Properties

Label 912.6.a
Level 912912
Weight 66
Character orbit 912.a
Rep. character χ912(1,)\chi_{912}(1,\cdot)
Character field Q\Q
Dimension 9090
Newform subspaces 2727
Sturm bound 960960
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 912.a (trivial)
Character field: Q\Q
Newform subspaces: 27 27
Sturm bound: 960960
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(912))M_{6}(\Gamma_0(912)).

Total New Old
Modular forms 812 90 722
Cusp forms 788 90 698
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331919FrickeDim
++++++++1212
++++--1010
++-++-1313
++--++99
-++++-1212
-++-++1111
--++++1111
----1212
Plus space++4343
Minus space-4747

Trace form

90q76q5+196q7+7290q91208q11+244q13404q172166q19+5500q23+62094q25+420q299432q33+16788q35+25060q37+12168q39+2476q41+97848q99+O(q100) 90 q - 76 q^{5} + 196 q^{7} + 7290 q^{9} - 1208 q^{11} + 244 q^{13} - 404 q^{17} - 2166 q^{19} + 5500 q^{23} + 62094 q^{25} + 420 q^{29} - 9432 q^{33} + 16788 q^{35} + 25060 q^{37} + 12168 q^{39} + 2476 q^{41}+ \cdots - 97848 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(912))S_{6}^{\mathrm{new}}(\Gamma_0(912)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 19
912.6.a.a 912.a 1.a 11 146.270146.270 Q\Q None 57.6.a.a 00 9-9 98-98 240-240 - ++ - SU(2)\mathrm{SU}(2) q9q398q5240q7+34q9+q-9q^{3}-98q^{5}-240q^{7}+3^{4}q^{9}+\cdots
912.6.a.b 912.a 1.a 11 146.270146.270 Q\Q None 114.6.a.d 00 9-9 91-91 3333 - ++ - SU(2)\mathrm{SU}(2) q9q391q5+33q7+34q9+91q11+q-9q^{3}-91q^{5}+33q^{7}+3^{4}q^{9}+91q^{11}+\cdots
912.6.a.c 912.a 1.a 11 146.270146.270 Q\Q None 114.6.a.a 00 9-9 54-54 104-104 - ++ ++ SU(2)\mathrm{SU}(2) q9q354q5104q7+34q9+q-9q^{3}-54q^{5}-104q^{7}+3^{4}q^{9}+\cdots
912.6.a.d 912.a 1.a 11 146.270146.270 Q\Q None 57.6.a.b 00 9-9 66 176176 - ++ - SU(2)\mathrm{SU}(2) q9q3+6q5+176q7+34q9+496q11+q-9q^{3}+6q^{5}+176q^{7}+3^{4}q^{9}+496q^{11}+\cdots
912.6.a.e 912.a 1.a 11 146.270146.270 Q\Q None 114.6.a.b 00 9-9 8181 247247 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+34q5+247q7+34q9+q-9q^{3}+3^{4}q^{5}+247q^{7}+3^{4}q^{9}+\cdots
912.6.a.f 912.a 1.a 11 146.270146.270 Q\Q None 114.6.a.c 00 99 2121 143143 - - ++ SU(2)\mathrm{SU}(2) q+9q3+21q5+143q7+34q9+q+9q^{3}+21q^{5}+143q^{7}+3^{4}q^{9}+\cdots
912.6.a.g 912.a 1.a 22 146.270146.270 Q(17)\Q(\sqrt{17}) None 57.6.a.c 00 18-18 87-87 251251 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+(415β)q5+(112+9β)q7+q-9q^{3}+(-41-5\beta )q^{5}+(11^{2}+9\beta )q^{7}+\cdots
912.6.a.h 912.a 1.a 22 146.270146.270 Q(4089)\Q(\sqrt{4089}) None 114.6.a.f 00 18-18 49-49 105105 - ++ - SU(2)\mathrm{SU}(2) q9q3+(24β)q5+(50+5β)q7+q-9q^{3}+(-24-\beta )q^{5}+(50+5\beta )q^{7}+\cdots
912.6.a.i 912.a 1.a 22 146.270146.270 Q(201)\Q(\sqrt{201}) None 114.6.a.e 00 1818 13-13 3333 - - - SU(2)\mathrm{SU}(2) q+9q3+(45β)q5+(2211β)q7+q+9q^{3}+(-4-5\beta )q^{5}+(22-11\beta )q^{7}+\cdots
912.6.a.j 912.a 1.a 22 146.270146.270 Q(2441)\Q(\sqrt{2441}) None 114.6.a.g 00 1818 5-5 105105 - - - SU(2)\mathrm{SU}(2) q+9q3+(3β)q5+(53+β)q7+q+9q^{3}+(-3-\beta )q^{5}+(53+\beta )q^{7}+\cdots
912.6.a.k 912.a 1.a 33 146.270146.270 3.3.286833.1 None 228.6.a.a 00 27-27 5-5 3333 - ++ - SU(2)\mathrm{SU}(2) q9q3+(22β1β2)q5+(13+)q7+q-9q^{3}+(-2-2\beta _{1}-\beta _{2})q^{5}+(13+\cdots)q^{7}+\cdots
912.6.a.l 912.a 1.a 33 146.270146.270 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 114.6.a.i 00 27-27 135135 125-125 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+(45β1)q5+(42β2)q7+q-9q^{3}+(45-\beta _{1})q^{5}+(-42-\beta _{2})q^{7}+\cdots
912.6.a.m 912.a 1.a 33 146.270146.270 3.3.616092.1 None 57.6.a.d 00 27-27 206206 186-186 - ++ - SU(2)\mathrm{SU}(2) q9q3+(69+β1)q5+(61+β1+)q7+q-9q^{3}+(69+\beta _{1})q^{5}+(-61+\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.n 912.a 1.a 33 146.270146.270 3.3.9153.1 None 57.6.a.e 00 2727 9-9 141-141 - - ++ SU(2)\mathrm{SU}(2) q+9q3+(33β12β2)q5+(47+)q7+q+9q^{3}+(-3-3\beta _{1}-2\beta _{2})q^{5}+(-47+\cdots)q^{7}+\cdots
912.6.a.o 912.a 1.a 33 146.270146.270 3.3.2922585.1 None 114.6.a.h 00 2727 6363 125-125 - - ++ SU(2)\mathrm{SU}(2) q+9q3+(21+β1β2)q5+(40+)q7+q+9q^{3}+(21+\beta _{1}-\beta _{2})q^{5}+(-40+\cdots)q^{7}+\cdots
912.6.a.p 912.a 1.a 44 146.270146.270 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 228.6.a.b 00 3636 84-84 54-54 - - ++ SU(2)\mathrm{SU}(2) q+9q3+(21+β2)q5+(13β1+)q7+q+9q^{3}+(-21+\beta _{2})q^{5}+(-13-\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.q 912.a 1.a 44 146.270146.270 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 456.6.a.a 00 3636 20-20 70-70 ++ - - SU(2)\mathrm{SU}(2) q+9q3+(5+β2)q5+(19+4β1+)q7+q+9q^{3}+(-5+\beta _{2})q^{5}+(-19+4\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.r 912.a 1.a 44 146.270146.270 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 57.6.a.f 00 3636 8-8 142142 - - - SU(2)\mathrm{SU}(2) q+9q3+(3β13β3)q5+(33+)q7+q+9q^{3}+(-3-\beta _{1}-3\beta _{3})q^{5}+(33+\cdots)q^{7}+\cdots
912.6.a.s 912.a 1.a 44 146.270146.270 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 228.6.a.c 00 3636 117117 3333 - - - SU(2)\mathrm{SU}(2) q+9q3+(29β2)q5+(8β1)q7+q+9q^{3}+(29-\beta _{2})q^{5}+(8-\beta _{1})q^{7}+\cdots
912.6.a.t 912.a 1.a 55 146.270146.270 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 456.6.a.c 00 45-45 59-59 149149 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q3+(12β1)q5+(30β1+)q7+q-9q^{3}+(-12-\beta _{1})q^{5}+(30-\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.u 912.a 1.a 55 146.270146.270 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 456.6.a.d 00 45-45 54-54 70-70 ++ ++ - SU(2)\mathrm{SU}(2) q9q3+(11+β2)q5+(14β4)q7+q-9q^{3}+(-11+\beta _{2})q^{5}+(-14-\beta _{4})q^{7}+\cdots
912.6.a.v 912.a 1.a 55 146.270146.270 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 228.6.a.d 00 45-45 6-6 54-54 - ++ ++ SU(2)\mathrm{SU}(2) q9q3+(1β1)q5+(11+β1+)q7+q-9q^{3}+(-1-\beta _{1})q^{5}+(-11+\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.w 912.a 1.a 55 146.270146.270 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 456.6.a.e 00 45-45 6666 22 ++ ++ - SU(2)\mathrm{SU}(2) q9q3+(13+β1)q5β2q7+34q9+q-9q^{3}+(13+\beta _{1})q^{5}-\beta _{2}q^{7}+3^{4}q^{9}+\cdots
912.6.a.x 912.a 1.a 55 146.270146.270 Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots) None 456.6.a.b 00 4545 90-90 22 ++ - - SU(2)\mathrm{SU}(2) q+9q3+(18+β2β3)q5+(β1+)q7+q+9q^{3}+(-18+\beta _{2}-\beta _{3})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots
912.6.a.y 912.a 1.a 66 146.270146.270 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 456.6.a.f 00 5454 65-65 149149 ++ - ++ SU(2)\mathrm{SU}(2) q+9q3+(11β2)q5+(52+β4+)q7+q+9q^{3}+(-11-\beta _{2})q^{5}+(5^{2}+\beta _{4}+\cdots)q^{7}+\cdots
912.6.a.z 912.a 1.a 77 146.270146.270 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 456.6.a.h 00 63-63 29-29 119-119 ++ ++ ++ SU(2)\mathrm{SU}(2) q9q3+(4β1)q5+(17+β3+)q7+q-9q^{3}+(-4-\beta _{1})q^{5}+(-17+\beta _{3}+\cdots)q^{7}+\cdots
912.6.a.ba 912.a 1.a 77 146.270146.270 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 456.6.a.g 00 6363 5555 119-119 ++ - ++ SU(2)\mathrm{SU}(2) q+9q3+(8β1)q5+(17β1β3+)q7+q+9q^{3}+(8-\beta _{1})q^{5}+(-17-\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots

Decomposition of S6old(Γ0(912))S_{6}^{\mathrm{old}}(\Gamma_0(912)) into lower level spaces

S6old(Γ0(912)) S_{6}^{\mathrm{old}}(\Gamma_0(912)) \simeq S6new(Γ0(3))S_{6}^{\mathrm{new}}(\Gamma_0(3))10^{\oplus 10}\oplusS6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))12^{\oplus 12}\oplusS6new(Γ0(6))S_{6}^{\mathrm{new}}(\Gamma_0(6))8^{\oplus 8}\oplusS6new(Γ0(8))S_{6}^{\mathrm{new}}(\Gamma_0(8))8^{\oplus 8}\oplusS6new(Γ0(16))S_{6}^{\mathrm{new}}(\Gamma_0(16))4^{\oplus 4}\oplusS6new(Γ0(19))S_{6}^{\mathrm{new}}(\Gamma_0(19))10^{\oplus 10}\oplusS6new(Γ0(24))S_{6}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS6new(Γ0(38))S_{6}^{\mathrm{new}}(\Gamma_0(38))8^{\oplus 8}\oplusS6new(Γ0(48))S_{6}^{\mathrm{new}}(\Gamma_0(48))2^{\oplus 2}\oplusS6new(Γ0(57))S_{6}^{\mathrm{new}}(\Gamma_0(57))5^{\oplus 5}\oplusS6new(Γ0(76))S_{6}^{\mathrm{new}}(\Gamma_0(76))6^{\oplus 6}\oplusS6new(Γ0(114))S_{6}^{\mathrm{new}}(\Gamma_0(114))4^{\oplus 4}\oplusS6new(Γ0(152))S_{6}^{\mathrm{new}}(\Gamma_0(152))4^{\oplus 4}\oplusS6new(Γ0(228))S_{6}^{\mathrm{new}}(\Gamma_0(228))3^{\oplus 3}\oplusS6new(Γ0(304))S_{6}^{\mathrm{new}}(\Gamma_0(304))2^{\oplus 2}\oplusS6new(Γ0(456))S_{6}^{\mathrm{new}}(\Gamma_0(456))2^{\oplus 2}