Properties

Label 912.2.cc.h.401.4
Level $912$
Weight $2$
Character 912.401
Analytic conductor $7.282$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(257,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 9, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.cc (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 401.4
Character \(\chi\) \(=\) 912.401
Dual form 912.2.cc.h.257.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.602283 - 1.62396i) q^{3} +(1.11883 + 3.07396i) q^{5} +(-0.429476 - 0.743873i) q^{7} +(-2.27451 + 1.95617i) q^{9} +(0.0707492 + 0.0408471i) q^{11} +(-1.68439 - 2.00738i) q^{13} +(4.31815 - 3.66834i) q^{15} +(4.78209 + 0.843212i) q^{17} +(4.33435 + 0.461939i) q^{19} +(-0.949357 + 1.14547i) q^{21} +(-3.09543 + 8.50464i) q^{23} +(-4.36725 + 3.66456i) q^{25} +(4.54665 + 2.51555i) q^{27} +(0.482799 + 2.73809i) q^{29} +(2.12534 - 1.22707i) q^{31} +(0.0237231 - 0.139496i) q^{33} +(1.80613 - 2.15246i) q^{35} +6.54795i q^{37} +(-2.24543 + 3.94439i) q^{39} +(9.27084 + 7.77916i) q^{41} +(-3.08205 + 1.12177i) q^{43} +(-8.55799 - 4.80314i) q^{45} +(0.0616204 - 0.0108653i) q^{47} +(3.13110 - 5.42323i) q^{49} +(-1.51083 - 8.27379i) q^{51} +(-0.185336 - 0.0674568i) q^{53} +(-0.0464060 + 0.263181i) q^{55} +(-1.86033 - 7.31705i) q^{57} +(0.821982 - 4.66169i) q^{59} +(0.659376 + 0.239993i) q^{61} +(2.43199 + 0.851822i) q^{63} +(4.28605 - 7.42366i) q^{65} +(6.85018 - 1.20787i) q^{67} +(15.6755 - 0.0953242i) q^{69} +(0.998357 - 0.363372i) q^{71} +(4.95776 + 4.16006i) q^{73} +(8.58142 + 4.88515i) q^{75} -0.0701713i q^{77} +(-7.81462 + 9.31311i) q^{79} +(1.34680 - 8.89866i) q^{81} +(-7.40404 + 4.27472i) q^{83} +(2.75835 + 15.6434i) q^{85} +(4.15578 - 2.43315i) q^{87} +(1.87292 - 1.57156i) q^{89} +(-0.769830 + 2.11509i) q^{91} +(-3.27277 - 2.71244i) q^{93} +(3.42943 + 13.8405i) q^{95} +(17.2282 + 3.03779i) q^{97} +(-0.240824 + 0.0454903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 3 q^{3} - 3 q^{9} + 3 q^{13} + 9 q^{15} + 6 q^{17} - 3 q^{19} + 6 q^{25} - 6 q^{27} - 6 q^{29} + 45 q^{33} + 24 q^{35} - 18 q^{39} - 3 q^{41} + 21 q^{43} - 45 q^{45} - 18 q^{47} - 30 q^{49} + 6 q^{51}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.602283 1.62396i −0.347728 0.937595i
\(4\) 0 0
\(5\) 1.11883 + 3.07396i 0.500357 + 1.37472i 0.890927 + 0.454146i \(0.150055\pi\)
−0.390571 + 0.920573i \(0.627722\pi\)
\(6\) 0 0
\(7\) −0.429476 0.743873i −0.162326 0.281158i 0.773376 0.633947i \(-0.218566\pi\)
−0.935703 + 0.352790i \(0.885233\pi\)
\(8\) 0 0
\(9\) −2.27451 + 1.95617i −0.758170 + 0.652056i
\(10\) 0 0
\(11\) 0.0707492 + 0.0408471i 0.0213317 + 0.0123159i 0.510628 0.859802i \(-0.329413\pi\)
−0.489296 + 0.872118i \(0.662746\pi\)
\(12\) 0 0
\(13\) −1.68439 2.00738i −0.467165 0.556746i 0.480093 0.877218i \(-0.340603\pi\)
−0.947258 + 0.320472i \(0.896159\pi\)
\(14\) 0 0
\(15\) 4.31815 3.66834i 1.11494 0.947160i
\(16\) 0 0
\(17\) 4.78209 + 0.843212i 1.15983 + 0.204509i 0.720262 0.693702i \(-0.244021\pi\)
0.439565 + 0.898211i \(0.355133\pi\)
\(18\) 0 0
\(19\) 4.33435 + 0.461939i 0.994369 + 0.105976i
\(20\) 0 0
\(21\) −0.949357 + 1.14547i −0.207167 + 0.249963i
\(22\) 0 0
\(23\) −3.09543 + 8.50464i −0.645443 + 1.77334i −0.0115312 + 0.999934i \(0.503671\pi\)
−0.633911 + 0.773406i \(0.718552\pi\)
\(24\) 0 0
\(25\) −4.36725 + 3.66456i −0.873450 + 0.732911i
\(26\) 0 0
\(27\) 4.54665 + 2.51555i 0.875002 + 0.484119i
\(28\) 0 0
\(29\) 0.482799 + 2.73809i 0.0896536 + 0.508451i 0.996255 + 0.0864628i \(0.0275564\pi\)
−0.906602 + 0.421988i \(0.861333\pi\)
\(30\) 0 0
\(31\) 2.12534 1.22707i 0.381723 0.220388i −0.296845 0.954926i \(-0.595934\pi\)
0.678568 + 0.734538i \(0.262601\pi\)
\(32\) 0 0
\(33\) 0.0237231 0.139496i 0.00412966 0.0242831i
\(34\) 0 0
\(35\) 1.80613 2.15246i 0.305292 0.363832i
\(36\) 0 0
\(37\) 6.54795i 1.07648i 0.842793 + 0.538238i \(0.180910\pi\)
−0.842793 + 0.538238i \(0.819090\pi\)
\(38\) 0 0
\(39\) −2.24543 + 3.94439i −0.359556 + 0.631608i
\(40\) 0 0
\(41\) 9.27084 + 7.77916i 1.44786 + 1.21490i 0.934122 + 0.356955i \(0.116185\pi\)
0.513741 + 0.857945i \(0.328259\pi\)
\(42\) 0 0
\(43\) −3.08205 + 1.12177i −0.470008 + 0.171069i −0.566156 0.824298i \(-0.691570\pi\)
0.0961482 + 0.995367i \(0.469348\pi\)
\(44\) 0 0
\(45\) −8.55799 4.80314i −1.27575 0.716010i
\(46\) 0 0
\(47\) 0.0616204 0.0108653i 0.00898826 0.00158487i −0.169152 0.985590i \(-0.554103\pi\)
0.178140 + 0.984005i \(0.442992\pi\)
\(48\) 0 0
\(49\) 3.13110 5.42323i 0.447300 0.774747i
\(50\) 0 0
\(51\) −1.51083 8.27379i −0.211558 1.15856i
\(52\) 0 0
\(53\) −0.185336 0.0674568i −0.0254579 0.00926591i 0.329260 0.944239i \(-0.393201\pi\)
−0.354718 + 0.934973i \(0.615423\pi\)
\(54\) 0 0
\(55\) −0.0464060 + 0.263181i −0.00625738 + 0.0354874i
\(56\) 0 0
\(57\) −1.86033 7.31705i −0.246407 0.969166i
\(58\) 0 0
\(59\) 0.821982 4.66169i 0.107013 0.606900i −0.883384 0.468649i \(-0.844741\pi\)
0.990397 0.138251i \(-0.0441481\pi\)
\(60\) 0 0
\(61\) 0.659376 + 0.239993i 0.0844245 + 0.0307280i 0.383887 0.923380i \(-0.374585\pi\)
−0.299463 + 0.954108i \(0.596807\pi\)
\(62\) 0 0
\(63\) 2.43199 + 0.851822i 0.306402 + 0.107319i
\(64\) 0 0
\(65\) 4.28605 7.42366i 0.531620 0.920792i
\(66\) 0 0
\(67\) 6.85018 1.20787i 0.836882 0.147565i 0.261248 0.965272i \(-0.415866\pi\)
0.575635 + 0.817707i \(0.304755\pi\)
\(68\) 0 0
\(69\) 15.6755 0.0953242i 1.88711 0.0114757i
\(70\) 0 0
\(71\) 0.998357 0.363372i 0.118483 0.0431243i −0.282098 0.959386i \(-0.591030\pi\)
0.400581 + 0.916261i \(0.368808\pi\)
\(72\) 0 0
\(73\) 4.95776 + 4.16006i 0.580262 + 0.486898i 0.885033 0.465528i \(-0.154136\pi\)
−0.304771 + 0.952426i \(0.598580\pi\)
\(74\) 0 0
\(75\) 8.58142 + 4.88515i 0.990898 + 0.564089i
\(76\) 0 0
\(77\) 0.0701713i 0.00799676i
\(78\) 0 0
\(79\) −7.81462 + 9.31311i −0.879214 + 1.04781i 0.119275 + 0.992861i \(0.461943\pi\)
−0.998489 + 0.0549452i \(0.982502\pi\)
\(80\) 0 0
\(81\) 1.34680 8.89866i 0.149645 0.988740i
\(82\) 0 0
\(83\) −7.40404 + 4.27472i −0.812699 + 0.469212i −0.847892 0.530169i \(-0.822129\pi\)
0.0351935 + 0.999381i \(0.488795\pi\)
\(84\) 0 0
\(85\) 2.75835 + 15.6434i 0.299185 + 1.69676i
\(86\) 0 0
\(87\) 4.15578 2.43315i 0.445546 0.260861i
\(88\) 0 0
\(89\) 1.87292 1.57156i 0.198529 0.166585i −0.538104 0.842879i \(-0.680859\pi\)
0.736633 + 0.676293i \(0.236415\pi\)
\(90\) 0 0
\(91\) −0.769830 + 2.11509i −0.0807001 + 0.221722i
\(92\) 0 0
\(93\) −3.27277 2.71244i −0.339370 0.281267i
\(94\) 0 0
\(95\) 3.42943 + 13.8405i 0.351852 + 1.42000i
\(96\) 0 0
\(97\) 17.2282 + 3.03779i 1.74926 + 0.308441i 0.954439 0.298406i \(-0.0964549\pi\)
0.794819 + 0.606847i \(0.207566\pi\)
\(98\) 0 0
\(99\) −0.240824 + 0.0454903i −0.0242037 + 0.00457195i
\(100\) 0 0
\(101\) −10.3508 12.3356i −1.02995 1.22744i −0.973417 0.229042i \(-0.926441\pi\)
−0.0565300 0.998401i \(-0.518004\pi\)
\(102\) 0 0
\(103\) 14.6928 + 8.48289i 1.44772 + 0.835844i 0.998346 0.0574976i \(-0.0183122\pi\)
0.449378 + 0.893341i \(0.351645\pi\)
\(104\) 0 0
\(105\) −4.58332 1.63670i −0.447286 0.159725i
\(106\) 0 0
\(107\) −8.79441 15.2324i −0.850188 1.47257i −0.881039 0.473044i \(-0.843155\pi\)
0.0308510 0.999524i \(-0.490178\pi\)
\(108\) 0 0
\(109\) −5.48720 15.0760i −0.525579 1.44402i −0.864227 0.503102i \(-0.832192\pi\)
0.338648 0.940913i \(-0.390030\pi\)
\(110\) 0 0
\(111\) 10.6336 3.94371i 1.00930 0.374321i
\(112\) 0 0
\(113\) −7.51726 −0.707164 −0.353582 0.935403i \(-0.615036\pi\)
−0.353582 + 0.935403i \(0.615036\pi\)
\(114\) 0 0
\(115\) −29.6062 −2.76079
\(116\) 0 0
\(117\) 7.75793 + 1.27085i 0.717221 + 0.117490i
\(118\) 0 0
\(119\) −1.42655 3.91941i −0.130771 0.359292i
\(120\) 0 0
\(121\) −5.49666 9.52050i −0.499697 0.865500i
\(122\) 0 0
\(123\) 7.04940 19.7408i 0.635623 1.77996i
\(124\) 0 0
\(125\) −1.98603 1.14664i −0.177636 0.102558i
\(126\) 0 0
\(127\) 6.88492 + 8.20512i 0.610938 + 0.728087i 0.979484 0.201522i \(-0.0645889\pi\)
−0.368546 + 0.929609i \(0.620144\pi\)
\(128\) 0 0
\(129\) 3.67798 + 4.32950i 0.323828 + 0.381192i
\(130\) 0 0
\(131\) −10.3723 1.82892i −0.906232 0.159793i −0.298940 0.954272i \(-0.596633\pi\)
−0.607292 + 0.794479i \(0.707744\pi\)
\(132\) 0 0
\(133\) −1.51787 3.42260i −0.131616 0.296777i
\(134\) 0 0
\(135\) −2.64580 + 16.7907i −0.227714 + 1.44511i
\(136\) 0 0
\(137\) −2.81895 + 7.74500i −0.240839 + 0.661700i 0.759103 + 0.650970i \(0.225638\pi\)
−0.999942 + 0.0107298i \(0.996585\pi\)
\(138\) 0 0
\(139\) −10.9726 + 9.20715i −0.930688 + 0.780940i −0.975941 0.218036i \(-0.930035\pi\)
0.0452529 + 0.998976i \(0.485591\pi\)
\(140\) 0 0
\(141\) −0.0547578 0.0935252i −0.00461144 0.00787625i
\(142\) 0 0
\(143\) −0.0371737 0.210823i −0.00310862 0.0176299i
\(144\) 0 0
\(145\) −7.87662 + 4.54757i −0.654118 + 0.377655i
\(146\) 0 0
\(147\) −10.6929 1.81848i −0.881938 0.149985i
\(148\) 0 0
\(149\) 4.58786 5.46760i 0.375852 0.447923i −0.544648 0.838665i \(-0.683337\pi\)
0.920501 + 0.390741i \(0.127781\pi\)
\(150\) 0 0
\(151\) 12.9655i 1.05511i −0.849520 0.527557i \(-0.823108\pi\)
0.849520 0.527557i \(-0.176892\pi\)
\(152\) 0 0
\(153\) −12.5264 + 7.43669i −1.01270 + 0.601220i
\(154\) 0 0
\(155\) 6.14986 + 5.16035i 0.493969 + 0.414489i
\(156\) 0 0
\(157\) −9.95071 + 3.62176i −0.794153 + 0.289048i −0.707061 0.707152i \(-0.749980\pi\)
−0.0870919 + 0.996200i \(0.527757\pi\)
\(158\) 0 0
\(159\) 0.00207734 + 0.341607i 0.000164744 + 0.0270912i
\(160\) 0 0
\(161\) 7.65579 1.34992i 0.603360 0.106389i
\(162\) 0 0
\(163\) −6.94030 + 12.0210i −0.543607 + 0.941554i 0.455087 + 0.890447i \(0.349608\pi\)
−0.998693 + 0.0511070i \(0.983725\pi\)
\(164\) 0 0
\(165\) 0.455346 0.0831480i 0.0354487 0.00647306i
\(166\) 0 0
\(167\) −2.52985 0.920790i −0.195766 0.0712529i 0.242277 0.970207i \(-0.422106\pi\)
−0.438042 + 0.898954i \(0.644328\pi\)
\(168\) 0 0
\(169\) 1.06503 6.04010i 0.0819256 0.464623i
\(170\) 0 0
\(171\) −10.7622 + 7.42804i −0.823003 + 0.568037i
\(172\) 0 0
\(173\) 2.01145 11.4075i 0.152928 0.867296i −0.807728 0.589555i \(-0.799303\pi\)
0.960656 0.277741i \(-0.0895858\pi\)
\(174\) 0 0
\(175\) 4.60159 + 1.67484i 0.347848 + 0.126606i
\(176\) 0 0
\(177\) −8.06548 + 1.47279i −0.606238 + 0.110701i
\(178\) 0 0
\(179\) 7.22214 12.5091i 0.539808 0.934975i −0.459106 0.888382i \(-0.651830\pi\)
0.998914 0.0465934i \(-0.0148365\pi\)
\(180\) 0 0
\(181\) −8.37233 + 1.47627i −0.622310 + 0.109730i −0.475908 0.879495i \(-0.657881\pi\)
−0.146402 + 0.989225i \(0.546769\pi\)
\(182\) 0 0
\(183\) −0.00739062 1.21535i −0.000546330 0.0898410i
\(184\) 0 0
\(185\) −20.1282 + 7.32605i −1.47985 + 0.538622i
\(186\) 0 0
\(187\) 0.303886 + 0.254991i 0.0222224 + 0.0186468i
\(188\) 0 0
\(189\) −0.0814184 4.46250i −0.00592232 0.324599i
\(190\) 0 0
\(191\) 8.40418i 0.608105i 0.952655 + 0.304052i \(0.0983398\pi\)
−0.952655 + 0.304052i \(0.901660\pi\)
\(192\) 0 0
\(193\) −11.6984 + 13.9416i −0.842067 + 1.00354i 0.157804 + 0.987470i \(0.449558\pi\)
−0.999871 + 0.0160655i \(0.994886\pi\)
\(194\) 0 0
\(195\) −14.6372 2.48925i −1.04819 0.178259i
\(196\) 0 0
\(197\) −13.1130 + 7.57082i −0.934266 + 0.539399i −0.888158 0.459538i \(-0.848015\pi\)
−0.0461077 + 0.998936i \(0.514682\pi\)
\(198\) 0 0
\(199\) −2.17168 12.3162i −0.153946 0.873072i −0.959743 0.280880i \(-0.909374\pi\)
0.805797 0.592192i \(-0.201737\pi\)
\(200\) 0 0
\(201\) −6.08728 10.3970i −0.429364 0.733345i
\(202\) 0 0
\(203\) 1.82944 1.53508i 0.128402 0.107742i
\(204\) 0 0
\(205\) −13.5403 + 37.2018i −0.945699 + 2.59829i
\(206\) 0 0
\(207\) −9.59591 25.3991i −0.666962 1.76536i
\(208\) 0 0
\(209\) 0.287783 + 0.209727i 0.0199064 + 0.0145071i
\(210\) 0 0
\(211\) 3.97468 + 0.700843i 0.273628 + 0.0482480i 0.308778 0.951134i \(-0.400080\pi\)
−0.0351503 + 0.999382i \(0.511191\pi\)
\(212\) 0 0
\(213\) −1.19140 1.40244i −0.0816331 0.0960937i
\(214\) 0 0
\(215\) −6.89658 8.21902i −0.470343 0.560533i
\(216\) 0 0
\(217\) −1.82557 1.05399i −0.123927 0.0715495i
\(218\) 0 0
\(219\) 3.76980 10.5567i 0.254740 0.713359i
\(220\) 0 0
\(221\) −6.36226 11.0197i −0.427972 0.741269i
\(222\) 0 0
\(223\) 4.91472 + 13.5031i 0.329114 + 0.904234i 0.988337 + 0.152286i \(0.0486634\pi\)
−0.659222 + 0.751948i \(0.729114\pi\)
\(224\) 0 0
\(225\) 2.76486 16.8782i 0.184324 1.12521i
\(226\) 0 0
\(227\) −5.32884 −0.353688 −0.176844 0.984239i \(-0.556589\pi\)
−0.176844 + 0.984239i \(0.556589\pi\)
\(228\) 0 0
\(229\) 26.6471 1.76089 0.880445 0.474148i \(-0.157244\pi\)
0.880445 + 0.474148i \(0.157244\pi\)
\(230\) 0 0
\(231\) −0.113956 + 0.0422629i −0.00749772 + 0.00278070i
\(232\) 0 0
\(233\) 5.75863 + 15.8217i 0.377260 + 1.03651i 0.972487 + 0.232956i \(0.0748400\pi\)
−0.595227 + 0.803558i \(0.702938\pi\)
\(234\) 0 0
\(235\) 0.102342 + 0.177262i 0.00667609 + 0.0115633i
\(236\) 0 0
\(237\) 19.8308 + 7.08154i 1.28815 + 0.459995i
\(238\) 0 0
\(239\) 7.64559 + 4.41418i 0.494552 + 0.285530i 0.726461 0.687208i \(-0.241164\pi\)
−0.231909 + 0.972737i \(0.574497\pi\)
\(240\) 0 0
\(241\) −5.37046 6.40027i −0.345942 0.412277i 0.564817 0.825216i \(-0.308947\pi\)
−0.910759 + 0.412939i \(0.864502\pi\)
\(242\) 0 0
\(243\) −15.2622 + 3.17235i −0.979074 + 0.203506i
\(244\) 0 0
\(245\) 20.1740 + 3.55722i 1.28887 + 0.227262i
\(246\) 0 0
\(247\) −6.37345 9.47876i −0.405533 0.603119i
\(248\) 0 0
\(249\) 11.4013 + 9.44929i 0.722529 + 0.598824i
\(250\) 0 0
\(251\) 6.85409 18.8315i 0.432626 1.18863i −0.511568 0.859243i \(-0.670935\pi\)
0.944194 0.329389i \(-0.106843\pi\)
\(252\) 0 0
\(253\) −0.566389 + 0.475257i −0.0356086 + 0.0298791i
\(254\) 0 0
\(255\) 23.7430 13.9012i 1.48684 0.870527i
\(256\) 0 0
\(257\) −3.45168 19.5754i −0.215310 1.22108i −0.880368 0.474291i \(-0.842704\pi\)
0.665058 0.746792i \(-0.268407\pi\)
\(258\) 0 0
\(259\) 4.87084 2.81218i 0.302659 0.174741i
\(260\) 0 0
\(261\) −6.45430 5.28338i −0.399511 0.327033i
\(262\) 0 0
\(263\) 10.0603 11.9894i 0.620342 0.739295i −0.360787 0.932648i \(-0.617492\pi\)
0.981129 + 0.193353i \(0.0619363\pi\)
\(264\) 0 0
\(265\) 0.645190i 0.0396337i
\(266\) 0 0
\(267\) −3.68018 2.09502i −0.225224 0.128213i
\(268\) 0 0
\(269\) −0.365830 0.306968i −0.0223051 0.0187162i 0.631567 0.775321i \(-0.282412\pi\)
−0.653872 + 0.756605i \(0.726857\pi\)
\(270\) 0 0
\(271\) 4.67021 1.69982i 0.283695 0.103257i −0.196253 0.980553i \(-0.562878\pi\)
0.479949 + 0.877297i \(0.340655\pi\)
\(272\) 0 0
\(273\) 3.89848 0.0237070i 0.235947 0.00143481i
\(274\) 0 0
\(275\) −0.458666 + 0.0808752i −0.0276586 + 0.00487696i
\(276\) 0 0
\(277\) −11.1334 + 19.2835i −0.668939 + 1.15864i 0.309263 + 0.950977i \(0.399918\pi\)
−0.978201 + 0.207659i \(0.933416\pi\)
\(278\) 0 0
\(279\) −2.43376 + 6.94851i −0.145706 + 0.415996i
\(280\) 0 0
\(281\) −8.78035 3.19578i −0.523792 0.190645i 0.0665726 0.997782i \(-0.478794\pi\)
−0.590364 + 0.807137i \(0.701016\pi\)
\(282\) 0 0
\(283\) 2.03478 11.5398i 0.120955 0.685972i −0.862673 0.505762i \(-0.831211\pi\)
0.983628 0.180210i \(-0.0576776\pi\)
\(284\) 0 0
\(285\) 20.4109 13.9051i 1.20904 0.823669i
\(286\) 0 0
\(287\) 1.80511 10.2373i 0.106552 0.604288i
\(288\) 0 0
\(289\) 6.18261 + 2.25029i 0.363683 + 0.132370i
\(290\) 0 0
\(291\) −5.44297 29.8076i −0.319073 1.74735i
\(292\) 0 0
\(293\) −8.25942 + 14.3057i −0.482520 + 0.835750i −0.999799 0.0200674i \(-0.993612\pi\)
0.517278 + 0.855817i \(0.326945\pi\)
\(294\) 0 0
\(295\) 15.2495 2.68890i 0.887862 0.156554i
\(296\) 0 0
\(297\) 0.218918 + 0.363691i 0.0127029 + 0.0211035i
\(298\) 0 0
\(299\) 22.2859 8.11141i 1.28883 0.469095i
\(300\) 0 0
\(301\) 2.15812 + 1.81088i 0.124392 + 0.104377i
\(302\) 0 0
\(303\) −13.7985 + 24.2389i −0.792703 + 1.39249i
\(304\) 0 0
\(305\) 2.29541i 0.131435i
\(306\) 0 0
\(307\) 18.1070 21.5791i 1.03342 1.23158i 0.0610528 0.998135i \(-0.480554\pi\)
0.972369 0.233449i \(-0.0750013\pi\)
\(308\) 0 0
\(309\) 4.92668 28.9697i 0.280269 1.64803i
\(310\) 0 0
\(311\) −26.8208 + 15.4850i −1.52087 + 0.878074i −0.521172 + 0.853451i \(0.674505\pi\)
−0.999697 + 0.0246229i \(0.992162\pi\)
\(312\) 0 0
\(313\) −3.40251 19.2966i −0.192321 1.09071i −0.916182 0.400762i \(-0.868745\pi\)
0.723861 0.689946i \(-0.242366\pi\)
\(314\) 0 0
\(315\) 0.102517 + 8.42889i 0.00577620 + 0.474914i
\(316\) 0 0
\(317\) 20.3094 17.0416i 1.14069 0.957153i 0.141230 0.989977i \(-0.454894\pi\)
0.999461 + 0.0328235i \(0.0104499\pi\)
\(318\) 0 0
\(319\) −0.0776853 + 0.213439i −0.00434954 + 0.0119503i
\(320\) 0 0
\(321\) −19.4401 + 23.4560i −1.08504 + 1.30919i
\(322\) 0 0
\(323\) 20.3378 + 5.86381i 1.13162 + 0.326271i
\(324\) 0 0
\(325\) 14.7123 + 2.59417i 0.816091 + 0.143899i
\(326\) 0 0
\(327\) −21.1780 + 17.9910i −1.17114 + 0.994905i
\(328\) 0 0
\(329\) −0.0345469 0.0411714i −0.00190463 0.00226985i
\(330\) 0 0
\(331\) 7.69674 + 4.44371i 0.423051 + 0.244249i 0.696382 0.717672i \(-0.254792\pi\)
−0.273331 + 0.961920i \(0.588125\pi\)
\(332\) 0 0
\(333\) −12.8089 14.8934i −0.701923 0.816152i
\(334\) 0 0
\(335\) 11.3771 + 19.7058i 0.621600 + 1.07664i
\(336\) 0 0
\(337\) −6.53898 17.9657i −0.356201 0.978653i −0.980336 0.197337i \(-0.936771\pi\)
0.624135 0.781316i \(-0.285451\pi\)
\(338\) 0 0
\(339\) 4.52751 + 12.2077i 0.245901 + 0.663034i
\(340\) 0 0
\(341\) 0.200488 0.0108571
\(342\) 0 0
\(343\) −11.3916 −0.615088
\(344\) 0 0
\(345\) 17.8313 + 48.0794i 0.960005 + 2.58851i
\(346\) 0 0
\(347\) 2.26084 + 6.21161i 0.121368 + 0.333457i 0.985467 0.169865i \(-0.0543332\pi\)
−0.864099 + 0.503322i \(0.832111\pi\)
\(348\) 0 0
\(349\) −18.2170 31.5528i −0.975135 1.68898i −0.679489 0.733686i \(-0.737798\pi\)
−0.295646 0.955297i \(-0.595535\pi\)
\(350\) 0 0
\(351\) −2.60865 13.3640i −0.139240 0.713317i
\(352\) 0 0
\(353\) −23.6954 13.6805i −1.26118 0.728142i −0.287876 0.957668i \(-0.592949\pi\)
−0.973303 + 0.229526i \(0.926282\pi\)
\(354\) 0 0
\(355\) 2.23399 + 2.66236i 0.118568 + 0.141303i
\(356\) 0 0
\(357\) −5.50579 + 4.67725i −0.291397 + 0.247546i
\(358\) 0 0
\(359\) 30.3472 + 5.35104i 1.60167 + 0.282417i 0.901897 0.431952i \(-0.142175\pi\)
0.699769 + 0.714369i \(0.253286\pi\)
\(360\) 0 0
\(361\) 18.5732 + 4.00441i 0.977538 + 0.210759i
\(362\) 0 0
\(363\) −12.1504 + 14.6604i −0.637730 + 0.769472i
\(364\) 0 0
\(365\) −7.24096 + 19.8944i −0.379009 + 1.04132i
\(366\) 0 0
\(367\) −3.31956 + 2.78544i −0.173280 + 0.145399i −0.725303 0.688430i \(-0.758300\pi\)
0.552023 + 0.833829i \(0.313856\pi\)
\(368\) 0 0
\(369\) −36.3040 + 0.441551i −1.88991 + 0.0229862i
\(370\) 0 0
\(371\) 0.0294180 + 0.166838i 0.00152731 + 0.00866178i
\(372\) 0 0
\(373\) −8.73704 + 5.04433i −0.452387 + 0.261186i −0.708838 0.705372i \(-0.750780\pi\)
0.256451 + 0.966557i \(0.417447\pi\)
\(374\) 0 0
\(375\) −0.665942 + 3.91584i −0.0343891 + 0.202213i
\(376\) 0 0
\(377\) 4.68316 5.58117i 0.241195 0.287445i
\(378\) 0 0
\(379\) 20.2254i 1.03891i 0.854498 + 0.519455i \(0.173865\pi\)
−0.854498 + 0.519455i \(0.826135\pi\)
\(380\) 0 0
\(381\) 9.17815 16.1227i 0.470211 0.825989i
\(382\) 0 0
\(383\) 20.9229 + 17.5564i 1.06911 + 0.897091i 0.994972 0.100156i \(-0.0319343\pi\)
0.0741401 + 0.997248i \(0.476379\pi\)
\(384\) 0 0
\(385\) 0.215704 0.0785098i 0.0109933 0.00400123i
\(386\) 0 0
\(387\) 4.81577 8.58049i 0.244799 0.436171i
\(388\) 0 0
\(389\) 17.2366 3.03928i 0.873931 0.154098i 0.281347 0.959606i \(-0.409219\pi\)
0.592584 + 0.805509i \(0.298108\pi\)
\(390\) 0 0
\(391\) −21.9739 + 38.0598i −1.11127 + 1.92477i
\(392\) 0 0
\(393\) 3.27696 + 17.9457i 0.165301 + 0.905243i
\(394\) 0 0
\(395\) −37.3714 13.6021i −1.88036 0.684395i
\(396\) 0 0
\(397\) −1.42602 + 8.08738i −0.0715701 + 0.405894i 0.927884 + 0.372868i \(0.121626\pi\)
−0.999454 + 0.0330262i \(0.989486\pi\)
\(398\) 0 0
\(399\) −4.64399 + 4.52634i −0.232490 + 0.226601i
\(400\) 0 0
\(401\) 1.40363 7.96038i 0.0700939 0.397522i −0.929495 0.368836i \(-0.879756\pi\)
0.999588 0.0286865i \(-0.00913246\pi\)
\(402\) 0 0
\(403\) −6.04309 2.19950i −0.301028 0.109565i
\(404\) 0 0
\(405\) 28.8610 5.81608i 1.43411 0.289003i
\(406\) 0 0
\(407\) −0.267464 + 0.463262i −0.0132577 + 0.0229630i
\(408\) 0 0
\(409\) 32.7238 5.77009i 1.61809 0.285313i 0.710035 0.704167i \(-0.248679\pi\)
0.908053 + 0.418854i \(0.137568\pi\)
\(410\) 0 0
\(411\) 14.2754 0.0868098i 0.704153 0.00428201i
\(412\) 0 0
\(413\) −3.82073 + 1.39063i −0.188006 + 0.0684285i
\(414\) 0 0
\(415\) −21.4242 17.9771i −1.05167 0.882459i
\(416\) 0 0
\(417\) 21.5607 + 12.2739i 1.05583 + 0.601054i
\(418\) 0 0
\(419\) 37.8098i 1.84713i 0.383441 + 0.923565i \(0.374739\pi\)
−0.383441 + 0.923565i \(0.625261\pi\)
\(420\) 0 0
\(421\) 8.59508 10.2432i 0.418898 0.499224i −0.514787 0.857318i \(-0.672129\pi\)
0.933685 + 0.358095i \(0.116573\pi\)
\(422\) 0 0
\(423\) −0.118902 + 0.145253i −0.00578121 + 0.00706246i
\(424\) 0 0
\(425\) −23.9746 + 13.8417i −1.16294 + 0.671423i
\(426\) 0 0
\(427\) −0.104661 0.593564i −0.00506492 0.0287246i
\(428\) 0 0
\(429\) −0.319979 + 0.187343i −0.0154487 + 0.00904503i
\(430\) 0 0
\(431\) 1.27220 1.06750i 0.0612798 0.0514198i −0.611633 0.791141i \(-0.709487\pi\)
0.672913 + 0.739722i \(0.265043\pi\)
\(432\) 0 0
\(433\) 7.77139 21.3517i 0.373469 1.02610i −0.600541 0.799594i \(-0.705048\pi\)
0.974010 0.226504i \(-0.0727297\pi\)
\(434\) 0 0
\(435\) 12.1290 + 10.0524i 0.581543 + 0.481977i
\(436\) 0 0
\(437\) −17.3453 + 35.4322i −0.829740 + 1.69495i
\(438\) 0 0
\(439\) −16.0874 2.83664i −0.767810 0.135386i −0.223994 0.974590i \(-0.571910\pi\)
−0.543815 + 0.839205i \(0.683021\pi\)
\(440\) 0 0
\(441\) 3.48703 + 18.4602i 0.166049 + 0.879055i
\(442\) 0 0
\(443\) −0.317196 0.378020i −0.0150705 0.0179603i 0.758457 0.651724i \(-0.225954\pi\)
−0.773527 + 0.633763i \(0.781509\pi\)
\(444\) 0 0
\(445\) 6.92640 + 3.99896i 0.328343 + 0.189569i
\(446\) 0 0
\(447\) −11.6424 4.15748i −0.550665 0.196642i
\(448\) 0 0
\(449\) 8.55441 + 14.8167i 0.403707 + 0.699242i 0.994170 0.107823i \(-0.0343880\pi\)
−0.590463 + 0.807065i \(0.701055\pi\)
\(450\) 0 0
\(451\) 0.338149 + 0.929056i 0.0159228 + 0.0437475i
\(452\) 0 0
\(453\) −21.0554 + 7.80887i −0.989270 + 0.366893i
\(454\) 0 0
\(455\) −7.36302 −0.345184
\(456\) 0 0
\(457\) 10.8366 0.506914 0.253457 0.967347i \(-0.418432\pi\)
0.253457 + 0.967347i \(0.418432\pi\)
\(458\) 0 0
\(459\) 19.6213 + 15.8634i 0.915845 + 0.740440i
\(460\) 0 0
\(461\) −2.84415 7.81424i −0.132465 0.363945i 0.855672 0.517519i \(-0.173144\pi\)
−0.988137 + 0.153573i \(0.950922\pi\)
\(462\) 0 0
\(463\) −7.82836 13.5591i −0.363815 0.630146i 0.624770 0.780809i \(-0.285193\pi\)
−0.988585 + 0.150663i \(0.951859\pi\)
\(464\) 0 0
\(465\) 4.67626 13.0951i 0.216856 0.607272i
\(466\) 0 0
\(467\) −0.978735 0.565073i −0.0452904 0.0261484i 0.477184 0.878804i \(-0.341658\pi\)
−0.522474 + 0.852655i \(0.674991\pi\)
\(468\) 0 0
\(469\) −3.84049 4.57691i −0.177337 0.211342i
\(470\) 0 0
\(471\) 11.8748 + 13.9783i 0.547160 + 0.644084i
\(472\) 0 0
\(473\) −0.263873 0.0465280i −0.0121329 0.00213936i
\(474\) 0 0
\(475\) −20.6220 + 13.8661i −0.946202 + 0.636219i
\(476\) 0 0
\(477\) 0.553506 0.209118i 0.0253433 0.00957484i
\(478\) 0 0
\(479\) −0.641136 + 1.76151i −0.0292943 + 0.0804853i −0.953478 0.301464i \(-0.902525\pi\)
0.924183 + 0.381949i \(0.124747\pi\)
\(480\) 0 0
\(481\) 13.1442 11.0293i 0.599323 0.502892i
\(482\) 0 0
\(483\) −6.80317 11.6197i −0.309555 0.528714i
\(484\) 0 0
\(485\) 9.93737 + 56.3576i 0.451233 + 2.55907i
\(486\) 0 0
\(487\) 18.2707 10.5486i 0.827925 0.478003i −0.0252166 0.999682i \(-0.508028\pi\)
0.853142 + 0.521679i \(0.174694\pi\)
\(488\) 0 0
\(489\) 23.7016 + 4.03078i 1.07182 + 0.182278i
\(490\) 0 0
\(491\) 23.2228 27.6759i 1.04803 1.24900i 0.0803646 0.996766i \(-0.474392\pi\)
0.967667 0.252230i \(-0.0811640\pi\)
\(492\) 0 0
\(493\) 13.5009i 0.608050i
\(494\) 0 0
\(495\) −0.409277 0.689387i −0.0183956 0.0309856i
\(496\) 0 0
\(497\) −0.699072 0.586591i −0.0313577 0.0263122i
\(498\) 0 0
\(499\) 16.7104 6.08209i 0.748061 0.272272i 0.0602711 0.998182i \(-0.480803\pi\)
0.687789 + 0.725910i \(0.258581\pi\)
\(500\) 0 0
\(501\) 0.0283558 + 4.66296i 0.00126684 + 0.208326i
\(502\) 0 0
\(503\) −31.2763 + 5.51485i −1.39454 + 0.245895i −0.819898 0.572510i \(-0.805970\pi\)
−0.574642 + 0.818405i \(0.694859\pi\)
\(504\) 0 0
\(505\) 26.3385 45.6196i 1.17205 2.03005i
\(506\) 0 0
\(507\) −10.4503 + 1.90827i −0.464116 + 0.0847494i
\(508\) 0 0
\(509\) −10.8141 3.93599i −0.479324 0.174460i 0.0910472 0.995847i \(-0.470979\pi\)
−0.570372 + 0.821387i \(0.693201\pi\)
\(510\) 0 0
\(511\) 0.965318 5.47459i 0.0427031 0.242182i
\(512\) 0 0
\(513\) 18.5447 + 13.0036i 0.818770 + 0.574122i
\(514\) 0 0
\(515\) −9.63734 + 54.6560i −0.424672 + 2.40843i
\(516\) 0 0
\(517\) 0.00480341 + 0.00174830i 0.000211254 + 7.68901e-5i
\(518\) 0 0
\(519\) −19.7368 + 3.60402i −0.866350 + 0.158199i
\(520\) 0 0
\(521\) 8.33163 14.4308i 0.365015 0.632225i −0.623763 0.781613i \(-0.714397\pi\)
0.988779 + 0.149388i \(0.0477304\pi\)
\(522\) 0 0
\(523\) 15.2485 2.68873i 0.666771 0.117570i 0.169990 0.985446i \(-0.445626\pi\)
0.496781 + 0.867876i \(0.334515\pi\)
\(524\) 0 0
\(525\) −0.0515769 8.48155i −0.00225100 0.370165i
\(526\) 0 0
\(527\) 11.1983 4.07583i 0.487804 0.177546i
\(528\) 0 0
\(529\) −45.1281 37.8670i −1.96209 1.64639i
\(530\) 0 0
\(531\) 7.24945 + 12.2110i 0.314599 + 0.529912i
\(532\) 0 0
\(533\) 31.7132i 1.37365i
\(534\) 0 0
\(535\) 36.9843 44.0761i 1.59897 1.90558i
\(536\) 0 0
\(537\) −24.6641 4.19446i −1.06433 0.181005i
\(538\) 0 0
\(539\) 0.443046 0.255793i 0.0190833 0.0110178i
\(540\) 0 0
\(541\) 4.81061 + 27.2823i 0.206824 + 1.17296i 0.894543 + 0.446982i \(0.147501\pi\)
−0.687719 + 0.725977i \(0.741388\pi\)
\(542\) 0 0
\(543\) 7.43991 + 12.7072i 0.319277 + 0.545319i
\(544\) 0 0
\(545\) 40.2037 33.7349i 1.72214 1.44505i
\(546\) 0 0
\(547\) 9.83988 27.0348i 0.420723 1.15593i −0.530571 0.847641i \(-0.678022\pi\)
0.951294 0.308286i \(-0.0997553\pi\)
\(548\) 0 0
\(549\) −1.96923 + 0.743984i −0.0840445 + 0.0317525i
\(550\) 0 0
\(551\) 0.827791 + 12.0909i 0.0352651 + 0.515088i
\(552\) 0 0
\(553\) 10.2840 + 1.81334i 0.437319 + 0.0771111i
\(554\) 0 0
\(555\) 24.0201 + 28.2750i 1.01959 + 1.20021i
\(556\) 0 0
\(557\) −16.0015 19.0699i −0.678007 0.808017i 0.311843 0.950134i \(-0.399054\pi\)
−0.989850 + 0.142117i \(0.954609\pi\)
\(558\) 0 0
\(559\) 7.44318 + 4.29732i 0.314813 + 0.181757i
\(560\) 0 0
\(561\) 0.231070 0.647077i 0.00975580 0.0273196i
\(562\) 0 0
\(563\) −3.66324 6.34492i −0.154387 0.267406i 0.778449 0.627708i \(-0.216007\pi\)
−0.932836 + 0.360302i \(0.882674\pi\)
\(564\) 0 0
\(565\) −8.41055 23.1078i −0.353834 0.972152i
\(566\) 0 0
\(567\) −7.19789 + 2.81991i −0.302283 + 0.118425i
\(568\) 0 0
\(569\) −24.9445 −1.04573 −0.522865 0.852416i \(-0.675137\pi\)
−0.522865 + 0.852416i \(0.675137\pi\)
\(570\) 0 0
\(571\) 12.0359 0.503685 0.251843 0.967768i \(-0.418963\pi\)
0.251843 + 0.967768i \(0.418963\pi\)
\(572\) 0 0
\(573\) 13.6481 5.06169i 0.570156 0.211455i
\(574\) 0 0
\(575\) −17.6472 48.4853i −0.735939 2.02198i
\(576\) 0 0
\(577\) 20.1125 + 34.8358i 0.837294 + 1.45023i 0.892149 + 0.451741i \(0.149197\pi\)
−0.0548557 + 0.998494i \(0.517470\pi\)
\(578\) 0 0
\(579\) 29.6863 + 10.6009i 1.23372 + 0.440560i
\(580\) 0 0
\(581\) 6.35971 + 3.67178i 0.263845 + 0.152331i
\(582\) 0 0
\(583\) −0.0103570 0.0123430i −0.000428942 0.000511193i
\(584\) 0 0
\(585\) 4.77327 + 25.2695i 0.197350 + 1.04476i
\(586\) 0 0
\(587\) 2.10163 + 0.370574i 0.0867435 + 0.0152952i 0.216851 0.976205i \(-0.430421\pi\)
−0.130108 + 0.991500i \(0.541532\pi\)
\(588\) 0 0
\(589\) 9.77881 4.33676i 0.402929 0.178693i
\(590\) 0 0
\(591\) 20.1925 + 16.7353i 0.830608 + 0.688399i
\(592\) 0 0
\(593\) −8.28415 + 22.7605i −0.340189 + 0.934663i 0.645150 + 0.764056i \(0.276795\pi\)
−0.985339 + 0.170607i \(0.945427\pi\)
\(594\) 0 0
\(595\) 10.4521 8.77032i 0.428492 0.359548i
\(596\) 0 0
\(597\) −18.6931 + 10.9446i −0.765057 + 0.447931i
\(598\) 0 0
\(599\) −1.57564 8.93591i −0.0643790 0.365111i −0.999929 0.0119171i \(-0.996207\pi\)
0.935550 0.353194i \(-0.114905\pi\)
\(600\) 0 0
\(601\) −29.5677 + 17.0709i −1.20609 + 0.696338i −0.961903 0.273390i \(-0.911855\pi\)
−0.244189 + 0.969728i \(0.578522\pi\)
\(602\) 0 0
\(603\) −13.2180 + 16.1474i −0.538279 + 0.657574i
\(604\) 0 0
\(605\) 23.1158 27.5484i 0.939792 1.12000i
\(606\) 0 0
\(607\) 10.7948i 0.438147i 0.975708 + 0.219073i \(0.0703034\pi\)
−0.975708 + 0.219073i \(0.929697\pi\)
\(608\) 0 0
\(609\) −3.59476 2.04639i −0.145667 0.0829240i
\(610\) 0 0
\(611\) −0.125604 0.105394i −0.00508137 0.00426378i
\(612\) 0 0
\(613\) −1.18462 + 0.431167i −0.0478465 + 0.0174147i −0.365833 0.930681i \(-0.619216\pi\)
0.317986 + 0.948095i \(0.396993\pi\)
\(614\) 0 0
\(615\) 68.5695 0.416976i 2.76499 0.0168141i
\(616\) 0 0
\(617\) 33.9744 5.99060i 1.36776 0.241173i 0.558928 0.829216i \(-0.311213\pi\)
0.808829 + 0.588043i \(0.200102\pi\)
\(618\) 0 0
\(619\) 6.38231 11.0545i 0.256527 0.444317i −0.708782 0.705427i \(-0.750755\pi\)
0.965309 + 0.261110i \(0.0840885\pi\)
\(620\) 0 0
\(621\) −35.4677 + 30.8808i −1.42327 + 1.23920i
\(622\) 0 0
\(623\) −1.97341 0.718264i −0.0790632 0.0287767i
\(624\) 0 0
\(625\) −3.64719 + 20.6843i −0.145888 + 0.827370i
\(626\) 0 0
\(627\) 0.167263 0.593664i 0.00667983 0.0237087i
\(628\) 0 0
\(629\) −5.52130 + 31.3129i −0.220149 + 1.24853i
\(630\) 0 0
\(631\) 30.5499 + 11.1192i 1.21617 + 0.442650i 0.868840 0.495092i \(-0.164866\pi\)
0.347331 + 0.937743i \(0.387088\pi\)
\(632\) 0 0
\(633\) −1.25574 6.87683i −0.0499110 0.273329i
\(634\) 0 0
\(635\) −17.5192 + 30.3441i −0.695228 + 1.20417i
\(636\) 0 0
\(637\) −16.1604 + 2.84952i −0.640300 + 0.112902i
\(638\) 0 0
\(639\) −1.55996 + 2.77945i −0.0617109 + 0.109953i
\(640\) 0 0
\(641\) 3.47965 1.26649i 0.137438 0.0500233i −0.272385 0.962188i \(-0.587813\pi\)
0.409823 + 0.912165i \(0.365590\pi\)
\(642\) 0 0
\(643\) −17.6425 14.8038i −0.695752 0.583806i 0.224809 0.974403i \(-0.427824\pi\)
−0.920562 + 0.390597i \(0.872269\pi\)
\(644\) 0 0
\(645\) −9.19370 + 16.1500i −0.362002 + 0.635904i
\(646\) 0 0
\(647\) 40.9917i 1.61155i −0.592221 0.805775i \(-0.701749\pi\)
0.592221 0.805775i \(-0.298251\pi\)
\(648\) 0 0
\(649\) 0.248571 0.296235i 0.00975726 0.0116283i
\(650\) 0 0
\(651\) −0.612135 + 3.59945i −0.0239915 + 0.141074i
\(652\) 0 0
\(653\) 20.9218 12.0792i 0.818733 0.472696i −0.0312461 0.999512i \(-0.509948\pi\)
0.849979 + 0.526816i \(0.176614\pi\)
\(654\) 0 0
\(655\) −5.98283 33.9303i −0.233769 1.32577i
\(656\) 0 0
\(657\) −19.4143 + 0.236128i −0.757422 + 0.00921223i
\(658\) 0 0
\(659\) 1.56775 1.31550i 0.0610709 0.0512446i −0.611741 0.791058i \(-0.709531\pi\)
0.672812 + 0.739813i \(0.265086\pi\)
\(660\) 0 0
\(661\) 6.54920 17.9938i 0.254734 0.699877i −0.744737 0.667358i \(-0.767425\pi\)
0.999471 0.0325185i \(-0.0103528\pi\)
\(662\) 0 0
\(663\) −14.0638 + 16.9691i −0.546192 + 0.659024i
\(664\) 0 0
\(665\) 8.82271 8.49520i 0.342130 0.329430i
\(666\) 0 0
\(667\) −24.7809 4.36955i −0.959522 0.169190i
\(668\) 0 0
\(669\) 18.9685 16.1140i 0.733363 0.623003i
\(670\) 0 0
\(671\) 0.0368473 + 0.0439129i 0.00142247 + 0.00169524i
\(672\) 0 0
\(673\) −34.8990 20.1490i −1.34526 0.776686i −0.357685 0.933842i \(-0.616434\pi\)
−0.987574 + 0.157157i \(0.949767\pi\)
\(674\) 0 0
\(675\) −29.0747 + 5.67539i −1.11909 + 0.218446i
\(676\) 0 0
\(677\) 15.7186 + 27.2254i 0.604115 + 1.04636i 0.992191 + 0.124730i \(0.0398066\pi\)
−0.388076 + 0.921628i \(0.626860\pi\)
\(678\) 0 0
\(679\) −5.13935 14.1203i −0.197230 0.541885i
\(680\) 0 0
\(681\) 3.20947 + 8.65384i 0.122987 + 0.331616i
\(682\) 0 0
\(683\) −28.6574 −1.09655 −0.548273 0.836299i \(-0.684715\pi\)
−0.548273 + 0.836299i \(0.684715\pi\)
\(684\) 0 0
\(685\) −26.9618 −1.03016
\(686\) 0 0
\(687\) −16.0491 43.2739i −0.612311 1.65100i
\(688\) 0 0
\(689\) 0.176767 + 0.485663i 0.00673428 + 0.0185023i
\(690\) 0 0
\(691\) 8.48032 + 14.6884i 0.322607 + 0.558771i 0.981025 0.193881i \(-0.0621075\pi\)
−0.658418 + 0.752652i \(0.728774\pi\)
\(692\) 0 0
\(693\) 0.137267 + 0.159605i 0.00521434 + 0.00606290i
\(694\) 0 0
\(695\) −40.5790 23.4283i −1.53925 0.888686i
\(696\) 0 0
\(697\) 37.7745 + 45.0179i 1.43081 + 1.70518i
\(698\) 0 0
\(699\) 22.2255 18.8809i 0.840647 0.714143i
\(700\) 0 0
\(701\) 33.0754 + 5.83208i 1.24924 + 0.220275i 0.758872 0.651240i \(-0.225751\pi\)
0.490369 + 0.871515i \(0.336862\pi\)
\(702\) 0 0
\(703\) −3.02475 + 28.3811i −0.114081 + 1.07041i
\(704\) 0 0
\(705\) 0.226228 0.272963i 0.00852026 0.0102804i
\(706\) 0 0
\(707\) −4.73073 + 12.9976i −0.177917 + 0.488824i
\(708\) 0 0
\(709\) −25.4629 + 21.3659i −0.956281 + 0.802415i −0.980344 0.197296i \(-0.936784\pi\)
0.0240635 + 0.999710i \(0.492340\pi\)
\(710\) 0 0
\(711\) −0.443564 36.4695i −0.0166350 1.36771i
\(712\) 0 0
\(713\) 3.85690 + 21.8736i 0.144442 + 0.819172i
\(714\) 0 0
\(715\) 0.606470 0.350146i 0.0226807 0.0130947i
\(716\) 0 0
\(717\) 2.56366 15.0747i 0.0957418 0.562976i
\(718\) 0 0
\(719\) 8.99449 10.7192i 0.335438 0.399759i −0.571789 0.820401i \(-0.693750\pi\)
0.907227 + 0.420641i \(0.138195\pi\)
\(720\) 0 0
\(721\) 14.5728i 0.542718i
\(722\) 0 0
\(723\) −7.15926 + 12.5762i −0.266256 + 0.467714i
\(724\) 0 0
\(725\) −12.1424 10.1887i −0.450957 0.378398i
\(726\) 0 0
\(727\) −0.510067 + 0.185649i −0.0189173 + 0.00688535i −0.351461 0.936202i \(-0.614315\pi\)
0.332544 + 0.943088i \(0.392093\pi\)
\(728\) 0 0
\(729\) 14.3440 + 22.8747i 0.531258 + 0.847210i
\(730\) 0 0
\(731\) −15.6845 + 2.76560i −0.580113 + 0.102290i
\(732\) 0 0
\(733\) 5.12199 8.87154i 0.189185 0.327678i −0.755794 0.654810i \(-0.772749\pi\)
0.944979 + 0.327132i \(0.106082\pi\)
\(734\) 0 0
\(735\) −6.37365 34.9042i −0.235096 1.28746i
\(736\) 0 0
\(737\) 0.533983 + 0.194354i 0.0196695 + 0.00715911i
\(738\) 0 0
\(739\) 3.59976 20.4152i 0.132419 0.750986i −0.844203 0.536023i \(-0.819926\pi\)
0.976622 0.214963i \(-0.0689630\pi\)
\(740\) 0 0
\(741\) −11.5545 + 16.0591i −0.424467 + 0.589947i
\(742\) 0 0
\(743\) 8.26038 46.8469i 0.303044 1.71865i −0.329528 0.944146i \(-0.606889\pi\)
0.632572 0.774502i \(-0.281999\pi\)
\(744\) 0 0
\(745\) 21.9403 + 7.98560i 0.803829 + 0.292570i
\(746\) 0 0
\(747\) 8.47848 24.2065i 0.310211 0.885668i
\(748\) 0 0
\(749\) −7.55397 + 13.0839i −0.276016 + 0.478074i
\(750\) 0 0
\(751\) −17.2179 + 3.03598i −0.628291 + 0.110785i −0.478722 0.877967i \(-0.658900\pi\)
−0.149569 + 0.988751i \(0.547789\pi\)
\(752\) 0 0
\(753\) −34.7097 + 0.211072i −1.26489 + 0.00769190i
\(754\) 0 0
\(755\) 39.8553 14.5062i 1.45048 0.527933i
\(756\) 0 0
\(757\) −20.3564 17.0811i −0.739867 0.620822i 0.192935 0.981212i \(-0.438199\pi\)
−0.932802 + 0.360389i \(0.882644\pi\)
\(758\) 0 0
\(759\) 1.11293 + 0.633556i 0.0403966 + 0.0229966i
\(760\) 0 0
\(761\) 6.30880i 0.228694i −0.993441 0.114347i \(-0.963522\pi\)
0.993441 0.114347i \(-0.0364776\pi\)
\(762\) 0 0
\(763\) −8.85799 + 10.5565i −0.320681 + 0.382172i
\(764\) 0 0
\(765\) −36.8750 30.1853i −1.33322 1.09135i
\(766\) 0 0
\(767\) −10.7423 + 6.20207i −0.387882 + 0.223944i
\(768\) 0 0
\(769\) −7.34927 41.6798i −0.265022 1.50301i −0.768974 0.639280i \(-0.779232\pi\)
0.503952 0.863732i \(-0.331879\pi\)
\(770\) 0 0
\(771\) −29.7109 + 17.3954i −1.07001 + 0.626478i
\(772\) 0 0
\(773\) −28.9328 + 24.2775i −1.04064 + 0.873200i −0.992078 0.125620i \(-0.959908\pi\)
−0.0485610 + 0.998820i \(0.515464\pi\)
\(774\) 0 0
\(775\) −4.78524 + 13.1473i −0.171891 + 0.472267i
\(776\) 0 0
\(777\) −7.50050 6.21634i −0.269079 0.223010i
\(778\) 0 0
\(779\) 36.5896 + 38.0002i 1.31096 + 1.36150i
\(780\) 0 0
\(781\) 0.0854756 + 0.0150717i 0.00305856 + 0.000539306i
\(782\) 0 0
\(783\) −4.69270 + 13.6636i −0.167703 + 0.488298i
\(784\) 0 0
\(785\) −22.2663 26.5360i −0.794720 0.947110i
\(786\) 0 0
\(787\) 18.5458 + 10.7074i 0.661085 + 0.381677i 0.792690 0.609625i \(-0.208680\pi\)
−0.131605 + 0.991302i \(0.542013\pi\)
\(788\) 0 0
\(789\) −25.5294 9.11651i −0.908870 0.324556i
\(790\) 0 0
\(791\) 3.22848 + 5.59189i 0.114791 + 0.198825i
\(792\) 0 0
\(793\) −0.628889 1.72786i −0.0223325 0.0613580i
\(794\) 0 0
\(795\) −1.04776 + 0.388586i −0.0371604 + 0.0137817i
\(796\) 0 0
\(797\) −0.749255 −0.0265400 −0.0132700 0.999912i \(-0.504224\pi\)
−0.0132700 + 0.999912i \(0.504224\pi\)
\(798\) 0 0
\(799\) 0.303836 0.0107489
\(800\) 0 0
\(801\) −1.18572 + 7.23828i −0.0418955 + 0.255752i
\(802\) 0 0
\(803\) 0.180832 + 0.496830i 0.00638141 + 0.0175328i
\(804\) 0 0
\(805\) 12.7151 + 22.0233i 0.448150 + 0.776218i
\(806\) 0 0
\(807\) −0.278172 + 0.778976i −0.00979210 + 0.0274213i
\(808\) 0 0
\(809\) 13.1046 + 7.56593i 0.460732 + 0.266004i 0.712352 0.701822i \(-0.247630\pi\)
−0.251620 + 0.967826i \(0.580963\pi\)
\(810\) 0 0
\(811\) −31.7015 37.7804i −1.11319 1.32665i −0.939772 0.341802i \(-0.888963\pi\)
−0.173419 0.984848i \(-0.555482\pi\)
\(812\) 0 0
\(813\) −5.57323 6.56048i −0.195462 0.230086i
\(814\) 0 0
\(815\) −44.7170 7.88482i −1.56637 0.276193i
\(816\) 0 0
\(817\) −13.8769 + 3.43844i −0.485490 + 0.120296i
\(818\) 0 0
\(819\) −2.38649 6.31672i −0.0833907 0.220724i
\(820\) 0 0
\(821\) 10.0630 27.6480i 0.351203 0.964922i −0.630782 0.775960i \(-0.717266\pi\)
0.981984 0.188961i \(-0.0605121\pi\)
\(822\) 0 0
\(823\) −15.4552 + 12.9684i −0.538733 + 0.452051i −0.871104 0.491098i \(-0.836596\pi\)
0.332371 + 0.943149i \(0.392151\pi\)
\(824\) 0 0
\(825\) 0.407585 + 0.696147i 0.0141903 + 0.0242367i
\(826\) 0 0
\(827\) 2.52531 + 14.3217i 0.0878135 + 0.498015i 0.996714 + 0.0810020i \(0.0258120\pi\)
−0.908900 + 0.417013i \(0.863077\pi\)
\(828\) 0 0
\(829\) −1.52475 + 0.880317i −0.0529569 + 0.0305747i −0.526245 0.850333i \(-0.676400\pi\)
0.473288 + 0.880908i \(0.343067\pi\)
\(830\) 0 0
\(831\) 38.0212 + 6.46602i 1.31894 + 0.224304i
\(832\) 0 0
\(833\) 19.5461 23.2942i 0.677234 0.807096i
\(834\) 0 0
\(835\) 8.80688i 0.304775i
\(836\) 0 0
\(837\) 12.7499 0.232623i 0.440702 0.00804062i
\(838\) 0 0
\(839\) 28.4230 + 23.8498i 0.981272 + 0.823385i 0.984281 0.176610i \(-0.0565132\pi\)
−0.00300848 + 0.999995i \(0.500958\pi\)
\(840\) 0 0
\(841\) 19.9870 7.27469i 0.689208 0.250851i
\(842\) 0 0
\(843\) 0.0984145 + 16.1837i 0.00338957 + 0.557397i
\(844\) 0 0
\(845\) 19.7586 3.48398i 0.679718 0.119853i
\(846\) 0 0
\(847\) −4.72136 + 8.17764i −0.162228 + 0.280987i
\(848\) 0 0
\(849\) −19.9658 + 3.64583i −0.685224 + 0.125124i
\(850\) 0 0
\(851\) −55.6879 20.2687i −1.90896 0.694803i
\(852\) 0 0
\(853\) −2.78182 + 15.7765i −0.0952477 + 0.540177i 0.899423 + 0.437078i \(0.143987\pi\)
−0.994671 + 0.103098i \(0.967124\pi\)
\(854\) 0 0
\(855\) −34.8746 24.7718i −1.19269 0.847177i
\(856\) 0 0
\(857\) −4.48905 + 25.4587i −0.153343 + 0.869652i 0.806942 + 0.590631i \(0.201121\pi\)
−0.960285 + 0.279021i \(0.909990\pi\)
\(858\) 0 0
\(859\) 37.4616 + 13.6349i 1.27817 + 0.465217i 0.889828 0.456297i \(-0.150824\pi\)
0.388346 + 0.921514i \(0.373047\pi\)
\(860\) 0 0
\(861\) −17.7122 + 3.23431i −0.603629 + 0.110225i
\(862\) 0 0
\(863\) −12.4764 + 21.6098i −0.424703 + 0.735607i −0.996393 0.0848630i \(-0.972955\pi\)
0.571690 + 0.820470i \(0.306288\pi\)
\(864\) 0 0
\(865\) 37.3167 6.57994i 1.26881 0.223725i
\(866\) 0 0
\(867\) −0.0692978 11.3956i −0.00235348 0.387016i
\(868\) 0 0
\(869\) −0.933291 + 0.339690i −0.0316597 + 0.0115232i
\(870\) 0 0
\(871\) −13.9630 11.7164i −0.473119 0.396994i
\(872\) 0 0
\(873\) −45.1282 + 26.7918i −1.52736 + 0.906764i
\(874\) 0 0
\(875\) 1.96981i 0.0665916i
\(876\) 0 0
\(877\) 20.4636 24.3876i 0.691007 0.823510i −0.300470 0.953791i \(-0.597144\pi\)
0.991477 + 0.130281i \(0.0415880\pi\)
\(878\) 0 0
\(879\) 28.2065 + 4.79690i 0.951381 + 0.161795i
\(880\) 0 0
\(881\) 3.24440 1.87316i 0.109307 0.0631082i −0.444350 0.895853i \(-0.646565\pi\)
0.553657 + 0.832745i \(0.313232\pi\)
\(882\) 0 0
\(883\) 8.73510 + 49.5392i 0.293960 + 1.66713i 0.671401 + 0.741094i \(0.265693\pi\)
−0.377441 + 0.926034i \(0.623196\pi\)
\(884\) 0 0
\(885\) −13.5512 23.1452i −0.455519 0.778017i
\(886\) 0 0
\(887\) 40.3551 33.8620i 1.35499 1.13697i 0.377498 0.926010i \(-0.376784\pi\)
0.977494 0.210963i \(-0.0676600\pi\)
\(888\) 0 0
\(889\) 3.14667 8.64541i 0.105536 0.289958i
\(890\) 0 0
\(891\) 0.458769 0.574560i 0.0153693 0.0192485i
\(892\) 0 0
\(893\) 0.272104 0.0186293i 0.00910560 0.000623407i
\(894\) 0 0
\(895\) 46.5329 + 8.20501i 1.55542 + 0.274263i
\(896\) 0 0
\(897\) −26.5950 31.3061i −0.887983 1.04528i
\(898\) 0 0
\(899\) 4.38593 + 5.22695i 0.146279 + 0.174329i
\(900\) 0 0
\(901\) −0.829414 0.478862i −0.0276318 0.0159532i
\(902\) 0 0
\(903\) 1.64100 4.59537i 0.0546091 0.152924i
\(904\) 0 0
\(905\) −13.9052 24.0845i −0.462225 0.800597i
\(906\) 0 0
\(907\) −6.50666 17.8769i −0.216050 0.593593i 0.783566 0.621309i \(-0.213399\pi\)
−0.999616 + 0.0277161i \(0.991177\pi\)
\(908\) 0 0
\(909\) 47.6737 + 7.80958i 1.58124 + 0.259027i
\(910\) 0 0
\(911\) −24.6803 −0.817694 −0.408847 0.912603i \(-0.634069\pi\)
−0.408847 + 0.912603i \(0.634069\pi\)
\(912\) 0 0
\(913\) −0.698440 −0.0231150
\(914\) 0 0
\(915\) 3.72766 1.38249i 0.123233 0.0457036i
\(916\) 0 0
\(917\) 3.09417 + 8.50115i 0.102178 + 0.280733i
\(918\) 0 0
\(919\) −1.95798 3.39132i −0.0645877 0.111869i 0.831923 0.554891i \(-0.187240\pi\)
−0.896511 + 0.443021i \(0.853907\pi\)
\(920\) 0 0
\(921\) −45.9492 16.4084i −1.51408 0.540675i
\(922\) 0 0
\(923\) −2.41104 1.39202i −0.0793605 0.0458188i
\(924\) 0 0
\(925\) −23.9953 28.5965i −0.788961 0.940248i
\(926\) 0 0
\(927\) −50.0129 + 9.44717i −1.64264 + 0.310286i
\(928\) 0 0
\(929\) 29.7716 + 5.24954i 0.976775 + 0.172232i 0.639178 0.769059i \(-0.279275\pi\)
0.337597 + 0.941291i \(0.390386\pi\)
\(930\) 0 0
\(931\) 16.0765 22.0598i 0.526886 0.722981i
\(932\) 0 0
\(933\) 41.3008 + 34.2297i 1.35213 + 1.12063i
\(934\) 0 0
\(935\) −0.443835 + 1.21943i −0.0145150 + 0.0398795i
\(936\) 0 0
\(937\) −17.2010 + 14.4334i −0.561933 + 0.471518i −0.878958 0.476900i \(-0.841761\pi\)
0.317025 + 0.948417i \(0.397316\pi\)
\(938\) 0 0
\(939\) −29.2877 + 17.1476i −0.955768 + 0.559590i
\(940\) 0 0
\(941\) −3.28693 18.6411i −0.107151 0.607683i −0.990339 0.138665i \(-0.955719\pi\)
0.883188 0.469018i \(-0.155392\pi\)
\(942\) 0 0
\(943\) −94.8562 + 54.7653i −3.08894 + 1.78340i
\(944\) 0 0
\(945\) 13.6265 5.24306i 0.443269 0.170557i
\(946\) 0 0
\(947\) 2.81773 3.35804i 0.0915638 0.109122i −0.718317 0.695716i \(-0.755087\pi\)
0.809881 + 0.586594i \(0.199532\pi\)
\(948\) 0 0
\(949\) 16.9592i 0.550520i
\(950\) 0 0
\(951\) −39.9070 22.7179i −1.29407 0.736678i
\(952\) 0 0
\(953\) 16.8127 + 14.1075i 0.544617 + 0.456988i 0.873113 0.487517i \(-0.162097\pi\)
−0.328496 + 0.944505i \(0.606542\pi\)
\(954\) 0 0
\(955\) −25.8341 + 9.40286i −0.835973 + 0.304269i
\(956\) 0 0
\(957\) 0.393405 0.00239233i 0.0127170 7.73329e-5i
\(958\) 0 0
\(959\) 6.97197 1.22935i 0.225137 0.0396977i
\(960\) 0 0
\(961\) −12.4886 + 21.6309i −0.402858 + 0.697771i
\(962\) 0 0
\(963\) 49.8001 + 17.4428i 1.60478 + 0.562087i
\(964\) 0 0
\(965\) −55.9444 20.3621i −1.80091 0.655479i
\(966\) 0 0
\(967\) −7.14586 + 40.5262i −0.229795 + 1.30323i 0.623507 + 0.781818i \(0.285707\pi\)
−0.853302 + 0.521416i \(0.825404\pi\)
\(968\) 0 0
\(969\) −2.72646 36.5594i −0.0875867 1.17446i
\(970\) 0 0
\(971\) −5.59380 + 31.7240i −0.179513 + 1.01807i 0.753291 + 0.657688i \(0.228465\pi\)
−0.932804 + 0.360384i \(0.882646\pi\)
\(972\) 0 0
\(973\) 11.5614 + 4.20802i 0.370643 + 0.134903i
\(974\) 0 0
\(975\) −4.64812 25.4546i −0.148859 0.815201i
\(976\) 0 0
\(977\) 11.8264 20.4838i 0.378359 0.655336i −0.612465 0.790498i \(-0.709822\pi\)
0.990824 + 0.135161i \(0.0431553\pi\)
\(978\) 0 0
\(979\) 0.196701 0.0346837i 0.00628659 0.00110850i
\(980\) 0 0
\(981\) 41.9718 + 23.5565i 1.34006 + 0.752103i
\(982\) 0 0
\(983\) −2.60157 + 0.946893i −0.0829771 + 0.0302012i −0.383175 0.923676i \(-0.625169\pi\)
0.300198 + 0.953877i \(0.402947\pi\)
\(984\) 0 0
\(985\) −37.9437 31.8386i −1.20899 1.01446i
\(986\) 0 0
\(987\) −0.0460538 + 0.0808997i −0.00146591 + 0.00257506i
\(988\) 0 0
\(989\) 29.6841i 0.943898i
\(990\) 0 0
\(991\) 14.2221 16.9493i 0.451781 0.538412i −0.491293 0.870994i \(-0.663476\pi\)
0.943074 + 0.332583i \(0.107920\pi\)
\(992\) 0 0
\(993\) 2.58081 15.1756i 0.0818997 0.481583i
\(994\) 0 0
\(995\) 35.4298 20.4554i 1.12320 0.648480i
\(996\) 0 0
\(997\) 8.17166 + 46.3438i 0.258799 + 1.46772i 0.786129 + 0.618062i \(0.212082\pi\)
−0.527330 + 0.849661i \(0.676807\pi\)
\(998\) 0 0
\(999\) −16.4717 + 29.7712i −0.521142 + 0.941919i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.cc.h.401.4 60
3.2 odd 2 912.2.cc.g.401.9 60
4.3 odd 2 456.2.bm.a.401.7 yes 60
12.11 even 2 456.2.bm.b.401.2 yes 60
19.10 odd 18 912.2.cc.g.257.9 60
57.29 even 18 inner 912.2.cc.h.257.4 60
76.67 even 18 456.2.bm.b.257.2 yes 60
228.143 odd 18 456.2.bm.a.257.7 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.257.7 60 228.143 odd 18
456.2.bm.a.401.7 yes 60 4.3 odd 2
456.2.bm.b.257.2 yes 60 76.67 even 18
456.2.bm.b.401.2 yes 60 12.11 even 2
912.2.cc.g.257.9 60 19.10 odd 18
912.2.cc.g.401.9 60 3.2 odd 2
912.2.cc.h.257.4 60 57.29 even 18 inner
912.2.cc.h.401.4 60 1.1 even 1 trivial