) −7.56734 + 4.36900i −0.372364 + 0.214985i
\(414\) 0 0
\(415\) −0.164715 + 0.0950983i −0.00808554 + 0.00466819i
\(416\) 0 0
\(417\) −18.5837 + 21.5128i −0.910049 + 1.05349i
\(418\) 0 0
\(419\) −27.0536 −1.32165 −0.660826 0.750539i \(-0.729794\pi\)
−0.660826 + 0.750539i \(0.729794\pi\)
\(420\) 0 0
\(421\) 8.81779 + 15.2729i 0.429753 + 0.744354i 0.996851 0.0792963i \(-0.0252673\pi\)
−0.567098 + 0.823650i \(0.691934\pi\)
\(422\) 0 0
\(423\) −9.75659 + 7.72083i −0.474382 + 0.375400i
\(424\) 0 0
\(425\) 22.7776i 1.10488i
\(426\) 0 0
\(427\) −4.65951 2.69017i −0.225489 0.130186i
\(428\) 0 0
\(429\) −20.8358 17.9989i −1.00596 0.868997i
\(430\) 0 0
\(431\) −8.84242 + 15.3155i −0.425924 + 0.737723i −0.996506 0.0835180i \(-0.973384\pi\)
0.570582 + 0.821241i \(0.306718\pi\)
\(432\) 0 0
\(433\) −4.00986 + 6.94528i −0.192701 + 0.333769i −0.946145 0.323744i \(-0.895058\pi\)
0.753443 + 0.657513i \(0.228392\pi\)
\(434\) 0 0
\(435\) 0.200285 1.04775i 0.00960292 0.0502359i
\(436\) 0 0
\(437\) −11.7933 + 2.95599i −0.564151 + 0.141404i
\(438\) 0 0
\(439\) 32.2680 18.6299i 1.54007 0.889159i 0.541234 0.840872i \(-0.317957\pi\)
0.998834 0.0482867i \(-0.0153761\pi\)
\(440\) 0 0
\(441\) −17.3443 6.88245i −0.825919 0.327735i
\(442\) 0 0
\(443\) 10.1760 17.6253i 0.483474 0.837402i −0.516346 0.856380i \(-0.672708\pi\)
0.999820 + 0.0189785i \(0.00604140\pi\)
\(444\) 0 0
\(445\) 0.108328 0.00513523
\(446\) 0 0
\(447\) −11.7510 33.7858i −0.555802 1.59801i
\(448\) 0 0
\(449\) 19.9098i 0.939601i −0.882773 0.469800i \(-0.844326\pi\)
0.882773 0.469800i \(-0.155674\pi\)
\(450\) 0 0
\(451\) 6.37003 3.67774i 0.299953 0.173178i
\(452\) 0 0
\(453\) −14.0999 2.69529i −0.662470 0.126636i
\(454\) 0 0
\(455\) 0.686740 0.0321948
\(456\) 0 0
\(457\) −6.52394 −0.305177 −0.152589 0.988290i \(-0.548761\pi\)
−0.152589 + 0.988290i \(0.548761\pi\)
\(458\) 0 0
\(459\) 1.02579 23.8213i 0.0478798 1.11188i
\(460\) 0 0
\(461\) −31.5193 + 18.1977i −1.46800 + 0.847551i −0.999358 0.0358363i \(-0.988591\pi\)
−0.468644 + 0.883387i \(0.655257\pi\)
\(462\) 0 0
\(463\) 32.5227i 1.51146i 0.654885 + 0.755728i \(0.272717\pi\)
−0.654885 + 0.755728i \(0.727283\pi\)
\(464\) 0 0
\(465\) 1.36285 0.474012i 0.0632008 0.0219818i
\(466\) 0 0
\(467\) −36.7062 −1.69856 −0.849281 0.527941i \(-0.822964\pi\)
−0.849281 + 0.527941i \(0.822964\pi\)
\(468\) 0 0
\(469\) 6.48195 11.2271i 0.299308 0.518417i
\(470\) 0 0
\(471\) −21.1489 + 7.35575i −0.974489 + 0.338935i
\(472\) 0 0
\(473\) −13.0737 + 7.54808i −0.601127 + 0.347061i
\(474\) 0 0
\(475\) 20.9879 5.26059i 0.962989 0.241372i
\(476\) 0 0
\(477\) 24.2576 + 30.6537i 1.11068 + 1.40353i
\(478\) 0 0
\(479\) 2.90674 5.03462i 0.132812 0.230038i −0.791947 0.610589i \(-0.790933\pi\)
0.924760 + 0.380552i \(0.124266\pi\)
\(480\) 0 0
\(481\) −0.261970 + 0.453746i −0.0119448 + 0.0206890i
\(482\) 0 0
\(483\) 2.78927 3.22890i 0.126916 0.146920i
\(484\) 0 0
\(485\) −0.323190 0.186594i −0.0146753 0.00847278i
\(486\) 0 0
\(487\) 13.0072i 0.589413i 0.955588 + 0.294706i \(0.0952218\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(488\) 0 0
\(489\) 1.99581 + 0.381512i 0.0902536 + 0.0172526i
\(490\) 0 0
\(491\) 11.2960 + 19.5653i 0.509783 + 0.882970i 0.999936 + 0.0113335i \(0.00360763\pi\)
−0.490153 + 0.871637i \(0.663059\pi\)
\(492\) 0 0
\(493\) 14.8720 0.669799
\(494\) 0 0
\(495\) −2.19113 + 0.321845i −0.0984839 + 0.0144659i
\(496\) 0 0
\(497\) −6.78071 + 3.91484i −0.304156 + 0.175605i
\(498\) 0 0
\(499\) −30.9030 + 17.8418i −1.38341 + 0.798711i −0.992561 0.121745i \(-0.961151\pi\)
−0.390846 + 0.920456i \(0.627818\pi\)
\(500\) 0 0
\(501\) 21.8398 + 18.8662i 0.975731 + 0.842880i
\(502\) 0 0
\(503\) 13.5573 23.4819i 0.604490 1.04701i −0.387642 0.921810i \(-0.626710\pi\)
0.992132 0.125198i \(-0.0399565\pi\)
\(504\) 0 0
\(505\) −2.98361 −0.132769
\(506\) 0 0
\(507\) −6.12477 + 2.13024i −0.272010 + 0.0946074i
\(508\) 0 0
\(509\) −14.7344 8.50694i −0.653093 0.377063i 0.136547 0.990634i \(-0.456399\pi\)
−0.789640 + 0.613570i \(0.789733\pi\)
\(510\) 0 0
\(511\) −3.62846 + 2.09489i −0.160513 + 0.0926725i
\(512\) 0 0
\(513\) 22.1865 4.55644i 0.979556 0.201172i
\(514\) 0 0
\(515\) 0.749164 + 1.29759i 0.0330121 + 0.0571787i
\(516\) 0 0
\(517\) −8.05582 + 13.9531i −0.354295 + 0.613656i
\(518\) 0 0
\(519\) −10.3493 29.7558i −0.454284 1.30613i
\(520\) 0 0
\(521\) 7.42530i 0.325309i −0.986683 0.162654i \(-0.947994\pi\)
0.986683 0.162654i \(-0.0520055\pi\)
\(522\) 0 0
\(523\) −28.4010 16.3973i −1.24189 0.717004i −0.272410 0.962181i \(-0.587821\pi\)
−0.969478 + 0.245177i \(0.921154\pi\)
\(524\) 0 0
\(525\) −4.96389 + 5.74628i −0.216642 + 0.250788i
\(526\) 0 0
\(527\) 10.0585 + 17.4218i 0.438154 + 0.758906i
\(528\) 0 0
\(529\) 7.60999 + 13.1809i 0.330869 + 0.573082i
\(530\) 0 0
\(531\) −4.31344 29.3660i −0.187187 1.27437i
\(532\) 0 0
\(533\) 7.74759i 0.335586i
\(534\) 0 0
\(535\) 1.27862 0.738213i 0.0552797 0.0319157i
\(536\) 0 0
\(537\) 0.270921 1.41727i 0.0116911 0.0611598i
\(538\) 0 0
\(539\) −24.1636 −1.04080
\(540\) 0 0
\(541\) −4.55582 + 7.89092i −0.195870 + 0.339257i −0.947185 0.320686i \(-0.896086\pi\)
0.751315 + 0.659943i \(0.229420\pi\)
\(542\) 0 0
\(543\) −13.3009 11.4899i −0.570795 0.493078i
\(544\) 0 0
\(545\) 2.32824 + 1.34421i 0.0997308 + 0.0575796i
\(546\) 0 0
\(547\) 19.6108 + 11.3223i 0.838497 + 0.484107i 0.856753 0.515727i \(-0.172478\pi\)
−0.0182558 + 0.999833i \(0.505811\pi\)
\(548\) 0 0
\(549\) 14.3313 11.3410i 0.611645 0.484023i
\(550\) 0 0
\(551\) 3.43474 + 13.7034i 0.146325 + 0.583784i
\(552\) 0 0
\(553\) 0.155954 + 0.270120i 0.00663184 + 0.0114867i
\(554\) 0 0
\(555\) 0.0138441 + 0.0398039i 0.000587651 + 0.00168958i
\(556\) 0 0
\(557\) −6.78665 3.91827i −0.287560 0.166023i 0.349281 0.937018i \(-0.386426\pi\)
−0.636841 + 0.770995i \(0.719759\pi\)
\(558\) 0 0
\(559\) 15.9009i 0.672538i
\(560\) 0 0
\(561\) −10.1429 29.1623i −0.428233 1.23123i
\(562\) 0 0
\(563\) 8.10532 0.341599 0.170799 0.985306i \(-0.445365\pi\)
0.170799 + 0.985306i \(0.445365\pi\)
\(564\) 0 0
\(565\) −1.58208 2.74024i −0.0665584 0.115283i
\(566\) 0 0
\(567\) −5.45012 + 5.78603i −0.228884 + 0.242990i
\(568\) 0 0
\(569\) 28.8796i 1.21070i −0.795961 0.605348i \(-0.793034\pi\)
0.795961 0.605348i \(-0.206966\pi\)
\(570\) 0 0
\(571\) 17.2330i 0.721177i 0.932725 + 0.360588i \(0.117424\pi\)
−0.932725 + 0.360588i \(0.882576\pi\)
\(572\) 0 0
\(573\) −6.70390 + 35.0702i −0.280059 + 1.46508i
\(574\) 0 0
\(575\) 6.92281 + 11.9907i 0.288701 + 0.500045i
\(576\) 0 0
\(577\) 2.32368 0.0967360 0.0483680 0.998830i \(-0.484598\pi\)
0.0483680 + 0.998830i \(0.484598\pi\)
\(578\) 0 0
\(579\) −0.268540 + 0.0934003i −0.0111601 + 0.00388158i
\(580\) 0 0
\(581\) 0.883990i 0.0366741i
\(582\) 0 0
\(583\) 43.8384 + 25.3101i 1.81560 + 1.04824i
\(584\) 0 0
\(585\) −0.860383 + 2.16823i −0.0355725 + 0.0896454i
\(586\) 0 0
\(587\) −19.7447 34.1989i −0.814952 1.41154i −0.909362 0.416005i \(-0.863430\pi\)
0.0944101 0.995533i \(-0.469904\pi\)
\(588\) 0 0
\(589\) −13.7298 + 13.2918i −0.565728 + 0.547678i
\(590\) 0 0
\(591\) 28.0344 + 5.35896i 1.15318 + 0.220438i
\(592\) 0 0
\(593\) 8.44149 + 4.87370i 0.346651 + 0.200139i 0.663209 0.748434i \(-0.269194\pi\)
−0.316558 + 0.948573i \(0.602527\pi\)
\(594\) 0 0
\(595\) 0.666930 + 0.385052i 0.0273415 + 0.0157856i
\(596\) 0 0
\(597\) −17.7840 + 20.5870i −0.727851 + 0.842571i
\(598\) 0 0
\(599\) 17.1233 29.6584i 0.699639 1.21181i −0.268953 0.963153i \(-0.586678\pi\)
0.968592 0.248656i \(-0.0799889\pi\)
\(600\) 0 0
\(601\) −33.7716 −1.37757 −0.688786 0.724965i \(-0.741856\pi\)
−0.688786 + 0.724965i \(0.741856\pi\)
\(602\) 0 0
\(603\) 27.3261 + 34.5312i 1.11281 + 1.40622i
\(604\) 0 0
\(605\) −0.673393 + 0.388784i −0.0273773 + 0.0158063i
\(606\) 0 0
\(607\) 2.20131i 0.0893485i −0.999002 0.0446742i \(-0.985775\pi\)
0.999002 0.0446742i \(-0.0142250\pi\)
\(608\) 0 0
\(609\) −3.75186 3.24102i −0.152033 0.131333i
\(610\) 0 0
\(611\) 8.48528 + 14.6969i 0.343278 + 0.594574i
\(612\) 0 0
\(613\) 17.3497 + 30.0505i 0.700747 + 1.21373i 0.968205 + 0.250160i \(0.0804831\pi\)
−0.267458 + 0.963570i \(0.586184\pi\)
\(614\) 0 0
\(615\) −0.471583 0.407374i −0.0190160 0.0164269i
\(616\) 0 0
\(617\) −1.61865 0.934526i −0.0651642 0.0376226i 0.467064 0.884224i \(-0.345312\pi\)
−0.532228 + 0.846601i \(0.678645\pi\)
\(618\) 0 0
\(619\) 31.0103i 1.24641i 0.782059 + 0.623204i \(0.214169\pi\)
−0.782059 + 0.623204i \(0.785831\pi\)
\(620\) 0 0
\(621\) 6.70003 + 12.8519i 0.268863 + 0.515727i
\(622\) 0 0
\(623\) 0.251741 0.436029i 0.0100858 0.0174691i
\(624\) 0 0
\(625\) −12.2298 21.1827i −0.489193 0.847308i
\(626\) 0 0
\(627\) 24.5283 16.0811i 0.979568 0.642216i
\(628\) 0 0
\(629\) −0.508827 + 0.293771i −0.0202883 + 0.0117134i
\(630\) 0 0
\(631\) −1.86320 1.07572i −0.0741726 0.0428236i 0.462455 0.886643i \(-0.346969\pi\)
−0.536628 + 0.843819i \(0.680302\pi\)
\(632\) 0 0
\(633\) 3.34478 + 9.61674i 0.132943 + 0.382231i
\(634\) 0 0
\(635\) −0.765969 −0.0303966
\(636\) 0 0
\(637\) −12.7259 + 22.0418i −0.504217 + 0.873329i
\(638\) 0 0
\(639\) −3.86505 26.3133i −0.152899 1.04094i
\(640\) 0 0
\(641\) −4.30303 + 2.48436i −0.169959 + 0.0981261i −0.582567 0.812783i \(-0.697952\pi\)
0.412607 + 0.910909i \(0.364618\pi\)
\(642\) 0 0
\(643\) 4.56207 2.63391i 0.179910 0.103871i −0.407340 0.913277i \(-0.633544\pi\)
0.587251 + 0.809405i \(0.300210\pi\)
\(644\) 0 0
\(645\) 0.967862 + 0.836082i 0.0381095 + 0.0329207i
\(646\) 0 0
\(647\) 34.8017 1.36820 0.684099 0.729389i \(-0.260196\pi\)
0.684099 + 0.729389i \(0.260196\pi\)
\(648\) 0 0
\(649\) −19.2177 33.2860i −0.754359 1.30659i
\(650\) 0 0
\(651\) 1.25918 6.58716i 0.0493511 0.258171i
\(652\) 0 0
\(653\) 22.0175i 0.861612i 0.902445 + 0.430806i \(0.141771\pi\)
−0.902445 + 0.430806i \(0.858229\pi\)
\(654\) 0 0
\(655\) 2.68230 + 1.54863i 0.104806 + 0.0605099i
\(656\) 0 0
\(657\) −2.06825 14.0807i −0.0806900 0.549339i
\(658\) 0 0
\(659\) −23.1076 + 40.0236i −0.900145 + 1.55910i −0.0728403 + 0.997344i \(0.523206\pi\)
−0.827305 + 0.561753i \(0.810127\pi\)
\(660\) 0 0
\(661\) 16.7118 28.9456i 0.650013 1.12586i −0.333106 0.942889i \(-0.608097\pi\)
0.983119 0.182966i \(-0.0585698\pi\)
\(662\) 0 0
\(663\) −31.9435 6.10620i −1.24058 0.237145i
\(664\) 0 0
\(665\) −0.200766 + 0.703455i −0.00778539 + 0.0272788i
\(666\) 0 0
\(667\) −7.82894 + 4.52004i −0.303138 + 0.175017i
\(668\) 0 0
\(669\) −4.91670 14.1362i −0.190091 0.546539i
\(670\) 0 0
\(671\) 11.8331 20.4955i 0.456811 0.791219i
\(672\) 0 0
\(673\) 18.9639 0.731004 0.365502 0.930811i \(-0.380897\pi\)
0.365502 + 0.930811i \(0.380897\pi\)
\(674\) 0 0
\(675\) −11.9236 22.8717i −0.458940 0.880331i
\(676\) 0 0
\(677\) 36.3779i 1.39812i 0.715065 + 0.699058i \(0.246397\pi\)
−0.715065 + 0.699058i \(0.753603\pi\)
\(678\) 0 0
\(679\) −1.50211 + 0.867244i −0.0576457 + 0.0332818i
\(680\) 0 0
\(681\) 5.06045 26.4728i 0.193917 1.01444i
\(682\) 0 0
\(683\) 38.0643 1.45649 0.728245 0.685317i \(-0.240336\pi\)
0.728245 + 0.685317i \(0.240336\pi\)
\(684\) 0 0
\(685\) 1.49577 0.0571506
\(686\) 0 0
\(687\) −5.74309 + 30.0439i −0.219113 + 1.14625i
\(688\) 0 0
\(689\) 46.1754 26.6594i 1.75914 1.01564i
\(690\) 0 0
\(691\) 22.2914i 0.848007i 0.905661 + 0.424003i \(0.139375\pi\)
−0.905661 + 0.424003i \(0.860625\pi\)
\(692\) 0 0
\(693\) −3.79648 + 9.56742i −0.144216 + 0.363436i
\(694\) 0 0
\(695\) 3.11886 0.118305
\(696\) 0 0
\(697\) 4.34405 7.52411i 0.164542 0.284996i
\(698\) 0 0
\(699\) 0.644826 + 1.85397i 0.0243895 + 0.0701236i
\(700\) 0 0
\(701\) −18.0231 + 10.4056i −0.680722 + 0.393015i −0.800127 0.599831i \(-0.795235\pi\)
0.119405 + 0.992846i \(0.461901\pi\)
\(702\) 0 0
\(703\) −0.388204 0.400998i −0.0146414 0.0151239i
\(704\) 0 0
\(705\) 1.34074 + 0.256291i 0.0504952 + 0.00965248i
\(706\) 0 0
\(707\) −6.93356 + 12.0093i −0.260763 + 0.451655i
\(708\) 0 0
\(709\) 5.97375 10.3468i 0.224349 0.388584i −0.731775 0.681546i \(-0.761308\pi\)
0.956124 + 0.292963i \(0.0946412\pi\)
\(710\) 0 0
\(711\) −1.04823 + 0.153971i −0.0393119 + 0.00577435i
\(712\) 0 0
\(713\) −10.5900 6.11416i −0.396600 0.228977i
\(714\) 0 0
\(715\) 3.02072i 0.112968i
\(716\) 0 0
\(717\) 4.17913 21.8624i 0.156073 0.816465i
\(718\) 0 0
\(719\) 3.34780 + 5.79855i 0.124852 + 0.216250i 0.921675 0.387963i \(-0.126821\pi\)
−0.796823 + 0.604212i \(0.793488\pi\)
\(720\) 0 0
\(721\) 6.96389 0.259349
\(722\) 0 0
\(723\) −27.4305 23.6957i −1.02015 0.881251i
\(724\) 0 0
\(725\) 13.9327 8.04404i 0.517447 0.298748i
\(726\) 0 0
\(727\) 39.8338 22.9981i 1.47735 0.852951i 0.477681 0.878533i \(-0.341477\pi\)
0.999673 + 0.0255827i \(0.00814412\pi\)
\(728\) 0 0
\(729\) −11.4400 24.4566i −0.423702 0.905802i
\(730\) 0 0
\(731\) −8.91559 + 15.4423i −0.329755 + 0.571152i
\(732\) 0 0
\(733\) 44.7636 1.65338 0.826691 0.562656i \(-0.190220\pi\)
0.826691 + 0.562656i \(0.190220\pi\)
\(734\) 0 0
\(735\) 0.672514 + 1.93358i 0.0248060 + 0.0713211i
\(736\) 0 0
\(737\) 49.3838 + 28.5117i 1.81907 + 1.05024i
\(738\) 0 0
\(739\) −30.1266 + 17.3936i −1.10822 + 0.639834i −0.938369 0.345635i \(-0.887663\pi\)
−0.169855 + 0.985469i \(0.554330\pi\)
\(740\) 0 0
\(741\) −1.75107 30.8438i −0.0643271 1.13307i
\(742\) 0 0
\(743\) 20.4831 + 35.4779i 0.751454 + 1.30156i 0.947118 + 0.320885i \(0.103980\pi\)
−0.195664 + 0.980671i \(0.562686\pi\)
\(744\) 0 0
\(745\) −1.96223 + 3.39868i −0.0718906 + 0.124518i
\(746\) 0 0
\(747\) −2.79101 1.10751i −0.102118 0.0405216i
\(748\) 0 0
\(749\) 6.86209i 0.250735i
\(750\) 0 0
\(751\) −27.5382 15.8992i −1.00488 0.580169i −0.0951932 0.995459i \(-0.530347\pi\)
−0.909689 + 0.415290i \(0.863680\pi\)
\(752\) 0 0
\(753\) 13.6198 + 11.7654i 0.496335 + 0.428756i
\(754\) 0 0
\(755\) 0.787458 + 1.36392i 0.0286585 + 0.0496380i
\(756\) 0 0
\(757\) 16.3579 + 28.3327i 0.594537 + 1.02977i 0.993612 + 0.112850i \(0.0359980\pi\)
−0.399075 + 0.916918i \(0.630669\pi\)
\(758\) 0 0
\(759\) 14.2028 + 12.2690i 0.515528 + 0.445336i
\(760\) 0 0
\(761\) 3.68720i 0.133661i 0.997764 + 0.0668305i \(0.0212887\pi\)
−0.997764 + 0.0668305i \(0.978711\pi\)
\(762\) 0 0
\(763\) 10.8211 6.24758i 0.391751 0.226178i
\(764\) 0 0
\(765\) −2.05129 + 1.62328i −0.0741644 + 0.0586896i
\(766\) 0 0
\(767\) −40.4843 −1.46180
\(768\) 0 0
\(769\) 16.7397 28.9940i 0.603649 1.04555i −0.388615 0.921400i \(-0.627046\pi\)
0.992263 0.124150i \(-0.0396203\pi\)
\(770\) 0 0
\(771\) −7.84455 + 9.08097i −0.282514 + 0.327043i
\(772\) 0 0
\(773\) 18.1936 + 10.5041i 0.654377 + 0.377805i 0.790131 0.612938i \(-0.210012\pi\)
−0.135754 + 0.990743i \(0.543346\pi\)
\(774\) 0 0
\(775\) 18.8464 + 10.8810i 0.676984 + 0.390857i
\(776\) 0 0
\(777\) 0.192387 + 0.0367760i 0.00690183 + 0.00131933i
\(778\) 0 0
\(779\) 7.93617 + 2.26499i 0.284343 + 0.0811516i
\(780\) 0 0
\(781\) −17.2200 29.8259i −0.616179 1.06725i
\(782\) 0 0
\(783\) 14.9334 7.78517i 0.533675 0.278219i
\(784\) 0 0
\(785\) 2.12747 + 1.22830i 0.0759328 + 0.0438398i
\(786\) 0 0
\(787\) 4.64212i 0.165474i 0.996571 + 0.0827369i \(0.0263661\pi\)
−0.996571 + 0.0827369i \(0.973634\pi\)
\(788\) 0 0
\(789\) 40.7829 14.1846i 1.45191 0.504986i
\(790\) 0 0
\(791\) −14.7063 −0.522894
\(792\) 0 0
\(793\) −12.4639 21.5881i −0.442606 0.766616i
\(794\) 0 0
\(795\) 0.805226 4.21239i 0.0285584 0.149398i
\(796\) 0 0
\(797\) 17.8020i 0.630581i −0.948995 0.315290i \(-0.897898\pi\)
0.948995 0.315290i \(-0.102102\pi\)
\(798\) 0 0
\(799\) 19.0307i 0.673256i
\(800\) 0 0
\(801\) 1.06127 + 1.34110i 0.0374983 + 0.0473854i
\(802\) 0 0
\(803\) −9.21466 15.9603i −0.325178 0.563225i
\(804\) 0 0
\(805\) −0.468117 −0.0164989
\(806\) 0 0
\(807\) −14.7905 42.5248i −0.520649 1.49694i
\(808\) 0 0
\(809\) 19.4705i 0.684545i −0.939601 0.342273i \(-0.888803\pi\)
0.939601 0.342273i \(-0.111197\pi\)
\(810\) 0 0
\(811\) 30.4997 + 17.6090i 1.07099 + 0.618336i 0.928452 0.371453i \(-0.121140\pi\)
0.142538 + 0.989789i \(0.454474\pi\)
\(812\) 0 0
\(813\) −3.29858 9.48392i −0.115686 0.332615i
\(814\) 0 0
\(815\) −0.111463 0.193060i −0.00390438 0.00676258i
\(816\) 0 0
\(817\) −16.2880 4.64859i −0.569844 0.162634i
\(818\) 0 0
\(819\) 6.72790 + 8.50185i 0.235092 + 0.297079i
\(820\) 0 0
\(821\) 42.5458 + 24.5638i 1.48486 + 0.857283i 0.999852 0.0172271i \(-0.00548381\pi\)
0.485007 + 0.874510i \(0.338817\pi\)
\(822\) 0 0
\(823\) −38.9007 22.4593i −1.35599 0.782883i −0.366912 0.930256i \(-0.619585\pi\)
−0.989081 + 0.147373i \(0.952918\pi\)
\(824\) 0 0
\(825\) −25.2758 21.8344i −0.879990 0.760175i
\(826\) 0 0
\(827\) 26.0724 45.1588i 0.906627 1.57032i 0.0879094 0.996128i \(-0.471981\pi\)
0.818718 0.574196i \(-0.194685\pi\)
\(828\) 0 0
\(829\) −33.3316 −1.15766 −0.578828 0.815450i \(-0.696490\pi\)
−0.578828 + 0.815450i \(0.696490\pi\)
\(830\) 0 0
\(831\) 3.60715 18.8701i 0.125131 0.654597i
\(832\) 0 0
\(833\) −24.7175 + 14.2707i −0.856412 + 0.494450i
\(834\) 0 0
\(835\) 3.16627i 0.109573i
\(836\) 0 0
\(837\) 19.2200 + 12.2283i 0.664340 + 0.422673i
\(838\) 0 0
\(839\) −21.9144 37.9568i −0.756568 1.31041i −0.944591 0.328250i \(-0.893541\pi\)
0.188023 0.982165i \(-0.439792\pi\)
\(840\) 0 0
\(841\) −9.24789 16.0178i −0.318893 0.552338i
\(842\) 0 0
\(843\) −11.0366 + 12.7761i −0.380120 + 0.440033i
\(844\) 0 0
\(845\) 0.616121 + 0.355718i 0.0211952 + 0.0122371i
\(846\) 0 0
\(847\) 3.61395i 0.124177i
\(848\) 0 0
\(849\) 17.1522 + 49.3151i 0.588661 + 1.69249i
\(850\) 0 0
\(851\) 0.178572 0.309296i 0.00612138 0.0106025i
\(852\) 0 0
\(853\) −1.88413 3.26340i −0.0645113 0.111737i 0.831966 0.554827i \(-0.187216\pi\)
−0.896477 + 0.443090i \(0.853882\pi\)
\(854\) 0 0
\(855\) −1.96948 1.51520i −0.0673547 0.0518188i
\(856\) 0 0
\(857\) 23.9869 13.8488i 0.819376 0.473067i −0.0308250 0.999525i \(-0.509813\pi\)
0.850201 + 0.526458i \(0.176480\pi\)
\(858\) 0 0
\(859\) −10.8759 6.27918i −0.371080 0.214243i 0.302850 0.953038i \(-0.402062\pi\)
−0.673930 + 0.738795i \(0.735395\pi\)
\(860\) 0 0
\(861\) −2.73562 + 0.951471i −0.0932297 + 0.0324261i
\(862\) 0 0
\(863\) −49.9994 −1.70200 −0.850999 0.525167i \(-0.824003\pi\)
−0.850999 + 0.525167i \(0.824003\pi\)
\(864\) 0 0
\(865\) −1.72817 + 2.99328i −0.0587596 + 0.101775i
\(866\) 0 0
\(867\) −5.31605 4.59224i −0.180543 0.155961i
\(868\) 0 0
\(869\) −1.18816 + 0.685986i −0.0403056 + 0.0232705i
\(870\) 0 0
\(871\) 52.0164 30.0317i 1.76251 1.01758i
\(872\) 0 0
\(873\) −0.856215 5.82912i −0.0289785 0.197286i
\(874\) 0 0
\(875\) 1.67222 0.0565312
\(876\) 0 0
\(877\) −21.7758 37.7168i −0.735316 1.27361i −0.954584 0.297941i \(-0.903700\pi\)
0.219268 0.975665i \(-0.429633\pi\)
\(878\) 0 0
\(879\) 16.9060 + 3.23170i 0.570226 + 0.109002i
\(880\) 0 0
\(881\) 34.8820i 1.17521i −0.809149 0.587603i \(-0.800072\pi\)
0.809149 0.587603i \(-0.199928\pi\)
\(882\) 0 0
\(883\) −11.1546 6.44011i −0.375382 0.216727i 0.300425 0.953805i \(-0.402871\pi\)
−0.675807 + 0.737079i \(0.736205\pi\)
\(884\) 0 0
\(885\) −2.12869 + 2.46421i −0.0715553 + 0.0828335i
\(886\) 0 0
\(887\) −7.89788 + 13.6795i −0.265185 + 0.459314i −0.967612 0.252442i \(-0.918766\pi\)
0.702427 + 0.711756i \(0.252100\pi\)
\(888\) 0 0
\(889\) −1.78002 + 3.08309i −0.0597001 + 0.103404i
\(890\) 0 0
\(891\) −25.4507 23.9731i −0.852629 0.803130i
\(892\) 0 0
\(893\) −17.5353 + 4.39521i −0.586797 + 0.147080i
\(894\) 0 0
\(895\) −0.137096 + 0.0791526i −0.00458262 + 0.00264578i
\(896\) 0 0
\(897\) 18.6716 6.49415i 0.623428 0.216833i
\(898\) 0 0
\(899\) −7.10442 + 12.3052i −0.236946 + 0.410402i
\(900\) 0 0
\(901\) 59.7913 1.99194
\(902\) 0 0
\(903\) 5.61451 1.95277i 0.186839 0.0649842i
\(904\) 0 0
\(905\) 1.92832i 0.0640996i
\(906\) 0 0
\(907\) 33.8957 19.5697i 1.12549 0.649800i 0.182691 0.983170i \(-0.441519\pi\)
0.942796 + 0.333370i \(0.108186\pi\)
\(908\) 0 0
\(909\) −29.2300 36.9371i −0.969498 1.22513i
\(910\) 0 0
\(911\) 49.1938 1.62986 0.814932 0.579556i \(-0.196774\pi\)
0.814932 + 0.579556i \(0.196774\pi\)
\(912\) 0 0
\(913\) −3.88835 −0.128686
\(914\) 0 0
\(915\) −1.96939 0.376462i −0.0651060 0.0124455i
\(916\) 0 0
\(917\) 12.4667 7.19767i 0.411687 0.237688i
\(918\) 0 0
\(919\) 44.1810i 1.45740i 0.684835 + 0.728698i \(0.259874\pi\)
−0.684835 + 0.728698i \(0.740126\pi\)
\(920\) 0 0
\(921\) 13.8615 + 39.8539i 0.456752 + 1.31323i
\(922\) 0 0
\(923\) −36.2759 −1.19404
\(924\) 0 0
\(925\) −0.317794 + 0.550435i −0.0104490 + 0.0180982i
\(926\) 0 0
\(927\) −8.72473 + 21.9870i −0.286558 + 0.722148i
\(928\) 0 0
\(929\) 50.5147 29.1647i 1.65733 0.956861i 0.683393 0.730050i \(-0.260503\pi\)
0.973939 0.226811i \(-0.0728299\pi\)
\(930\) 0 0
\(931\) −18.8580 19.4795i −0.618045 0.638414i
\(932\) 0 0
\(933\) −7.86706 + 41.1551i −0.257556 + 1.34736i
\(934\) 0 0
\(935\) −1.69371 + 2.93358i −0.0553901 + 0.0959385i
\(936\) 0 0
\(937\) −8.26594 + 14.3170i −0.270037 + 0.467717i −0.968871 0.247567i \(-0.920369\pi\)
0.698834 + 0.715284i \(0.253702\pi\)
\(938\) 0 0
\(939\) −0.0473292 0.0408850i −0.00154453 0.00133423i
\(940\) 0 0
\(941\) 52.1695 + 30.1201i 1.70068 + 0.981886i 0.945074 + 0.326857i \(0.105990\pi\)
0.755604 + 0.655029i \(0.227344\pi\)
\(942\) 0 0
\(943\) 5.28115i 0.171978i
\(944\) 0 0
\(945\) 0.871251 + 0.0375177i 0.0283418 + 0.00122045i
\(946\) 0 0
\(947\) 4.95759 + 8.58679i 0.161100 + 0.279033i 0.935263 0.353952i \(-0.115163\pi\)
−0.774163 + 0.632986i \(0.781829\pi\)
\(948\) 0 0
\(949\) −19.4118 −0.630133
\(950\) 0 0
\(951\) −25.1447 + 29.1079i −0.815373 + 0.943888i
\(952\) 0 0
\(953\) −38.3422 + 22.1369i −1.24202 + 0.717083i −0.969506 0.245067i \(-0.921190\pi\)
−0.272519 + 0.962150i \(0.587857\pi\)
\(954\) 0 0
\(955\) 3.39243 1.95862i 0.109776 0.0633794i
\(956\) 0 0
\(957\) 14.2561 16.5031i 0.460834 0.533468i
\(958\) 0 0
\(959\) 3.47601 6.02062i 0.112246 0.194416i
\(960\) 0 0
\(961\) 11.7800 0.380001
\(962\) 0 0
\(963\) 21.6656 + 8.59719i 0.698164 + 0.277041i
\(964\) 0 0
\(965\) 0.0270137 + 0.0155964i 0.000869603 + 0.000502066i
\(966\) 0 0
\(967\) 9.17788 5.29885i 0.295141 0.170400i −0.345117 0.938560i \(-0.612161\pi\)
0.640258 + 0.768160i \(0.278827\pi\)
\(968\) 0 0
\(969\) 15.5934 30.9359i 0.500933 0.993803i
\(970\) 0 0
\(971\) −20.0666 34.7564i −0.643968 1.11539i −0.984539 0.175167i \(-0.943954\pi\)
0.340571 0.940219i \(-0.389380\pi\)
\(972\) 0 0
\(973\) 7.24789 12.5537i 0.232357 0.402453i
\(974\) 0 0
\(975\) −33.2288 + 11.5572i −1.06417 + 0.370128i
\(976\) 0 0
\(977\) 5.89450i 0.188582i 0.995545 + 0.0942909i \(0.0300584\pi\)
−0.995545 + 0.0942909i \(0.969942\pi\)
\(978\) 0 0
\(979\) 1.91793 + 1.10732i 0.0612974 + 0.0353901i
\(980\) 0 0
\(981\) 6.16812 + 41.9927i 0.196933 + 1.34072i
\(982\) 0 0
\(983\) −12.2862 21.2803i −0.391869 0.678737i 0.600827 0.799379i \(-0.294838\pi\)
−0.992696 + 0.120642i \(0.961505\pi\)
\(984\) 0 0
\(985\) −1.56568 2.71184i −0.0498867 0.0864064i
\(986\) 0 0
\(987\) 4.14732 4.80100i 0.132011 0.152818i
\(988\) 0 0
\(989\) 10.8389i 0.344656i
\(990\) 0 0
\(991\) −24.3959 + 14.0850i −0.774960 + 0.447423i −0.834641 0.550794i \(-0.814325\pi\)
0.0596810 + 0.998217i \(0.480992\pi\)
\(992\) 0 0
\(993\) 17.6751 + 3.37872i 0.560904 + 0.107220i
\(994\) 0 0
\(995\) 2.98465 0.0946197
\(996\) 0 0
\(997\) 25.3917 43.9797i 0.804162 1.39285i −0.112693 0.993630i \(-0.535948\pi\)
0.916855 0.399220i \(-0.130719\pi\)
\(998\) 0 0
\(999\) −0.357144 + 0.561345i −0.0112995 + 0.0177602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bh.f.767.7 yes 24
3.2 odd 2 inner 912.2.bh.f.767.12 yes 24
4.3 odd 2 inner 912.2.bh.f.767.6 yes 24
12.11 even 2 inner 912.2.bh.f.767.1 yes 24
19.11 even 3 inner 912.2.bh.f.239.1 24
57.11 odd 6 inner 912.2.bh.f.239.6 yes 24
76.11 odd 6 inner 912.2.bh.f.239.12 yes 24
228.11 even 6 inner 912.2.bh.f.239.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
912.2.bh.f.239.1 24 19.11 even 3 inner
912.2.bh.f.239.6 yes 24 57.11 odd 6 inner
912.2.bh.f.239.7 yes 24 228.11 even 6 inner
912.2.bh.f.239.12 yes 24 76.11 odd 6 inner
912.2.bh.f.767.1 yes 24 12.11 even 2 inner
912.2.bh.f.767.6 yes 24 4.3 odd 2 inner
912.2.bh.f.767.7 yes 24 1.1 even 1 trivial
912.2.bh.f.767.12 yes 24 3.2 odd 2 inner