Properties

Label 912.6.g
Level $912$
Weight $6$
Character orbit 912.g
Rep. character $\chi_{912}(457,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $960$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(960\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(912, [\chi])\).

Total New Old
Modular forms 808 0 808
Cusp forms 792 0 792
Eisenstein series 16 0 16

Decomposition of \(S_{6}^{\mathrm{old}}(912, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(912, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)