Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [912,2,Mod(341,912)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(912, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1, 2, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("912.341");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 912.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.28235666434\) |
Analytic rank: | \(0\) |
Dimension: | \(312\) |
Relative dimension: | \(156\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
341.1 | −1.41379 | − | 0.0345843i | −0.685383 | − | 1.59068i | 1.99761 | + | 0.0977898i | 0.255976 | − | 0.255976i | 0.913976 | + | 2.27259i | 2.27025i | −2.82082 | − | 0.207340i | −2.06050 | + | 2.18044i | −0.370749 | + | 0.353044i | ||
341.2 | −1.41379 | − | 0.0345843i | 1.59068 | + | 0.685383i | 1.99761 | + | 0.0977898i | −0.255976 | + | 0.255976i | −2.22518 | − | 1.02400i | 2.27025i | −2.82082 | − | 0.207340i | 2.06050 | + | 2.18044i | 0.370749 | − | 0.353044i | ||
341.3 | −1.41256 | + | 0.0683968i | 0.703921 | − | 1.58256i | 1.99064 | − | 0.193229i | −3.02347 | + | 3.02347i | −0.886087 | + | 2.28360i | 2.60060i | −2.79868 | + | 0.409101i | −2.00899 | − | 2.22799i | 4.06403 | − | 4.47762i | ||
341.4 | −1.41256 | + | 0.0683968i | 1.58256 | − | 0.703921i | 1.99064 | − | 0.193229i | 3.02347 | − | 3.02347i | −2.18731 | + | 1.10257i | 2.60060i | −2.79868 | + | 0.409101i | 2.00899 | − | 2.22799i | −4.06403 | + | 4.47762i | ||
341.5 | −1.39341 | − | 0.241666i | 1.11976 | − | 1.32141i | 1.88319 | + | 0.673482i | −0.229660 | + | 0.229660i | −1.87963 | + | 1.57066i | − | 3.31284i | −2.46131 | − | 1.39354i | −0.492263 | − | 2.95934i | 0.375512 | − | 0.264510i | |
341.6 | −1.39341 | − | 0.241666i | 1.32141 | − | 1.11976i | 1.88319 | + | 0.673482i | 0.229660 | − | 0.229660i | −2.11188 | + | 1.24095i | − | 3.31284i | −2.46131 | − | 1.39354i | 0.492263 | − | 2.95934i | −0.375512 | + | 0.264510i | |
341.7 | −1.39263 | + | 0.246117i | −1.55590 | + | 0.761034i | 1.87885 | − | 0.685500i | 0.0738937 | − | 0.0738937i | 1.97950 | − | 1.44277i | − | 1.09781i | −2.44784 | + | 1.41707i | 1.84165 | − | 2.36819i | −0.0847204 | + | 0.121093i | |
341.8 | −1.39263 | + | 0.246117i | −0.761034 | + | 1.55590i | 1.87885 | − | 0.685500i | −0.0738937 | + | 0.0738937i | 0.676908 | − | 2.35410i | − | 1.09781i | −2.44784 | + | 1.41707i | −1.84165 | − | 2.36819i | 0.0847204 | − | 0.121093i | |
341.9 | −1.39224 | + | 0.248305i | −1.53787 | − | 0.796835i | 1.87669 | − | 0.691401i | −1.06379 | + | 1.06379i | 2.33895 | + | 0.727528i | − | 4.45201i | −2.44113 | + | 1.42859i | 1.73011 | + | 2.45086i | 1.21691 | − | 1.74520i | |
341.10 | −1.39224 | + | 0.248305i | 0.796835 | + | 1.53787i | 1.87669 | − | 0.691401i | 1.06379 | − | 1.06379i | −1.49125 | − | 1.94324i | − | 4.45201i | −2.44113 | + | 1.42859i | −1.73011 | + | 2.45086i | −1.21691 | + | 1.74520i | |
341.11 | −1.38174 | − | 0.301340i | −1.49274 | + | 0.878474i | 1.81839 | + | 0.832743i | −1.56026 | + | 1.56026i | 2.32730 | − | 0.763997i | 3.98722i | −2.26159 | − | 1.69858i | 1.45657 | − | 2.62267i | 2.62603 | − | 1.68570i | ||
341.12 | −1.38174 | − | 0.301340i | −0.878474 | + | 1.49274i | 1.81839 | + | 0.832743i | 1.56026 | − | 1.56026i | 1.66364 | − | 1.79786i | 3.98722i | −2.26159 | − | 1.69858i | −1.45657 | − | 2.62267i | −2.62603 | + | 1.68570i | ||
341.13 | −1.36478 | − | 0.370630i | −1.67084 | − | 0.456392i | 1.72527 | + | 1.01166i | 2.14913 | − | 2.14913i | 2.11118 | + | 1.24214i | − | 1.36586i | −1.97966 | − | 2.02013i | 2.58341 | + | 1.52512i | −3.72963 | + | 2.13657i | |
341.14 | −1.36478 | − | 0.370630i | 0.456392 | + | 1.67084i | 1.72527 | + | 1.01166i | −2.14913 | + | 2.14913i | −0.00361275 | − | 2.44949i | − | 1.36586i | −1.97966 | − | 2.02013i | −2.58341 | + | 1.52512i | 3.72963 | − | 2.13657i | |
341.15 | −1.36132 | − | 0.383166i | −1.72932 | − | 0.0971903i | 1.70637 | + | 1.04322i | −2.68033 | + | 2.68033i | 2.31692 | + | 0.794924i | − | 1.41487i | −1.92318 | − | 2.07398i | 2.98111 | + | 0.336147i | 4.67578 | − | 2.62176i | |
341.16 | −1.36132 | − | 0.383166i | 0.0971903 | + | 1.72932i | 1.70637 | + | 1.04322i | 2.68033 | − | 2.68033i | 0.530310 | − | 2.39140i | − | 1.41487i | −1.92318 | − | 2.07398i | −2.98111 | + | 0.336147i | −4.67578 | + | 2.62176i | |
341.17 | −1.36035 | + | 0.386597i | −0.0554358 | − | 1.73116i | 1.70109 | − | 1.05181i | 2.23244 | − | 2.23244i | 0.744674 | + | 2.33355i | − | 1.87702i | −1.90744 | + | 2.08846i | −2.99385 | + | 0.191937i | −2.17384 | + | 3.89996i | |
341.18 | −1.36035 | + | 0.386597i | 1.73116 | + | 0.0554358i | 1.70109 | − | 1.05181i | −2.23244 | + | 2.23244i | −2.37641 | + | 0.593851i | − | 1.87702i | −1.90744 | + | 2.08846i | 2.99385 | + | 0.191937i | 2.17384 | − | 3.89996i | |
341.19 | −1.31465 | + | 0.521235i | −1.21642 | − | 1.23301i | 1.45663 | − | 1.37049i | −1.28422 | + | 1.28422i | 2.24186 | + | 0.986945i | 2.11010i | −1.20062 | + | 2.56096i | −0.0406447 | + | 2.99972i | 1.01892 | − | 2.35769i | ||
341.20 | −1.31465 | + | 0.521235i | 1.23301 | + | 1.21642i | 1.45663 | − | 1.37049i | 1.28422 | − | 1.28422i | −2.25503 | − | 0.956481i | 2.11010i | −1.20062 | + | 2.56096i | 0.0406447 | + | 2.99972i | −1.01892 | + | 2.35769i | ||
See next 80 embeddings (of 312 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
16.e | even | 4 | 1 | inner |
19.b | odd | 2 | 1 | inner |
48.i | odd | 4 | 1 | inner |
57.d | even | 2 | 1 | inner |
304.j | odd | 4 | 1 | inner |
912.r | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 912.2.r.a | ✓ | 312 |
3.b | odd | 2 | 1 | inner | 912.2.r.a | ✓ | 312 |
16.e | even | 4 | 1 | inner | 912.2.r.a | ✓ | 312 |
19.b | odd | 2 | 1 | inner | 912.2.r.a | ✓ | 312 |
48.i | odd | 4 | 1 | inner | 912.2.r.a | ✓ | 312 |
57.d | even | 2 | 1 | inner | 912.2.r.a | ✓ | 312 |
304.j | odd | 4 | 1 | inner | 912.2.r.a | ✓ | 312 |
912.r | even | 4 | 1 | inner | 912.2.r.a | ✓ | 312 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
912.2.r.a | ✓ | 312 | 1.a | even | 1 | 1 | trivial |
912.2.r.a | ✓ | 312 | 3.b | odd | 2 | 1 | inner |
912.2.r.a | ✓ | 312 | 16.e | even | 4 | 1 | inner |
912.2.r.a | ✓ | 312 | 19.b | odd | 2 | 1 | inner |
912.2.r.a | ✓ | 312 | 48.i | odd | 4 | 1 | inner |
912.2.r.a | ✓ | 312 | 57.d | even | 2 | 1 | inner |
912.2.r.a | ✓ | 312 | 304.j | odd | 4 | 1 | inner |
912.2.r.a | ✓ | 312 | 912.r | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(912, [\chi])\).