Properties

Label 912.2.bo.i.481.1
Level $912$
Weight $2$
Character 912.481
Analytic conductor $7.282$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(289,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 15 x^{10} + 130 x^{9} + 117 x^{8} - 1314 x^{7} - 740 x^{6} + 7431 x^{5} + \cdots + 30837 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 481.1
Root \(2.32042 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 912.481
Dual form 912.2.bo.i.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 + 0.342020i) q^{3} +(-0.0661133 - 0.374947i) q^{5} +(0.673648 - 1.16679i) q^{7} +(0.766044 + 0.642788i) q^{9} +(-1.23135 - 2.13276i) q^{11} +(3.73590 - 1.35976i) q^{13} +(0.0661133 - 0.374947i) q^{15} +(1.73135 - 1.45278i) q^{17} +(-3.60449 - 2.45105i) q^{19} +(1.03209 - 0.866025i) q^{21} +(-0.237593 + 1.34746i) q^{23} +(4.56225 - 1.66052i) q^{25} +(0.500000 + 0.866025i) q^{27} +(0.974387 + 0.817608i) q^{29} +(0.442298 - 0.766083i) q^{31} +(-0.427643 - 2.42529i) q^{33} +(-0.482023 - 0.175442i) q^{35} +9.03850 q^{37} +3.97566 q^{39} +(-4.78893 - 1.74303i) q^{41} +(-0.801223 - 4.54396i) q^{43} +(0.190366 - 0.329723i) q^{45} +(0.344142 + 0.288770i) q^{47} +(2.59240 + 4.49016i) q^{49} +(2.12382 - 0.773005i) q^{51} +(0.438071 - 2.48443i) q^{53} +(-0.718264 + 0.602695i) q^{55} +(-2.54881 - 3.53604i) q^{57} +(2.90816 - 2.44023i) q^{59} +(-1.02048 + 5.78741i) q^{61} +(1.26604 - 0.460802i) q^{63} +(-0.756829 - 1.31087i) q^{65} +(-3.72427 - 3.12503i) q^{67} +(-0.684123 + 1.18493i) q^{69} +(2.28478 + 12.9576i) q^{71} +(-5.59774 - 2.03741i) q^{73} +4.85504 q^{75} -3.31799 q^{77} +(9.95937 + 3.62491i) q^{79} +(0.173648 + 0.984808i) q^{81} +(3.62587 - 6.28020i) q^{83} +(-0.659180 - 0.553117i) q^{85} +(0.635986 + 1.10156i) q^{87} +(-10.4353 + 3.79813i) q^{89} +(0.930127 - 5.27501i) q^{91} +(0.677640 - 0.568608i) q^{93} +(-0.680709 + 1.51354i) q^{95} +(7.12527 - 5.97881i) q^{97} +(0.427643 - 2.42529i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{5} + 6 q^{7} + 3 q^{11} - 3 q^{13} - 3 q^{15} + 3 q^{17} - 6 q^{21} + 12 q^{23} + 9 q^{25} + 6 q^{27} + 9 q^{29} + 21 q^{31} - 6 q^{33} + 6 q^{35} + 30 q^{37} - 6 q^{39} + 15 q^{41} - 3 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.939693 + 0.342020i 0.542532 + 0.197465i
\(4\) 0 0
\(5\) −0.0661133 0.374947i −0.0295668 0.167682i 0.966449 0.256859i \(-0.0826874\pi\)
−0.996016 + 0.0891770i \(0.971576\pi\)
\(6\) 0 0
\(7\) 0.673648 1.16679i 0.254615 0.441006i −0.710176 0.704024i \(-0.751385\pi\)
0.964791 + 0.263018i \(0.0847179\pi\)
\(8\) 0 0
\(9\) 0.766044 + 0.642788i 0.255348 + 0.214263i
\(10\) 0 0
\(11\) −1.23135 2.13276i −0.371266 0.643052i 0.618495 0.785789i \(-0.287743\pi\)
−0.989761 + 0.142738i \(0.954410\pi\)
\(12\) 0 0
\(13\) 3.73590 1.35976i 1.03615 0.377128i 0.232731 0.972541i \(-0.425234\pi\)
0.803420 + 0.595413i \(0.203011\pi\)
\(14\) 0 0
\(15\) 0.0661133 0.374947i 0.0170704 0.0968110i
\(16\) 0 0
\(17\) 1.73135 1.45278i 0.419914 0.352350i −0.408216 0.912885i \(-0.633849\pi\)
0.828130 + 0.560535i \(0.189405\pi\)
\(18\) 0 0
\(19\) −3.60449 2.45105i −0.826927 0.562309i
\(20\) 0 0
\(21\) 1.03209 0.866025i 0.225220 0.188982i
\(22\) 0 0
\(23\) −0.237593 + 1.34746i −0.0495416 + 0.280964i −0.999507 0.0313901i \(-0.990007\pi\)
0.949966 + 0.312355i \(0.101118\pi\)
\(24\) 0 0
\(25\) 4.56225 1.66052i 0.912450 0.332105i
\(26\) 0 0
\(27\) 0.500000 + 0.866025i 0.0962250 + 0.166667i
\(28\) 0 0
\(29\) 0.974387 + 0.817608i 0.180939 + 0.151826i 0.728759 0.684770i \(-0.240098\pi\)
−0.547820 + 0.836596i \(0.684542\pi\)
\(30\) 0 0
\(31\) 0.442298 0.766083i 0.0794391 0.137593i −0.823569 0.567216i \(-0.808020\pi\)
0.903008 + 0.429624i \(0.141354\pi\)
\(32\) 0 0
\(33\) −0.427643 2.42529i −0.0744432 0.422188i
\(34\) 0 0
\(35\) −0.482023 0.175442i −0.0814768 0.0296551i
\(36\) 0 0
\(37\) 9.03850 1.48592 0.742960 0.669336i \(-0.233421\pi\)
0.742960 + 0.669336i \(0.233421\pi\)
\(38\) 0 0
\(39\) 3.97566 0.636615
\(40\) 0 0
\(41\) −4.78893 1.74303i −0.747905 0.272215i −0.0601812 0.998187i \(-0.519168\pi\)
−0.687724 + 0.725972i \(0.741390\pi\)
\(42\) 0 0
\(43\) −0.801223 4.54396i −0.122185 0.692947i −0.982940 0.183927i \(-0.941119\pi\)
0.860755 0.509020i \(-0.169992\pi\)
\(44\) 0 0
\(45\) 0.190366 0.329723i 0.0283781 0.0491522i
\(46\) 0 0
\(47\) 0.344142 + 0.288770i 0.0501983 + 0.0421214i 0.667542 0.744572i \(-0.267347\pi\)
−0.617343 + 0.786694i \(0.711791\pi\)
\(48\) 0 0
\(49\) 2.59240 + 4.49016i 0.370342 + 0.641452i
\(50\) 0 0
\(51\) 2.12382 0.773005i 0.297394 0.108242i
\(52\) 0 0
\(53\) 0.438071 2.48443i 0.0601737 0.341262i −0.939826 0.341653i \(-0.889013\pi\)
1.00000 0.000390770i \(0.000124386\pi\)
\(54\) 0 0
\(55\) −0.718264 + 0.602695i −0.0968508 + 0.0812674i
\(56\) 0 0
\(57\) −2.54881 3.53604i −0.337598 0.468360i
\(58\) 0 0
\(59\) 2.90816 2.44023i 0.378610 0.317691i −0.433546 0.901131i \(-0.642738\pi\)
0.812156 + 0.583440i \(0.198294\pi\)
\(60\) 0 0
\(61\) −1.02048 + 5.78741i −0.130659 + 0.741002i 0.847126 + 0.531392i \(0.178331\pi\)
−0.977785 + 0.209611i \(0.932780\pi\)
\(62\) 0 0
\(63\) 1.26604 0.460802i 0.159507 0.0580557i
\(64\) 0 0
\(65\) −0.756829 1.31087i −0.0938731 0.162593i
\(66\) 0 0
\(67\) −3.72427 3.12503i −0.454992 0.381783i 0.386293 0.922376i \(-0.373756\pi\)
−0.841284 + 0.540593i \(0.818200\pi\)
\(68\) 0 0
\(69\) −0.684123 + 1.18493i −0.0823587 + 0.142649i
\(70\) 0 0
\(71\) 2.28478 + 12.9576i 0.271153 + 1.53779i 0.750921 + 0.660392i \(0.229610\pi\)
−0.479768 + 0.877395i \(0.659279\pi\)
\(72\) 0 0
\(73\) −5.59774 2.03741i −0.655166 0.238461i −0.00701818 0.999975i \(-0.502234\pi\)
−0.648148 + 0.761514i \(0.724456\pi\)
\(74\) 0 0
\(75\) 4.85504 0.560612
\(76\) 0 0
\(77\) −3.31799 −0.378120
\(78\) 0 0
\(79\) 9.95937 + 3.62491i 1.12052 + 0.407835i 0.834841 0.550491i \(-0.185560\pi\)
0.285676 + 0.958326i \(0.407782\pi\)
\(80\) 0 0
\(81\) 0.173648 + 0.984808i 0.0192942 + 0.109423i
\(82\) 0 0
\(83\) 3.62587 6.28020i 0.397991 0.689341i −0.595487 0.803365i \(-0.703041\pi\)
0.993478 + 0.114024i \(0.0363741\pi\)
\(84\) 0 0
\(85\) −0.659180 0.553117i −0.0714981 0.0599940i
\(86\) 0 0
\(87\) 0.635986 + 1.10156i 0.0681849 + 0.118100i
\(88\) 0 0
\(89\) −10.4353 + 3.79813i −1.10614 + 0.402601i −0.829575 0.558396i \(-0.811417\pi\)
−0.276561 + 0.960996i \(0.589195\pi\)
\(90\) 0 0
\(91\) 0.930127 5.27501i 0.0975038 0.552972i
\(92\) 0 0
\(93\) 0.677640 0.568608i 0.0702680 0.0589619i
\(94\) 0 0
\(95\) −0.680709 + 1.51354i −0.0698393 + 0.155286i
\(96\) 0 0
\(97\) 7.12527 5.97881i 0.723461 0.607056i −0.204879 0.978787i \(-0.565680\pi\)
0.928340 + 0.371731i \(0.121236\pi\)
\(98\) 0 0
\(99\) 0.427643 2.42529i 0.0429798 0.243750i
\(100\) 0 0
\(101\) −11.6373 + 4.23563i −1.15795 + 0.421461i −0.848366 0.529410i \(-0.822413\pi\)
−0.309588 + 0.950871i \(0.600191\pi\)
\(102\) 0 0
\(103\) 3.39398 + 5.87855i 0.334419 + 0.579230i 0.983373 0.181597i \(-0.0581266\pi\)
−0.648954 + 0.760828i \(0.724793\pi\)
\(104\) 0 0
\(105\) −0.392949 0.329723i −0.0383479 0.0321777i
\(106\) 0 0
\(107\) −0.184001 + 0.318699i −0.0177880 + 0.0308098i −0.874782 0.484516i \(-0.838996\pi\)
0.856994 + 0.515326i \(0.172329\pi\)
\(108\) 0 0
\(109\) −0.0992026 0.562606i −0.00950189 0.0538879i 0.979688 0.200527i \(-0.0642655\pi\)
−0.989190 + 0.146639i \(0.953154\pi\)
\(110\) 0 0
\(111\) 8.49341 + 3.09135i 0.806159 + 0.293418i
\(112\) 0 0
\(113\) −3.32312 −0.312612 −0.156306 0.987709i \(-0.549959\pi\)
−0.156306 + 0.987709i \(0.549959\pi\)
\(114\) 0 0
\(115\) 0.520934 0.0485774
\(116\) 0 0
\(117\) 3.73590 + 1.35976i 0.345384 + 0.125709i
\(118\) 0 0
\(119\) −0.528767 2.99879i −0.0484720 0.274898i
\(120\) 0 0
\(121\) 2.46755 4.27393i 0.224323 0.388539i
\(122\) 0 0
\(123\) −3.90397 3.27582i −0.352009 0.295371i
\(124\) 0 0
\(125\) −1.87606 3.24944i −0.167800 0.290638i
\(126\) 0 0
\(127\) −2.31112 + 0.841180i −0.205079 + 0.0746426i −0.442517 0.896760i \(-0.645914\pi\)
0.237438 + 0.971403i \(0.423692\pi\)
\(128\) 0 0
\(129\) 0.801223 4.54396i 0.0705437 0.400073i
\(130\) 0 0
\(131\) −13.9866 + 11.7361i −1.22201 + 1.02539i −0.223294 + 0.974751i \(0.571681\pi\)
−0.998717 + 0.0506382i \(0.983874\pi\)
\(132\) 0 0
\(133\) −5.28803 + 2.55455i −0.458530 + 0.221508i
\(134\) 0 0
\(135\) 0.291657 0.244730i 0.0251019 0.0210630i
\(136\) 0 0
\(137\) −3.06140 + 17.3621i −0.261553 + 1.48334i 0.517120 + 0.855913i \(0.327004\pi\)
−0.778673 + 0.627430i \(0.784107\pi\)
\(138\) 0 0
\(139\) 7.96146 2.89773i 0.675282 0.245783i 0.0184617 0.999830i \(-0.494123\pi\)
0.656821 + 0.754047i \(0.271901\pi\)
\(140\) 0 0
\(141\) 0.224623 + 0.389058i 0.0189167 + 0.0327646i
\(142\) 0 0
\(143\) −7.50023 6.29344i −0.627201 0.526284i
\(144\) 0 0
\(145\) 0.242140 0.419399i 0.0201086 0.0348292i
\(146\) 0 0
\(147\) 0.900330 + 5.10602i 0.0742579 + 0.421138i
\(148\) 0 0
\(149\) −16.5658 6.02947i −1.35713 0.493953i −0.441962 0.897034i \(-0.645717\pi\)
−0.915165 + 0.403081i \(0.867939\pi\)
\(150\) 0 0
\(151\) −9.81134 −0.798435 −0.399218 0.916856i \(-0.630718\pi\)
−0.399218 + 0.916856i \(0.630718\pi\)
\(152\) 0 0
\(153\) 2.26012 0.182720
\(154\) 0 0
\(155\) −0.316483 0.115190i −0.0254205 0.00925231i
\(156\) 0 0
\(157\) 1.38929 + 7.87908i 0.110878 + 0.628819i 0.988709 + 0.149849i \(0.0478787\pi\)
−0.877831 + 0.478970i \(0.841010\pi\)
\(158\) 0 0
\(159\) 1.26138 2.18477i 0.100034 0.173263i
\(160\) 0 0
\(161\) 1.41215 + 1.18493i 0.111293 + 0.0933860i
\(162\) 0 0
\(163\) −1.38764 2.40347i −0.108689 0.188254i 0.806551 0.591165i \(-0.201332\pi\)
−0.915239 + 0.402911i \(0.867999\pi\)
\(164\) 0 0
\(165\) −0.881082 + 0.320688i −0.0685921 + 0.0249655i
\(166\) 0 0
\(167\) −3.19458 + 18.1174i −0.247204 + 1.40196i 0.568113 + 0.822950i \(0.307674\pi\)
−0.815317 + 0.579014i \(0.803438\pi\)
\(168\) 0 0
\(169\) 2.14941 1.80357i 0.165339 0.138736i
\(170\) 0 0
\(171\) −1.18570 4.19453i −0.0906726 0.320764i
\(172\) 0 0
\(173\) 13.0602 10.9588i 0.992951 0.833185i 0.00695872 0.999976i \(-0.497785\pi\)
0.985992 + 0.166791i \(0.0533405\pi\)
\(174\) 0 0
\(175\) 1.13586 6.44181i 0.0858633 0.486955i
\(176\) 0 0
\(177\) 3.56738 1.29842i 0.268141 0.0975954i
\(178\) 0 0
\(179\) −9.68946 16.7826i −0.724224 1.25439i −0.959292 0.282415i \(-0.908865\pi\)
0.235068 0.971979i \(-0.424469\pi\)
\(180\) 0 0
\(181\) 5.50714 + 4.62104i 0.409342 + 0.343479i 0.824091 0.566457i \(-0.191686\pi\)
−0.414749 + 0.909936i \(0.636131\pi\)
\(182\) 0 0
\(183\) −2.93835 + 5.08937i −0.217209 + 0.376217i
\(184\) 0 0
\(185\) −0.597565 3.38896i −0.0439339 0.249161i
\(186\) 0 0
\(187\) −5.23032 1.90368i −0.382479 0.139211i
\(188\) 0 0
\(189\) 1.34730 0.0980014
\(190\) 0 0
\(191\) −3.70961 −0.268418 −0.134209 0.990953i \(-0.542849\pi\)
−0.134209 + 0.990953i \(0.542849\pi\)
\(192\) 0 0
\(193\) −5.36246 1.95178i −0.385998 0.140492i 0.141730 0.989905i \(-0.454734\pi\)
−0.527728 + 0.849414i \(0.676956\pi\)
\(194\) 0 0
\(195\) −0.262844 1.49066i −0.0188227 0.106749i
\(196\) 0 0
\(197\) 1.26059 2.18341i 0.0898135 0.155562i −0.817619 0.575760i \(-0.804706\pi\)
0.907432 + 0.420199i \(0.138040\pi\)
\(198\) 0 0
\(199\) 15.1511 + 12.7133i 1.07403 + 0.901222i 0.995412 0.0956826i \(-0.0305034\pi\)
0.0786225 + 0.996904i \(0.474948\pi\)
\(200\) 0 0
\(201\) −2.43084 4.21034i −0.171458 0.296975i
\(202\) 0 0
\(203\) 1.61037 0.586128i 0.113026 0.0411381i
\(204\) 0 0
\(205\) −0.336932 + 1.91083i −0.0235323 + 0.133458i
\(206\) 0 0
\(207\) −1.04814 + 0.879491i −0.0728505 + 0.0611288i
\(208\) 0 0
\(209\) −0.789109 + 10.7056i −0.0545838 + 0.740523i
\(210\) 0 0
\(211\) −8.03996 + 6.74633i −0.553494 + 0.464437i −0.876122 0.482089i \(-0.839878\pi\)
0.322628 + 0.946526i \(0.395434\pi\)
\(212\) 0 0
\(213\) −2.28478 + 12.9576i −0.156550 + 0.887842i
\(214\) 0 0
\(215\) −1.65077 + 0.600833i −0.112582 + 0.0409765i
\(216\) 0 0
\(217\) −0.595907 1.03214i −0.0404528 0.0700663i
\(218\) 0 0
\(219\) −4.56332 3.82908i −0.308361 0.258745i
\(220\) 0 0
\(221\) 4.49273 7.78163i 0.302213 0.523449i
\(222\) 0 0
\(223\) 3.34341 + 18.9614i 0.223891 + 1.26975i 0.864793 + 0.502128i \(0.167450\pi\)
−0.640902 + 0.767623i \(0.721439\pi\)
\(224\) 0 0
\(225\) 4.56225 + 1.66052i 0.304150 + 0.110702i
\(226\) 0 0
\(227\) −26.5078 −1.75938 −0.879691 0.475546i \(-0.842251\pi\)
−0.879691 + 0.475546i \(0.842251\pi\)
\(228\) 0 0
\(229\) −27.8314 −1.83915 −0.919575 0.392915i \(-0.871467\pi\)
−0.919575 + 0.392915i \(0.871467\pi\)
\(230\) 0 0
\(231\) −3.11789 1.13482i −0.205142 0.0746656i
\(232\) 0 0
\(233\) 4.54912 + 25.7994i 0.298023 + 1.69017i 0.654655 + 0.755928i \(0.272814\pi\)
−0.356632 + 0.934245i \(0.616075\pi\)
\(234\) 0 0
\(235\) 0.0855211 0.148127i 0.00557878 0.00966273i
\(236\) 0 0
\(237\) 8.11895 + 6.81261i 0.527383 + 0.442527i
\(238\) 0 0
\(239\) 8.24111 + 14.2740i 0.533073 + 0.923309i 0.999254 + 0.0386200i \(0.0122962\pi\)
−0.466181 + 0.884689i \(0.654370\pi\)
\(240\) 0 0
\(241\) −0.632703 + 0.230285i −0.0407560 + 0.0148340i −0.362318 0.932055i \(-0.618014\pi\)
0.321562 + 0.946889i \(0.395792\pi\)
\(242\) 0 0
\(243\) −0.173648 + 0.984808i −0.0111395 + 0.0631754i
\(244\) 0 0
\(245\) 1.51218 1.26887i 0.0966098 0.0810653i
\(246\) 0 0
\(247\) −16.7988 4.25564i −1.06888 0.270780i
\(248\) 0 0
\(249\) 5.55516 4.66133i 0.352044 0.295400i
\(250\) 0 0
\(251\) 1.46953 8.33412i 0.0927559 0.526045i −0.902656 0.430363i \(-0.858386\pi\)
0.995412 0.0956822i \(-0.0305033\pi\)
\(252\) 0 0
\(253\) 3.16637 1.15246i 0.199068 0.0724547i
\(254\) 0 0
\(255\) −0.430249 0.745213i −0.0269432 0.0466671i
\(256\) 0 0
\(257\) 8.50138 + 7.13351i 0.530302 + 0.444976i 0.868206 0.496205i \(-0.165273\pi\)
−0.337904 + 0.941181i \(0.609718\pi\)
\(258\) 0 0
\(259\) 6.08877 10.5461i 0.378338 0.655300i
\(260\) 0 0
\(261\) 0.220876 + 1.25265i 0.0136719 + 0.0775370i
\(262\) 0 0
\(263\) −10.6055 3.86009i −0.653963 0.238023i −0.00633530 0.999980i \(-0.502017\pi\)
−0.647628 + 0.761957i \(0.724239\pi\)
\(264\) 0 0
\(265\) −0.960491 −0.0590025
\(266\) 0 0
\(267\) −11.1050 −0.679614
\(268\) 0 0
\(269\) 0.147327 + 0.0536227i 0.00898270 + 0.00326944i 0.346508 0.938047i \(-0.387367\pi\)
−0.337525 + 0.941317i \(0.609590\pi\)
\(270\) 0 0
\(271\) 1.19859 + 6.79754i 0.0728091 + 0.412921i 0.999327 + 0.0366713i \(0.0116755\pi\)
−0.926518 + 0.376250i \(0.877213\pi\)
\(272\) 0 0
\(273\) 2.67819 4.63877i 0.162092 0.280751i
\(274\) 0 0
\(275\) −9.15922 7.68550i −0.552322 0.463453i
\(276\) 0 0
\(277\) 1.61927 + 2.80466i 0.0972927 + 0.168516i 0.910563 0.413370i \(-0.135648\pi\)
−0.813270 + 0.581886i \(0.802315\pi\)
\(278\) 0 0
\(279\) 0.831249 0.302550i 0.0497656 0.0181132i
\(280\) 0 0
\(281\) −2.93725 + 16.6580i −0.175222 + 0.993732i 0.762666 + 0.646793i \(0.223890\pi\)
−0.937888 + 0.346939i \(0.887221\pi\)
\(282\) 0 0
\(283\) −13.9724 + 11.7242i −0.830572 + 0.696932i −0.955422 0.295243i \(-0.904599\pi\)
0.124850 + 0.992176i \(0.460155\pi\)
\(284\) 0 0
\(285\) −1.15732 + 1.18945i −0.0685537 + 0.0704568i
\(286\) 0 0
\(287\) −5.25981 + 4.41350i −0.310477 + 0.260521i
\(288\) 0 0
\(289\) −2.06500 + 11.7112i −0.121471 + 0.688895i
\(290\) 0 0
\(291\) 8.74043 3.18126i 0.512373 0.186489i
\(292\) 0 0
\(293\) −13.5260 23.4277i −0.790198 1.36866i −0.925844 0.377906i \(-0.876644\pi\)
0.135646 0.990757i \(-0.456689\pi\)
\(294\) 0 0
\(295\) −1.10723 0.929074i −0.0644653 0.0540928i
\(296\) 0 0
\(297\) 1.23135 2.13276i 0.0714502 0.123755i
\(298\) 0 0
\(299\) 0.944590 + 5.35703i 0.0546270 + 0.309805i
\(300\) 0 0
\(301\) −5.84160 2.12617i −0.336704 0.122550i
\(302\) 0 0
\(303\) −12.3841 −0.711451
\(304\) 0 0
\(305\) 2.23744 0.128116
\(306\) 0 0
\(307\) 31.4727 + 11.4551i 1.79624 + 0.653779i 0.998725 + 0.0504852i \(0.0160768\pi\)
0.797519 + 0.603294i \(0.206145\pi\)
\(308\) 0 0
\(309\) 1.17872 + 6.68484i 0.0670549 + 0.380287i
\(310\) 0 0
\(311\) 2.04662 3.54485i 0.116053 0.201010i −0.802147 0.597127i \(-0.796309\pi\)
0.918200 + 0.396116i \(0.129642\pi\)
\(312\) 0 0
\(313\) −13.8463 11.6184i −0.782640 0.656713i 0.161272 0.986910i \(-0.448440\pi\)
−0.943912 + 0.330197i \(0.892885\pi\)
\(314\) 0 0
\(315\) −0.256479 0.444235i −0.0144510 0.0250298i
\(316\) 0 0
\(317\) 10.7174 3.90080i 0.601948 0.219091i −0.0230286 0.999735i \(-0.507331\pi\)
0.624976 + 0.780644i \(0.285109\pi\)
\(318\) 0 0
\(319\) 0.543950 3.08490i 0.0304554 0.172721i
\(320\) 0 0
\(321\) −0.281906 + 0.236547i −0.0157344 + 0.0132028i
\(322\) 0 0
\(323\) −9.80146 + 0.992894i −0.545368 + 0.0552461i
\(324\) 0 0
\(325\) 14.7862 12.4071i 0.820190 0.688221i
\(326\) 0 0
\(327\) 0.0992026 0.562606i 0.00548592 0.0311122i
\(328\) 0 0
\(329\) 0.568765 0.207014i 0.0313570 0.0114130i
\(330\) 0 0
\(331\) −8.64354 14.9711i −0.475092 0.822883i 0.524501 0.851410i \(-0.324252\pi\)
−0.999593 + 0.0285264i \(0.990919\pi\)
\(332\) 0 0
\(333\) 6.92389 + 5.80983i 0.379427 + 0.318377i
\(334\) 0 0
\(335\) −0.925499 + 1.60301i −0.0505654 + 0.0875819i
\(336\) 0 0
\(337\) −4.47465 25.3770i −0.243750 1.38237i −0.823378 0.567494i \(-0.807913\pi\)
0.579628 0.814881i \(-0.303198\pi\)
\(338\) 0 0
\(339\) −3.12271 1.13657i −0.169602 0.0617302i
\(340\) 0 0
\(341\) −2.17850 −0.117972
\(342\) 0 0
\(343\) 16.4165 0.886409
\(344\) 0 0
\(345\) 0.489518 + 0.178170i 0.0263548 + 0.00959235i
\(346\) 0 0
\(347\) 1.39588 + 7.91645i 0.0749350 + 0.424977i 0.999078 + 0.0429308i \(0.0136695\pi\)
−0.924143 + 0.382047i \(0.875219\pi\)
\(348\) 0 0
\(349\) 8.24297 14.2772i 0.441236 0.764243i −0.556545 0.830817i \(-0.687873\pi\)
0.997782 + 0.0665738i \(0.0212068\pi\)
\(350\) 0 0
\(351\) 3.04553 + 2.55550i 0.162558 + 0.136403i
\(352\) 0 0
\(353\) 4.32145 + 7.48498i 0.230008 + 0.398385i 0.957810 0.287402i \(-0.0927915\pi\)
−0.727802 + 0.685787i \(0.759458\pi\)
\(354\) 0 0
\(355\) 4.70737 1.71334i 0.249841 0.0909348i
\(356\) 0 0
\(357\) 0.528767 2.99879i 0.0279853 0.158713i
\(358\) 0 0
\(359\) 7.84445 6.58228i 0.414014 0.347399i −0.411866 0.911244i \(-0.635123\pi\)
0.825881 + 0.563845i \(0.190678\pi\)
\(360\) 0 0
\(361\) 6.98472 + 17.6696i 0.367617 + 0.929977i
\(362\) 0 0
\(363\) 3.78051 3.17223i 0.198425 0.166499i
\(364\) 0 0
\(365\) −0.393837 + 2.23356i −0.0206144 + 0.116910i
\(366\) 0 0
\(367\) 1.09089 0.397053i 0.0569442 0.0207260i −0.313391 0.949624i \(-0.601465\pi\)
0.370335 + 0.928898i \(0.379243\pi\)
\(368\) 0 0
\(369\) −2.54814 4.41350i −0.132651 0.229758i
\(370\) 0 0
\(371\) −2.60370 2.18477i −0.135178 0.113427i
\(372\) 0 0
\(373\) −14.7127 + 25.4832i −0.761796 + 1.31947i 0.180129 + 0.983643i \(0.442349\pi\)
−0.941924 + 0.335826i \(0.890985\pi\)
\(374\) 0 0
\(375\) −0.651550 3.69512i −0.0336459 0.190815i
\(376\) 0 0
\(377\) 4.75196 + 1.72957i 0.244738 + 0.0890774i
\(378\) 0 0
\(379\) 22.0345 1.13184 0.565918 0.824462i \(-0.308522\pi\)
0.565918 + 0.824462i \(0.308522\pi\)
\(380\) 0 0
\(381\) −2.45944 −0.126001
\(382\) 0 0
\(383\) 32.7699 + 11.9273i 1.67446 + 0.609455i 0.992535 0.121964i \(-0.0389192\pi\)
0.681929 + 0.731419i \(0.261141\pi\)
\(384\) 0 0
\(385\) 0.219363 + 1.24407i 0.0111798 + 0.0634037i
\(386\) 0 0
\(387\) 2.30703 3.99589i 0.117273 0.203123i
\(388\) 0 0
\(389\) 11.3131 + 9.49279i 0.573595 + 0.481304i 0.882837 0.469680i \(-0.155631\pi\)
−0.309241 + 0.950984i \(0.600075\pi\)
\(390\) 0 0
\(391\) 1.54620 + 2.67809i 0.0781945 + 0.135437i
\(392\) 0 0
\(393\) −17.1571 + 6.24466i −0.865459 + 0.315001i
\(394\) 0 0
\(395\) 0.700705 3.97390i 0.0352563 0.199948i
\(396\) 0 0
\(397\) 9.18898 7.71047i 0.461181 0.386977i −0.382384 0.924003i \(-0.624897\pi\)
0.843565 + 0.537026i \(0.180452\pi\)
\(398\) 0 0
\(399\) −5.84283 + 0.591882i −0.292507 + 0.0296311i
\(400\) 0 0
\(401\) 16.8468 14.1362i 0.841289 0.705926i −0.116564 0.993183i \(-0.537188\pi\)
0.957853 + 0.287258i \(0.0927436\pi\)
\(402\) 0 0
\(403\) 0.610695 3.46342i 0.0304209 0.172525i
\(404\) 0 0
\(405\) 0.357771 0.130218i 0.0177778 0.00647058i
\(406\) 0 0
\(407\) −11.1296 19.2769i −0.551671 0.955523i
\(408\) 0 0
\(409\) −22.2117 18.6379i −1.09830 0.921583i −0.100990 0.994887i \(-0.532201\pi\)
−0.997310 + 0.0733049i \(0.976645\pi\)
\(410\) 0 0
\(411\) −8.81496 + 15.2680i −0.434810 + 0.753113i
\(412\) 0 0
\(413\) −0.888173 5.03708i −0.0437041 0.247858i
\(414\) 0 0
\(415\) −2.59446 0.944307i −0.127357 0.0463542i
\(416\) 0 0
\(417\) 8.47241 0.414896
\(418\) 0 0
\(419\) 32.8592 1.60527 0.802637 0.596467i \(-0.203429\pi\)
0.802637 + 0.596467i \(0.203429\pi\)
\(420\) 0 0
\(421\) −23.4268 8.52665i −1.14175 0.415564i −0.299206 0.954188i \(-0.596722\pi\)
−0.842546 + 0.538625i \(0.818944\pi\)
\(422\) 0 0
\(423\) 0.0780107 + 0.442421i 0.00379301 + 0.0215112i
\(424\) 0 0
\(425\) 5.48648 9.50287i 0.266134 0.460957i
\(426\) 0 0
\(427\) 6.06527 + 5.08937i 0.293519 + 0.246292i
\(428\) 0 0
\(429\) −4.89543 8.47913i −0.236353 0.409376i
\(430\) 0 0
\(431\) 30.9262 11.2562i 1.48966 0.542193i 0.536302 0.844026i \(-0.319821\pi\)
0.953361 + 0.301833i \(0.0975985\pi\)
\(432\) 0 0
\(433\) −0.774040 + 4.38980i −0.0371980 + 0.210960i −0.997742 0.0671691i \(-0.978603\pi\)
0.960544 + 0.278129i \(0.0897144\pi\)
\(434\) 0 0
\(435\) 0.370980 0.311289i 0.0177871 0.0149252i
\(436\) 0 0
\(437\) 4.15909 4.27455i 0.198956 0.204479i
\(438\) 0 0
\(439\) 17.6624 14.8205i 0.842981 0.707345i −0.115251 0.993336i \(-0.536767\pi\)
0.958232 + 0.285991i \(0.0923228\pi\)
\(440\) 0 0
\(441\) −0.900330 + 5.10602i −0.0428728 + 0.243144i
\(442\) 0 0
\(443\) 27.2678 9.92467i 1.29553 0.471535i 0.399994 0.916518i \(-0.369012\pi\)
0.895539 + 0.444982i \(0.146790\pi\)
\(444\) 0 0
\(445\) 2.11401 + 3.66157i 0.100214 + 0.173575i
\(446\) 0 0
\(447\) −13.5046 11.3317i −0.638745 0.535971i
\(448\) 0 0
\(449\) 12.9082 22.3577i 0.609178 1.05513i −0.382198 0.924080i \(-0.624833\pi\)
0.991376 0.131047i \(-0.0418338\pi\)
\(450\) 0 0
\(451\) 2.17939 + 12.3599i 0.102623 + 0.582006i
\(452\) 0 0
\(453\) −9.21964 3.35567i −0.433176 0.157663i
\(454\) 0 0
\(455\) −2.03935 −0.0956061
\(456\) 0 0
\(457\) −38.8110 −1.81550 −0.907750 0.419512i \(-0.862201\pi\)
−0.907750 + 0.419512i \(0.862201\pi\)
\(458\) 0 0
\(459\) 2.12382 + 0.773005i 0.0991312 + 0.0360808i
\(460\) 0 0
\(461\) 2.94335 + 16.6926i 0.137086 + 0.777451i 0.973385 + 0.229177i \(0.0736036\pi\)
−0.836299 + 0.548273i \(0.815285\pi\)
\(462\) 0 0
\(463\) 3.42570 5.93349i 0.159206 0.275752i −0.775377 0.631499i \(-0.782440\pi\)
0.934582 + 0.355746i \(0.115773\pi\)
\(464\) 0 0
\(465\) −0.257999 0.216487i −0.0119644 0.0100393i
\(466\) 0 0
\(467\) 9.98984 + 17.3029i 0.462275 + 0.800684i 0.999074 0.0430265i \(-0.0137000\pi\)
−0.536799 + 0.843710i \(0.680367\pi\)
\(468\) 0 0
\(469\) −6.15511 + 2.24028i −0.284217 + 0.103446i
\(470\) 0 0
\(471\) −1.38929 + 7.87908i −0.0640153 + 0.363049i
\(472\) 0 0
\(473\) −8.70459 + 7.30402i −0.400238 + 0.335839i
\(474\) 0 0
\(475\) −20.5146 5.19695i −0.941275 0.238452i
\(476\) 0 0
\(477\) 1.93254 1.62159i 0.0884849 0.0742477i
\(478\) 0 0
\(479\) 6.38671 36.2208i 0.291816 1.65497i −0.388052 0.921637i \(-0.626852\pi\)
0.679868 0.733334i \(-0.262037\pi\)
\(480\) 0 0
\(481\) 33.7669 12.2901i 1.53964 0.560382i
\(482\) 0 0
\(483\) 0.921716 + 1.59646i 0.0419395 + 0.0726414i
\(484\) 0 0
\(485\) −2.71281 2.27632i −0.123183 0.103362i
\(486\) 0 0
\(487\) 3.54193 6.13481i 0.160500 0.277995i −0.774548 0.632515i \(-0.782023\pi\)
0.935048 + 0.354521i \(0.115356\pi\)
\(488\) 0 0
\(489\) −0.481924 2.73313i −0.0217934 0.123596i
\(490\) 0 0
\(491\) 25.0470 + 9.11638i 1.13036 + 0.411416i 0.838422 0.545022i \(-0.183479\pi\)
0.291935 + 0.956438i \(0.405701\pi\)
\(492\) 0 0
\(493\) 2.87481 0.129475
\(494\) 0 0
\(495\) −0.937628 −0.0421432
\(496\) 0 0
\(497\) 16.6580 + 6.06302i 0.747213 + 0.271963i
\(498\) 0 0
\(499\) −3.27127 18.5523i −0.146442 0.830514i −0.966198 0.257801i \(-0.917002\pi\)
0.819756 0.572713i \(-0.194109\pi\)
\(500\) 0 0
\(501\) −9.19843 + 15.9322i −0.410956 + 0.711796i
\(502\) 0 0
\(503\) 0.885495 + 0.743019i 0.0394823 + 0.0331296i 0.662315 0.749225i \(-0.269574\pi\)
−0.622833 + 0.782355i \(0.714018\pi\)
\(504\) 0 0
\(505\) 2.35752 + 4.08334i 0.104908 + 0.181706i
\(506\) 0 0
\(507\) 2.63664 0.959660i 0.117097 0.0426200i
\(508\) 0 0
\(509\) 6.26735 35.5439i 0.277795 1.57546i −0.452144 0.891945i \(-0.649341\pi\)
0.729940 0.683512i \(-0.239548\pi\)
\(510\) 0 0
\(511\) −6.14815 + 5.15891i −0.271978 + 0.228217i
\(512\) 0 0
\(513\) 0.320424 4.34711i 0.0141471 0.191929i
\(514\) 0 0
\(515\) 1.97976 1.66121i 0.0872386 0.0732019i
\(516\) 0 0
\(517\) 0.192117 1.08955i 0.00844930 0.0479183i
\(518\) 0 0
\(519\) 16.0207 5.83107i 0.703233 0.255956i
\(520\) 0 0
\(521\) −11.2605 19.5037i −0.493329 0.854472i 0.506641 0.862157i \(-0.330887\pi\)
−0.999970 + 0.00768552i \(0.997554\pi\)
\(522\) 0 0
\(523\) −1.04699 0.878530i −0.0457817 0.0384154i 0.619610 0.784910i \(-0.287291\pi\)
−0.665391 + 0.746495i \(0.731735\pi\)
\(524\) 0 0
\(525\) 3.27059 5.66483i 0.142740 0.247233i
\(526\) 0 0
\(527\) −0.347173 1.96892i −0.0151231 0.0857674i
\(528\) 0 0
\(529\) 19.8537 + 7.22617i 0.863206 + 0.314181i
\(530\) 0 0
\(531\) 3.79633 0.164747
\(532\) 0 0
\(533\) −20.2610 −0.877603
\(534\) 0 0
\(535\) 0.131660 + 0.0479204i 0.00569217 + 0.00207178i
\(536\) 0 0
\(537\) −3.36511 19.0845i −0.145215 0.823558i
\(538\) 0 0
\(539\) 6.38429 11.0579i 0.274991 0.476298i
\(540\) 0 0
\(541\) 25.5561 + 21.4441i 1.09874 + 0.921953i 0.997340 0.0728928i \(-0.0232231\pi\)
0.101401 + 0.994846i \(0.467668\pi\)
\(542\) 0 0
\(543\) 3.59453 + 6.22591i 0.154256 + 0.267179i
\(544\) 0 0
\(545\) −0.204389 + 0.0743915i −0.00875507 + 0.00318658i
\(546\) 0 0
\(547\) −4.82414 + 27.3590i −0.206265 + 1.16979i 0.689171 + 0.724598i \(0.257975\pi\)
−0.895436 + 0.445189i \(0.853136\pi\)
\(548\) 0 0
\(549\) −4.50181 + 3.77747i −0.192132 + 0.161218i
\(550\) 0 0
\(551\) −1.50817 5.33533i −0.0642504 0.227293i
\(552\) 0 0
\(553\) 10.9386 9.17861i 0.465158 0.390314i
\(554\) 0 0
\(555\) 0.597565 3.38896i 0.0253652 0.143853i
\(556\) 0 0
\(557\) 27.8939 10.1525i 1.18190 0.430177i 0.325028 0.945704i \(-0.394626\pi\)
0.856873 + 0.515527i \(0.172404\pi\)
\(558\) 0 0
\(559\) −9.17196 15.8863i −0.387932 0.671919i
\(560\) 0 0
\(561\) −4.26380 3.57775i −0.180018 0.151053i
\(562\) 0 0
\(563\) −4.03778 + 6.99365i −0.170172 + 0.294747i −0.938480 0.345334i \(-0.887766\pi\)
0.768308 + 0.640081i \(0.221099\pi\)
\(564\) 0 0
\(565\) 0.219702 + 1.24599i 0.00924295 + 0.0524194i
\(566\) 0 0
\(567\) 1.26604 + 0.460802i 0.0531689 + 0.0193519i
\(568\) 0 0
\(569\) 14.4830 0.607158 0.303579 0.952806i \(-0.401818\pi\)
0.303579 + 0.952806i \(0.401818\pi\)
\(570\) 0 0
\(571\) −4.96083 −0.207604 −0.103802 0.994598i \(-0.533101\pi\)
−0.103802 + 0.994598i \(0.533101\pi\)
\(572\) 0 0
\(573\) −3.48589 1.26876i −0.145625 0.0530032i
\(574\) 0 0
\(575\) 1.15353 + 6.54197i 0.0481053 + 0.272819i
\(576\) 0 0
\(577\) 9.57974 16.5926i 0.398810 0.690759i −0.594770 0.803896i \(-0.702757\pi\)
0.993579 + 0.113138i \(0.0360901\pi\)
\(578\) 0 0
\(579\) −4.37152 3.66814i −0.181674 0.152443i
\(580\) 0 0
\(581\) −4.88513 8.46129i −0.202669 0.351033i
\(582\) 0 0
\(583\) −5.83810 + 2.12490i −0.241790 + 0.0880042i
\(584\) 0 0
\(585\) 0.262844 1.49066i 0.0108673 0.0616313i
\(586\) 0 0
\(587\) −19.3953 + 16.2746i −0.800531 + 0.671726i −0.948328 0.317292i \(-0.897226\pi\)
0.147796 + 0.989018i \(0.452782\pi\)
\(588\) 0 0
\(589\) −3.47197 + 1.67725i −0.143060 + 0.0691097i
\(590\) 0 0
\(591\) 1.93134 1.62059i 0.0794447 0.0666620i
\(592\) 0 0
\(593\) −7.71732 + 43.7671i −0.316912 + 1.79730i 0.244377 + 0.969680i \(0.421417\pi\)
−0.561289 + 0.827620i \(0.689694\pi\)
\(594\) 0 0
\(595\) −1.08943 + 0.396520i −0.0446622 + 0.0162557i
\(596\) 0 0
\(597\) 9.88919 + 17.1286i 0.404738 + 0.701026i
\(598\) 0 0
\(599\) −17.8151 14.9487i −0.727907 0.610787i 0.201653 0.979457i \(-0.435369\pi\)
−0.929560 + 0.368670i \(0.879813\pi\)
\(600\) 0 0
\(601\) −9.26240 + 16.0430i −0.377821 + 0.654406i −0.990745 0.135736i \(-0.956660\pi\)
0.612924 + 0.790142i \(0.289993\pi\)
\(602\) 0 0
\(603\) −0.844223 4.78783i −0.0343794 0.194975i
\(604\) 0 0
\(605\) −1.76564 0.642639i −0.0717834 0.0261270i
\(606\) 0 0
\(607\) −20.6956 −0.840009 −0.420004 0.907522i \(-0.637971\pi\)
−0.420004 + 0.907522i \(0.637971\pi\)
\(608\) 0 0
\(609\) 1.71372 0.0694436
\(610\) 0 0
\(611\) 1.67834 + 0.610864i 0.0678982 + 0.0247129i
\(612\) 0 0
\(613\) 3.66809 + 20.8028i 0.148153 + 0.840216i 0.964782 + 0.263053i \(0.0847293\pi\)
−0.816629 + 0.577163i \(0.804160\pi\)
\(614\) 0 0
\(615\) −0.970156 + 1.68036i −0.0391205 + 0.0677586i
\(616\) 0 0
\(617\) 6.50853 + 5.46131i 0.262024 + 0.219864i 0.764329 0.644826i \(-0.223070\pi\)
−0.502305 + 0.864690i \(0.667515\pi\)
\(618\) 0 0
\(619\) −6.46435 11.1966i −0.259824 0.450029i 0.706370 0.707842i \(-0.250331\pi\)
−0.966195 + 0.257813i \(0.916998\pi\)
\(620\) 0 0
\(621\) −1.28573 + 0.467967i −0.0515946 + 0.0187789i
\(622\) 0 0
\(623\) −2.59807 + 14.7344i −0.104090 + 0.590321i
\(624\) 0 0
\(625\) 17.5016 14.6856i 0.700062 0.587422i
\(626\) 0 0
\(627\) −4.40306 + 9.79010i −0.175841 + 0.390979i
\(628\) 0 0
\(629\) 15.6488 13.1309i 0.623958 0.523563i
\(630\) 0 0
\(631\) −6.92594 + 39.2789i −0.275717 + 1.56367i 0.460957 + 0.887422i \(0.347506\pi\)
−0.736674 + 0.676248i \(0.763605\pi\)
\(632\) 0 0
\(633\) −9.86247 + 3.58965i −0.391998 + 0.142676i
\(634\) 0 0
\(635\) 0.468194 + 0.810936i 0.0185797 + 0.0321810i
\(636\) 0 0
\(637\) 15.7904 + 13.2498i 0.625640 + 0.524974i
\(638\) 0 0
\(639\) −6.57876 + 11.3947i −0.260252 + 0.450769i
\(640\) 0 0
\(641\) 4.80291 + 27.2387i 0.189704 + 1.07586i 0.919762 + 0.392477i \(0.128382\pi\)
−0.730058 + 0.683385i \(0.760507\pi\)
\(642\) 0 0
\(643\) −16.3210 5.94037i −0.643638 0.234265i −0.000481773 1.00000i \(-0.500153\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(644\) 0 0
\(645\) −1.75672 −0.0691707
\(646\) 0 0
\(647\) −40.1725 −1.57934 −0.789672 0.613529i \(-0.789749\pi\)
−0.789672 + 0.613529i \(0.789749\pi\)
\(648\) 0 0
\(649\) −8.78540 3.19762i −0.344857 0.125518i
\(650\) 0 0
\(651\) −0.206956 1.17371i −0.00811126 0.0460012i
\(652\) 0 0
\(653\) 14.8008 25.6358i 0.579200 1.00320i −0.416371 0.909195i \(-0.636698\pi\)
0.995571 0.0940097i \(-0.0299685\pi\)
\(654\) 0 0
\(655\) 5.32513 + 4.46831i 0.208070 + 0.174591i
\(656\) 0 0
\(657\) −2.97850 5.15891i −0.116202 0.201268i
\(658\) 0 0
\(659\) 34.6195 12.6005i 1.34858 0.490844i 0.436078 0.899909i \(-0.356367\pi\)
0.912505 + 0.409065i \(0.134145\pi\)
\(660\) 0 0
\(661\) −7.66349 + 43.4618i −0.298075 + 1.69047i 0.356359 + 0.934349i \(0.384018\pi\)
−0.654434 + 0.756119i \(0.727093\pi\)
\(662\) 0 0
\(663\) 6.88326 5.77574i 0.267323 0.224311i
\(664\) 0 0
\(665\) 1.30743 + 1.81384i 0.0507000 + 0.0703378i
\(666\) 0 0
\(667\) −1.33320 + 1.11869i −0.0516217 + 0.0433158i
\(668\) 0 0
\(669\) −3.34341 + 18.9614i −0.129264 + 0.733091i
\(670\) 0 0
\(671\) 13.5997 4.94990i 0.525012 0.191089i
\(672\) 0 0
\(673\) −7.23427 12.5301i −0.278861 0.483001i 0.692241 0.721666i \(-0.256623\pi\)
−0.971102 + 0.238665i \(0.923290\pi\)
\(674\) 0 0
\(675\) 3.71918 + 3.12076i 0.143151 + 0.120118i
\(676\) 0 0
\(677\) 19.5277 33.8230i 0.750512 1.29992i −0.197063 0.980391i \(-0.563140\pi\)
0.947575 0.319534i \(-0.103526\pi\)
\(678\) 0 0
\(679\) −2.17611 12.3413i −0.0835114 0.473617i
\(680\) 0 0
\(681\) −24.9092 9.06619i −0.954521 0.347417i
\(682\) 0 0
\(683\) 8.27403 0.316597 0.158298 0.987391i \(-0.449399\pi\)
0.158298 + 0.987391i \(0.449399\pi\)
\(684\) 0 0
\(685\) 6.71227 0.256463
\(686\) 0 0
\(687\) −26.1530 9.51890i −0.997797 0.363169i
\(688\) 0 0
\(689\) −1.74162 9.87723i −0.0663505 0.376292i
\(690\) 0 0
\(691\) −14.7934 + 25.6230i −0.562769 + 0.974744i 0.434485 + 0.900679i \(0.356931\pi\)
−0.997253 + 0.0740648i \(0.976403\pi\)
\(692\) 0 0
\(693\) −2.54173 2.13276i −0.0965522 0.0810169i
\(694\) 0 0
\(695\) −1.61286 2.79355i −0.0611792 0.105965i
\(696\) 0 0
\(697\) −10.8235 + 3.93945i −0.409971 + 0.149217i
\(698\) 0 0
\(699\) −4.54912 + 25.7994i −0.172064 + 0.975822i
\(700\) 0 0
\(701\) −19.3279 + 16.2180i −0.730003 + 0.612545i −0.930132 0.367224i \(-0.880308\pi\)
0.200130 + 0.979769i \(0.435864\pi\)
\(702\) 0 0
\(703\) −32.5792 22.1538i −1.22875 0.835546i
\(704\) 0 0
\(705\) 0.131026 0.109944i 0.00493472 0.00414072i
\(706\) 0 0
\(707\) −2.89734 + 16.4316i −0.108966 + 0.617975i
\(708\) 0 0
\(709\) 25.7381 9.36791i 0.966616 0.351819i 0.189993 0.981785i \(-0.439153\pi\)
0.776623 + 0.629966i \(0.216931\pi\)
\(710\) 0 0
\(711\) 5.29927 + 9.17861i 0.198738 + 0.344225i
\(712\) 0 0
\(713\) 0.927178 + 0.777995i 0.0347231 + 0.0291361i
\(714\) 0 0
\(715\) −1.86384 + 3.22827i −0.0697038 + 0.120731i
\(716\) 0 0
\(717\) 2.86211 + 16.2318i 0.106887 + 0.606188i
\(718\) 0 0
\(719\) 26.5095 + 9.64866i 0.988636 + 0.359834i 0.785192 0.619252i \(-0.212564\pi\)
0.203444 + 0.979087i \(0.434786\pi\)
\(720\) 0 0
\(721\) 9.14540 0.340592
\(722\) 0 0
\(723\) −0.673308 −0.0250406
\(724\) 0 0
\(725\) 5.80305 + 2.11214i 0.215520 + 0.0784429i
\(726\) 0 0
\(727\) −6.21951 35.2726i −0.230669 1.30819i −0.851546 0.524280i \(-0.824335\pi\)
0.620877 0.783908i \(-0.286777\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 0 0
\(731\) −7.98855 6.70319i −0.295467 0.247926i
\(732\) 0 0
\(733\) −1.08170 1.87357i −0.0399536 0.0692017i 0.845357 0.534202i \(-0.179388\pi\)
−0.885311 + 0.465000i \(0.846054\pi\)
\(734\) 0 0
\(735\) 1.85497 0.675153i 0.0684215 0.0249034i
\(736\) 0 0
\(737\) −2.07907 + 11.7910i −0.0765835 + 0.434326i
\(738\) 0 0
\(739\) −17.8185 + 14.9515i −0.655464 + 0.549999i −0.908723 0.417399i \(-0.862942\pi\)
0.253260 + 0.967398i \(0.418497\pi\)
\(740\) 0 0
\(741\) −14.3302 9.74453i −0.526434 0.357974i
\(742\) 0 0
\(743\) −2.44021 + 2.04758i −0.0895227 + 0.0751185i −0.686451 0.727176i \(-0.740832\pi\)
0.596928 + 0.802295i \(0.296388\pi\)
\(744\) 0 0
\(745\) −1.16551 + 6.60995i −0.0427010 + 0.242170i
\(746\) 0 0
\(747\) 6.81441 2.48024i 0.249326 0.0907474i
\(748\) 0 0
\(749\) 0.247904 + 0.429382i 0.00905820 + 0.0156893i
\(750\) 0 0
\(751\) −39.2402 32.9264i −1.43189 1.20150i −0.944582 0.328274i \(-0.893533\pi\)
−0.487312 0.873228i \(-0.662023\pi\)
\(752\) 0 0
\(753\) 4.23134 7.32890i 0.154199 0.267080i
\(754\) 0 0
\(755\) 0.648660 + 3.67874i 0.0236072 + 0.133883i
\(756\) 0 0
\(757\) 11.7569 + 4.27916i 0.427312 + 0.155529i 0.546718 0.837317i \(-0.315877\pi\)
−0.119406 + 0.992845i \(0.538099\pi\)
\(758\) 0 0
\(759\) 3.36958 0.122308
\(760\) 0 0
\(761\) −41.3258 −1.49806 −0.749030 0.662536i \(-0.769480\pi\)
−0.749030 + 0.662536i \(0.769480\pi\)
\(762\) 0 0
\(763\) −0.723272 0.263250i −0.0261842 0.00953028i
\(764\) 0 0
\(765\) −0.149424 0.847425i −0.00540243 0.0306387i
\(766\) 0 0
\(767\) 7.54646 13.0708i 0.272487 0.471961i
\(768\) 0 0
\(769\) −9.11104 7.64507i −0.328552 0.275688i 0.463557 0.886067i \(-0.346573\pi\)
−0.792110 + 0.610379i \(0.791017\pi\)
\(770\) 0 0
\(771\) 5.54888 + 9.61095i 0.199838 + 0.346130i
\(772\) 0 0
\(773\) −3.55618 + 1.29434i −0.127907 + 0.0465543i −0.405181 0.914237i \(-0.632791\pi\)
0.277274 + 0.960791i \(0.410569\pi\)
\(774\) 0 0
\(775\) 0.745776 4.22951i 0.0267891 0.151928i
\(776\) 0 0
\(777\) 9.32853 7.82757i 0.334659 0.280812i
\(778\) 0 0
\(779\) 12.9894 + 18.0206i 0.465394 + 0.645656i
\(780\) 0 0
\(781\) 24.8221 20.8283i 0.888206 0.745294i
\(782\) 0 0
\(783\) −0.220876 + 1.25265i −0.00789345 + 0.0447660i
\(784\) 0 0
\(785\) 2.86239 1.04182i 0.102163 0.0371843i
\(786\) 0 0
\(787\) −14.4410 25.0126i −0.514767 0.891603i −0.999853 0.0171362i \(-0.994545\pi\)
0.485086 0.874466i \(-0.338788\pi\)
\(788\) 0 0
\(789\) −8.64568 7.25459i −0.307794 0.258270i
\(790\) 0 0
\(791\) −2.23861 + 3.87739i −0.0795958 + 0.137864i
\(792\) 0 0
\(793\) 4.05707 + 23.0088i 0.144071 + 0.817066i
\(794\) 0 0
\(795\) −0.902567 0.328507i −0.0320107 0.0116510i
\(796\) 0 0
\(797\) 6.10268 0.216168 0.108084 0.994142i \(-0.465528\pi\)
0.108084 + 0.994142i \(0.465528\pi\)
\(798\) 0 0
\(799\) 1.01535 0.0359204
\(800\) 0 0
\(801\) −10.4353 3.79813i −0.368712 0.134200i
\(802\) 0 0
\(803\) 2.54747 + 14.4474i 0.0898982 + 0.509838i
\(804\) 0 0
\(805\) 0.350926 0.607822i 0.0123685 0.0214229i
\(806\) 0 0
\(807\) 0.120102 + 0.100778i 0.00422780 + 0.00354755i
\(808\) 0 0
\(809\) 6.57482 + 11.3879i 0.231158 + 0.400378i 0.958149 0.286269i \(-0.0924151\pi\)
−0.726991 + 0.686647i \(0.759082\pi\)
\(810\) 0 0
\(811\) −3.65410 + 1.32998i −0.128313 + 0.0467021i −0.405379 0.914149i \(-0.632860\pi\)
0.277066 + 0.960851i \(0.410638\pi\)
\(812\) 0 0
\(813\) −1.19859 + 6.79754i −0.0420364 + 0.238400i
\(814\) 0 0
\(815\) −0.809434 + 0.679195i −0.0283532 + 0.0237912i
\(816\) 0 0
\(817\) −8.24946 + 18.3425i −0.288612 + 0.641723i
\(818\) 0 0
\(819\) 4.10323 3.44302i 0.143379 0.120309i
\(820\) 0 0
\(821\) −3.32963 + 18.8833i −0.116205 + 0.659032i 0.869941 + 0.493155i \(0.164156\pi\)
−0.986147 + 0.165877i \(0.946955\pi\)
\(822\) 0 0
\(823\) −18.7839 + 6.83678i −0.654766 + 0.238315i −0.647975 0.761662i \(-0.724384\pi\)
−0.00679075 + 0.999977i \(0.502162\pi\)
\(824\) 0 0
\(825\) −5.97826 10.3546i −0.208136 0.360502i
\(826\) 0 0
\(827\) 1.28973 + 1.08222i 0.0448485 + 0.0376323i 0.664936 0.746900i \(-0.268459\pi\)
−0.620088 + 0.784532i \(0.712903\pi\)
\(828\) 0 0
\(829\) −13.6454 + 23.6345i −0.473925 + 0.820862i −0.999554 0.0298519i \(-0.990496\pi\)
0.525630 + 0.850713i \(0.323830\pi\)
\(830\) 0 0
\(831\) 0.562367 + 3.18934i 0.0195083 + 0.110637i
\(832\) 0 0
\(833\) 11.0115 + 4.00787i 0.381527 + 0.138865i
\(834\) 0 0
\(835\) 7.00427 0.242393
\(836\) 0 0
\(837\) 0.884596 0.0305761
\(838\) 0 0
\(839\) 3.71621 + 1.35259i 0.128298 + 0.0466966i 0.405371 0.914152i \(-0.367142\pi\)
−0.277073 + 0.960849i \(0.589365\pi\)
\(840\) 0 0
\(841\) −4.75485 26.9661i −0.163960 0.929865i
\(842\) 0 0
\(843\) −8.45748 + 14.6488i −0.291291 + 0.504531i
\(844\) 0 0
\(845\) −0.818349 0.686676i −0.0281521 0.0236224i
\(846\) 0 0
\(847\) −3.32453 5.75825i −0.114232 0.197856i
\(848\) 0 0
\(849\) −17.1397 + 6.23833i −0.588232 + 0.214099i
\(850\) 0 0
\(851\) −2.14749 + 12.1790i −0.0736149 + 0.417491i
\(852\) 0 0
\(853\) −36.3166 + 30.4732i −1.24346 + 1.04338i −0.246211 + 0.969216i \(0.579186\pi\)
−0.997246 + 0.0741679i \(0.976370\pi\)
\(854\) 0 0
\(855\) −1.49434 + 0.721889i −0.0511053 + 0.0246881i
\(856\) 0 0
\(857\) −42.0573 + 35.2903i −1.43665 + 1.20549i −0.495004 + 0.868891i \(0.664833\pi\)
−0.941647 + 0.336603i \(0.890722\pi\)
\(858\) 0 0
\(859\) −6.84643 + 38.8281i −0.233597 + 1.32480i 0.611950 + 0.790896i \(0.290385\pi\)
−0.845548 + 0.533900i \(0.820726\pi\)
\(860\) 0 0
\(861\) −6.45211 + 2.34838i −0.219887 + 0.0800324i
\(862\) 0 0
\(863\) −10.4441 18.0897i −0.355522 0.615782i 0.631685 0.775225i \(-0.282363\pi\)
−0.987207 + 0.159443i \(0.949030\pi\)
\(864\) 0 0
\(865\) −4.97244 4.17237i −0.169068 0.141865i
\(866\) 0 0
\(867\) −5.94594 + 10.2987i −0.201935 + 0.349761i
\(868\) 0 0
\(869\) −4.53240 25.7045i −0.153751 0.871965i
\(870\) 0 0
\(871\) −18.1628 6.61070i −0.615422 0.223995i
\(872\) 0 0
\(873\) 9.30137 0.314804
\(874\) 0 0
\(875\) −5.05523 −0.170898
\(876\) 0 0
\(877\) −46.6746 16.9882i −1.57609 0.573650i −0.601741 0.798691i \(-0.705526\pi\)
−0.974349 + 0.225041i \(0.927748\pi\)
\(878\) 0 0
\(879\) −4.69753 26.6410i −0.158444 0.898580i
\(880\) 0 0
\(881\) 7.52754 13.0381i 0.253609 0.439264i −0.710908 0.703285i \(-0.751716\pi\)
0.964517 + 0.264021i \(0.0850489\pi\)
\(882\) 0 0
\(883\) 44.2202 + 37.1051i 1.48813 + 1.24869i 0.896939 + 0.442155i \(0.145786\pi\)
0.591189 + 0.806533i \(0.298659\pi\)
\(884\) 0 0
\(885\) −0.722692 1.25174i −0.0242930 0.0420767i
\(886\) 0 0
\(887\) −3.68881 + 1.34262i −0.123858 + 0.0450807i −0.403206 0.915109i \(-0.632104\pi\)
0.279347 + 0.960190i \(0.409882\pi\)
\(888\) 0 0
\(889\) −0.575401 + 3.26326i −0.0192983 + 0.109446i
\(890\) 0 0
\(891\) 1.88654 1.58299i 0.0632014 0.0530323i
\(892\) 0 0
\(893\) −0.532670 1.88438i −0.0178251 0.0630583i
\(894\) 0 0
\(895\) −5.65201 + 4.74260i −0.188926 + 0.158527i
\(896\) 0 0
\(897\) −0.944590 + 5.35703i −0.0315389 + 0.178866i
\(898\) 0 0
\(899\) 1.05733 0.384835i 0.0352638 0.0128350i
\(900\) 0 0
\(901\) −2.85086 4.93783i −0.0949758 0.164503i
\(902\) 0 0
\(903\) −4.76212 3.99589i −0.158473 0.132975i
\(904\) 0 0
\(905\) 1.36855 2.37040i 0.0454922 0.0787948i
\(906\) 0 0
\(907\) 6.22365 + 35.2961i 0.206653 + 1.17199i 0.894817 + 0.446432i \(0.147306\pi\)
−0.688164 + 0.725555i \(0.741583\pi\)
\(908\) 0 0
\(909\) −11.6373 4.23563i −0.385985 0.140487i
\(910\) 0 0
\(911\) −11.0762 −0.366969 −0.183485 0.983023i \(-0.558738\pi\)
−0.183485 + 0.983023i \(0.558738\pi\)
\(912\) 0 0
\(913\) −17.8589 −0.591043
\(914\) 0 0
\(915\) 2.10251 + 0.765250i 0.0695068 + 0.0252984i
\(916\) 0 0
\(917\) 4.27160 + 24.2254i 0.141061 + 0.799994i
\(918\) 0 0
\(919\) 9.26624 16.0496i 0.305665 0.529427i −0.671744 0.740783i \(-0.734455\pi\)
0.977409 + 0.211356i \(0.0677879\pi\)
\(920\) 0 0
\(921\) 25.6568 + 21.5286i 0.845421 + 0.709392i
\(922\) 0 0
\(923\) 26.1549 + 45.3016i 0.860899 + 1.49112i
\(924\) 0 0
\(925\) 41.2359 15.0086i 1.35583 0.493481i
\(926\) 0 0
\(927\) −1.17872 + 6.68484i −0.0387142 + 0.219559i
\(928\) 0 0
\(929\) 17.5287 14.7083i 0.575097 0.482564i −0.308236 0.951310i \(-0.599739\pi\)
0.883333 + 0.468746i \(0.155294\pi\)
\(930\) 0 0
\(931\) 1.66133 22.5388i 0.0544480 0.738681i
\(932\) 0 0
\(933\) 3.13561 2.63109i 0.102655 0.0861379i
\(934\) 0 0
\(935\) −0.367986 + 2.08695i −0.0120344 + 0.0682507i
\(936\) 0 0
\(937\) 29.2000 10.6279i 0.953924 0.347200i 0.182274 0.983248i \(-0.441654\pi\)
0.771650 + 0.636048i \(0.219432\pi\)
\(938\) 0 0
\(939\) −9.03754 15.6535i −0.294929 0.510832i
\(940\) 0 0
\(941\) −25.8945 21.7281i −0.844136 0.708314i 0.114354 0.993440i \(-0.463520\pi\)
−0.958490 + 0.285126i \(0.907965\pi\)
\(942\) 0 0
\(943\) 3.48648 6.03875i 0.113535 0.196649i
\(944\) 0 0
\(945\) −0.0890743 0.505165i −0.00289759 0.0164330i
\(946\) 0 0
\(947\) −23.4144 8.52216i −0.760867 0.276933i −0.0676959 0.997706i \(-0.521565\pi\)
−0.693171 + 0.720773i \(0.743787\pi\)
\(948\) 0 0
\(949\) −23.6830 −0.768782
\(950\) 0 0
\(951\) 11.4052 0.369839
\(952\) 0 0
\(953\) 30.6539 + 11.1571i 0.992978 + 0.361414i 0.786873 0.617116i \(-0.211699\pi\)
0.206105 + 0.978530i \(0.433921\pi\)
\(954\) 0 0
\(955\) 0.245254 + 1.39091i 0.00793625 + 0.0450087i
\(956\) 0 0
\(957\) 1.56624 2.71281i 0.0506294 0.0876928i
\(958\) 0 0
\(959\) 18.1956 + 15.2680i 0.587568 + 0.493028i
\(960\) 0 0
\(961\) 15.1087 + 26.1691i 0.487379 + 0.844165i
\(962\) 0 0
\(963\) −0.345809 + 0.125864i −0.0111435 + 0.00405591i
\(964\) 0 0
\(965\) −0.377283 + 2.13968i −0.0121452 + 0.0688787i
\(966\) 0 0
\(967\) 17.0726 14.3256i 0.549018 0.460680i −0.325591 0.945511i \(-0.605563\pi\)
0.874608 + 0.484830i \(0.161119\pi\)
\(968\) 0 0
\(969\) −9.54995 2.41928i −0.306789 0.0777185i
\(970\) 0 0
\(971\) 4.47457 3.75461i 0.143596 0.120491i −0.568160 0.822918i \(-0.692345\pi\)
0.711756 + 0.702427i \(0.247900\pi\)
\(972\) 0 0
\(973\) 1.98217 11.2414i 0.0635454 0.360384i
\(974\) 0 0
\(975\) 18.1379 6.60167i 0.580879 0.211423i
\(976\) 0 0
\(977\) −8.37965 14.5140i −0.268089 0.464344i 0.700279 0.713869i \(-0.253059\pi\)
−0.968368 + 0.249525i \(0.919725\pi\)
\(978\) 0 0
\(979\) 20.9500 + 17.5791i 0.669564 + 0.561831i
\(980\) 0 0
\(981\) 0.285643 0.494748i 0.00911987 0.0157961i
\(982\) 0 0
\(983\) −7.12791 40.4244i −0.227345 1.28934i −0.858151 0.513398i \(-0.828387\pi\)
0.630806 0.775941i \(-0.282725\pi\)
\(984\) 0 0
\(985\) −0.902006 0.328303i −0.0287403 0.0104606i
\(986\) 0 0
\(987\) 0.605267 0.0192659
\(988\) 0 0
\(989\) 6.31316 0.200747
\(990\) 0 0
\(991\) 15.6614 + 5.70028i 0.497500 + 0.181075i 0.578569 0.815633i \(-0.303611\pi\)
−0.0810690 + 0.996708i \(0.525833\pi\)
\(992\) 0 0
\(993\) −3.00187 17.0245i −0.0952615 0.540255i
\(994\) 0 0
\(995\) 3.76513 6.52139i 0.119363 0.206742i
\(996\) 0 0
\(997\) −20.5932 17.2797i −0.652192 0.547254i 0.255543 0.966798i \(-0.417746\pi\)
−0.907735 + 0.419543i \(0.862190\pi\)
\(998\) 0 0
\(999\) 4.51925 + 7.82757i 0.142983 + 0.247653i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bo.i.481.1 12
4.3 odd 2 456.2.bg.b.25.1 12
19.16 even 9 inner 912.2.bo.i.529.1 12
76.15 even 18 8664.2.a.bh.1.3 6
76.23 odd 18 8664.2.a.bk.1.3 6
76.35 odd 18 456.2.bg.b.73.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bg.b.25.1 12 4.3 odd 2
456.2.bg.b.73.1 yes 12 76.35 odd 18
912.2.bo.i.481.1 12 1.1 even 1 trivial
912.2.bo.i.529.1 12 19.16 even 9 inner
8664.2.a.bh.1.3 6 76.15 even 18
8664.2.a.bk.1.3 6 76.23 odd 18