Properties

Label 9196.2.a.l.1.6
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.114134848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} - 6x^{3} + 20x^{2} + 14x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.06973\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06973 q^{3} -0.437868 q^{5} -0.692506 q^{7} +1.28379 q^{9} -4.95486 q^{13} -0.906270 q^{15} +4.83743 q^{17} +1.00000 q^{19} -1.43330 q^{21} -3.86113 q^{23} -4.80827 q^{25} -3.55209 q^{27} +0.0211448 q^{29} +5.63341 q^{31} +0.303226 q^{35} +9.51598 q^{37} -10.2552 q^{39} -9.14630 q^{41} +3.99216 q^{43} -0.562132 q^{45} +7.90972 q^{47} -6.52044 q^{49} +10.0122 q^{51} +7.29473 q^{53} +2.06973 q^{57} +2.40871 q^{59} -5.72103 q^{61} -0.889035 q^{63} +2.16957 q^{65} +4.61821 q^{67} -7.99150 q^{69} +1.43977 q^{71} -0.736270 q^{73} -9.95184 q^{75} -16.3190 q^{79} -11.2033 q^{81} -16.0623 q^{83} -2.11815 q^{85} +0.0437641 q^{87} -4.22636 q^{89} +3.43127 q^{91} +11.6597 q^{93} -0.437868 q^{95} -11.4257 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{5} - 4 q^{7} + 2 q^{9} - 8 q^{13} + 2 q^{15} - 6 q^{17} + 6 q^{19} + 20 q^{21} + 6 q^{23} + 2 q^{25} - 18 q^{27} + 2 q^{29} - 6 q^{31} - 14 q^{35} + 4 q^{37} - 6 q^{39} - 14 q^{41} + 10 q^{43}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.06973 1.19496 0.597480 0.801884i \(-0.296169\pi\)
0.597480 + 0.801884i \(0.296169\pi\)
\(4\) 0 0
\(5\) −0.437868 −0.195820 −0.0979102 0.995195i \(-0.531216\pi\)
−0.0979102 + 0.995195i \(0.531216\pi\)
\(6\) 0 0
\(7\) −0.692506 −0.261743 −0.130871 0.991399i \(-0.541777\pi\)
−0.130871 + 0.991399i \(0.541777\pi\)
\(8\) 0 0
\(9\) 1.28379 0.427931
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −4.95486 −1.37423 −0.687115 0.726549i \(-0.741123\pi\)
−0.687115 + 0.726549i \(0.741123\pi\)
\(14\) 0 0
\(15\) −0.906270 −0.233998
\(16\) 0 0
\(17\) 4.83743 1.17325 0.586624 0.809859i \(-0.300457\pi\)
0.586624 + 0.809859i \(0.300457\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −1.43330 −0.312772
\(22\) 0 0
\(23\) −3.86113 −0.805101 −0.402550 0.915398i \(-0.631876\pi\)
−0.402550 + 0.915398i \(0.631876\pi\)
\(24\) 0 0
\(25\) −4.80827 −0.961654
\(26\) 0 0
\(27\) −3.55209 −0.683600
\(28\) 0 0
\(29\) 0.0211448 0.00392649 0.00196325 0.999998i \(-0.499375\pi\)
0.00196325 + 0.999998i \(0.499375\pi\)
\(30\) 0 0
\(31\) 5.63341 1.01179 0.505895 0.862595i \(-0.331162\pi\)
0.505895 + 0.862595i \(0.331162\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.303226 0.0512546
\(36\) 0 0
\(37\) 9.51598 1.56442 0.782209 0.623017i \(-0.214093\pi\)
0.782209 + 0.623017i \(0.214093\pi\)
\(38\) 0 0
\(39\) −10.2552 −1.64215
\(40\) 0 0
\(41\) −9.14630 −1.42841 −0.714206 0.699936i \(-0.753212\pi\)
−0.714206 + 0.699936i \(0.753212\pi\)
\(42\) 0 0
\(43\) 3.99216 0.608798 0.304399 0.952545i \(-0.401544\pi\)
0.304399 + 0.952545i \(0.401544\pi\)
\(44\) 0 0
\(45\) −0.562132 −0.0837977
\(46\) 0 0
\(47\) 7.90972 1.15375 0.576875 0.816832i \(-0.304272\pi\)
0.576875 + 0.816832i \(0.304272\pi\)
\(48\) 0 0
\(49\) −6.52044 −0.931491
\(50\) 0 0
\(51\) 10.0122 1.40199
\(52\) 0 0
\(53\) 7.29473 1.00201 0.501004 0.865445i \(-0.332964\pi\)
0.501004 + 0.865445i \(0.332964\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.06973 0.274143
\(58\) 0 0
\(59\) 2.40871 0.313588 0.156794 0.987631i \(-0.449884\pi\)
0.156794 + 0.987631i \(0.449884\pi\)
\(60\) 0 0
\(61\) −5.72103 −0.732503 −0.366251 0.930516i \(-0.619359\pi\)
−0.366251 + 0.930516i \(0.619359\pi\)
\(62\) 0 0
\(63\) −0.889035 −0.112008
\(64\) 0 0
\(65\) 2.16957 0.269102
\(66\) 0 0
\(67\) 4.61821 0.564204 0.282102 0.959384i \(-0.408968\pi\)
0.282102 + 0.959384i \(0.408968\pi\)
\(68\) 0 0
\(69\) −7.99150 −0.962064
\(70\) 0 0
\(71\) 1.43977 0.170869 0.0854345 0.996344i \(-0.472772\pi\)
0.0854345 + 0.996344i \(0.472772\pi\)
\(72\) 0 0
\(73\) −0.736270 −0.0861739 −0.0430870 0.999071i \(-0.513719\pi\)
−0.0430870 + 0.999071i \(0.513719\pi\)
\(74\) 0 0
\(75\) −9.95184 −1.14914
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −16.3190 −1.83603 −0.918017 0.396542i \(-0.870210\pi\)
−0.918017 + 0.396542i \(0.870210\pi\)
\(80\) 0 0
\(81\) −11.2033 −1.24481
\(82\) 0 0
\(83\) −16.0623 −1.76307 −0.881534 0.472120i \(-0.843489\pi\)
−0.881534 + 0.472120i \(0.843489\pi\)
\(84\) 0 0
\(85\) −2.11815 −0.229746
\(86\) 0 0
\(87\) 0.0437641 0.00469200
\(88\) 0 0
\(89\) −4.22636 −0.447994 −0.223997 0.974590i \(-0.571911\pi\)
−0.223997 + 0.974590i \(0.571911\pi\)
\(90\) 0 0
\(91\) 3.43127 0.359695
\(92\) 0 0
\(93\) 11.6597 1.20905
\(94\) 0 0
\(95\) −0.437868 −0.0449243
\(96\) 0 0
\(97\) −11.4257 −1.16010 −0.580052 0.814580i \(-0.696968\pi\)
−0.580052 + 0.814580i \(0.696968\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.3923 −1.83010 −0.915052 0.403337i \(-0.867850\pi\)
−0.915052 + 0.403337i \(0.867850\pi\)
\(102\) 0 0
\(103\) −4.08132 −0.402145 −0.201072 0.979576i \(-0.564443\pi\)
−0.201072 + 0.979576i \(0.564443\pi\)
\(104\) 0 0
\(105\) 0.627597 0.0612472
\(106\) 0 0
\(107\) −14.9399 −1.44429 −0.722147 0.691740i \(-0.756845\pi\)
−0.722147 + 0.691740i \(0.756845\pi\)
\(108\) 0 0
\(109\) −4.29391 −0.411282 −0.205641 0.978628i \(-0.565928\pi\)
−0.205641 + 0.978628i \(0.565928\pi\)
\(110\) 0 0
\(111\) 19.6955 1.86942
\(112\) 0 0
\(113\) 2.87912 0.270845 0.135423 0.990788i \(-0.456761\pi\)
0.135423 + 0.990788i \(0.456761\pi\)
\(114\) 0 0
\(115\) 1.69066 0.157655
\(116\) 0 0
\(117\) −6.36101 −0.588076
\(118\) 0 0
\(119\) −3.34995 −0.307089
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −18.9304 −1.70690
\(124\) 0 0
\(125\) 4.29473 0.384132
\(126\) 0 0
\(127\) −20.4080 −1.81092 −0.905458 0.424435i \(-0.860473\pi\)
−0.905458 + 0.424435i \(0.860473\pi\)
\(128\) 0 0
\(129\) 8.26270 0.727490
\(130\) 0 0
\(131\) −0.542045 −0.0473587 −0.0236793 0.999720i \(-0.507538\pi\)
−0.0236793 + 0.999720i \(0.507538\pi\)
\(132\) 0 0
\(133\) −0.692506 −0.0600479
\(134\) 0 0
\(135\) 1.55535 0.133863
\(136\) 0 0
\(137\) 8.78118 0.750227 0.375114 0.926979i \(-0.377604\pi\)
0.375114 + 0.926979i \(0.377604\pi\)
\(138\) 0 0
\(139\) 4.72530 0.400795 0.200397 0.979715i \(-0.435777\pi\)
0.200397 + 0.979715i \(0.435777\pi\)
\(140\) 0 0
\(141\) 16.3710 1.37869
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.00925863 −0.000768887 0
\(146\) 0 0
\(147\) −13.4956 −1.11309
\(148\) 0 0
\(149\) −11.2947 −0.925300 −0.462650 0.886541i \(-0.653101\pi\)
−0.462650 + 0.886541i \(0.653101\pi\)
\(150\) 0 0
\(151\) 12.5415 1.02061 0.510305 0.859994i \(-0.329533\pi\)
0.510305 + 0.859994i \(0.329533\pi\)
\(152\) 0 0
\(153\) 6.21026 0.502070
\(154\) 0 0
\(155\) −2.46669 −0.198129
\(156\) 0 0
\(157\) −9.63922 −0.769294 −0.384647 0.923064i \(-0.625677\pi\)
−0.384647 + 0.923064i \(0.625677\pi\)
\(158\) 0 0
\(159\) 15.0981 1.19736
\(160\) 0 0
\(161\) 2.67385 0.210729
\(162\) 0 0
\(163\) −20.7050 −1.62174 −0.810872 0.585224i \(-0.801007\pi\)
−0.810872 + 0.585224i \(0.801007\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0419 1.24136 0.620679 0.784065i \(-0.286857\pi\)
0.620679 + 0.784065i \(0.286857\pi\)
\(168\) 0 0
\(169\) 11.5506 0.888509
\(170\) 0 0
\(171\) 1.28379 0.0981742
\(172\) 0 0
\(173\) −23.3559 −1.77572 −0.887859 0.460116i \(-0.847808\pi\)
−0.887859 + 0.460116i \(0.847808\pi\)
\(174\) 0 0
\(175\) 3.32976 0.251706
\(176\) 0 0
\(177\) 4.98539 0.374725
\(178\) 0 0
\(179\) −8.40008 −0.627852 −0.313926 0.949448i \(-0.601644\pi\)
−0.313926 + 0.949448i \(0.601644\pi\)
\(180\) 0 0
\(181\) −14.7596 −1.09707 −0.548537 0.836126i \(-0.684815\pi\)
−0.548537 + 0.836126i \(0.684815\pi\)
\(182\) 0 0
\(183\) −11.8410 −0.875312
\(184\) 0 0
\(185\) −4.16674 −0.306345
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.45984 0.178927
\(190\) 0 0
\(191\) 9.20325 0.665924 0.332962 0.942940i \(-0.391952\pi\)
0.332962 + 0.942940i \(0.391952\pi\)
\(192\) 0 0
\(193\) 4.76829 0.343229 0.171614 0.985164i \(-0.445102\pi\)
0.171614 + 0.985164i \(0.445102\pi\)
\(194\) 0 0
\(195\) 4.49044 0.321567
\(196\) 0 0
\(197\) 14.7979 1.05431 0.527153 0.849770i \(-0.323259\pi\)
0.527153 + 0.849770i \(0.323259\pi\)
\(198\) 0 0
\(199\) −11.2890 −0.800258 −0.400129 0.916459i \(-0.631035\pi\)
−0.400129 + 0.916459i \(0.631035\pi\)
\(200\) 0 0
\(201\) 9.55846 0.674202
\(202\) 0 0
\(203\) −0.0146429 −0.00102773
\(204\) 0 0
\(205\) 4.00487 0.279712
\(206\) 0 0
\(207\) −4.95689 −0.344528
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.97358 −0.135867 −0.0679334 0.997690i \(-0.521641\pi\)
−0.0679334 + 0.997690i \(0.521641\pi\)
\(212\) 0 0
\(213\) 2.97994 0.204182
\(214\) 0 0
\(215\) −1.74804 −0.119215
\(216\) 0 0
\(217\) −3.90117 −0.264829
\(218\) 0 0
\(219\) −1.52388 −0.102974
\(220\) 0 0
\(221\) −23.9688 −1.61231
\(222\) 0 0
\(223\) −17.7936 −1.19155 −0.595774 0.803152i \(-0.703155\pi\)
−0.595774 + 0.803152i \(0.703155\pi\)
\(224\) 0 0
\(225\) −6.17283 −0.411522
\(226\) 0 0
\(227\) 8.22967 0.546222 0.273111 0.961983i \(-0.411947\pi\)
0.273111 + 0.961983i \(0.411947\pi\)
\(228\) 0 0
\(229\) 5.22880 0.345529 0.172764 0.984963i \(-0.444730\pi\)
0.172764 + 0.984963i \(0.444730\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.2336 −1.26004 −0.630018 0.776580i \(-0.716953\pi\)
−0.630018 + 0.776580i \(0.716953\pi\)
\(234\) 0 0
\(235\) −3.46341 −0.225928
\(236\) 0 0
\(237\) −33.7760 −2.19399
\(238\) 0 0
\(239\) −2.51056 −0.162395 −0.0811974 0.996698i \(-0.525874\pi\)
−0.0811974 + 0.996698i \(0.525874\pi\)
\(240\) 0 0
\(241\) 22.7131 1.46308 0.731539 0.681800i \(-0.238803\pi\)
0.731539 + 0.681800i \(0.238803\pi\)
\(242\) 0 0
\(243\) −12.5315 −0.803895
\(244\) 0 0
\(245\) 2.85509 0.182405
\(246\) 0 0
\(247\) −4.95486 −0.315270
\(248\) 0 0
\(249\) −33.2447 −2.10680
\(250\) 0 0
\(251\) 22.1646 1.39902 0.699510 0.714623i \(-0.253402\pi\)
0.699510 + 0.714623i \(0.253402\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −4.38401 −0.274538
\(256\) 0 0
\(257\) −28.0963 −1.75260 −0.876301 0.481764i \(-0.839996\pi\)
−0.876301 + 0.481764i \(0.839996\pi\)
\(258\) 0 0
\(259\) −6.58988 −0.409475
\(260\) 0 0
\(261\) 0.0271456 0.00168027
\(262\) 0 0
\(263\) 4.57484 0.282096 0.141048 0.990003i \(-0.454953\pi\)
0.141048 + 0.990003i \(0.454953\pi\)
\(264\) 0 0
\(265\) −3.19413 −0.196214
\(266\) 0 0
\(267\) −8.74744 −0.535335
\(268\) 0 0
\(269\) 11.2467 0.685725 0.342863 0.939386i \(-0.388603\pi\)
0.342863 + 0.939386i \(0.388603\pi\)
\(270\) 0 0
\(271\) 28.2160 1.71400 0.856999 0.515318i \(-0.172326\pi\)
0.856999 + 0.515318i \(0.172326\pi\)
\(272\) 0 0
\(273\) 7.10181 0.429821
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.16357 0.129996 0.0649982 0.997885i \(-0.479296\pi\)
0.0649982 + 0.997885i \(0.479296\pi\)
\(278\) 0 0
\(279\) 7.23214 0.432977
\(280\) 0 0
\(281\) −6.24083 −0.372297 −0.186148 0.982522i \(-0.559600\pi\)
−0.186148 + 0.982522i \(0.559600\pi\)
\(282\) 0 0
\(283\) −22.5372 −1.33970 −0.669850 0.742497i \(-0.733641\pi\)
−0.669850 + 0.742497i \(0.733641\pi\)
\(284\) 0 0
\(285\) −0.906270 −0.0536828
\(286\) 0 0
\(287\) 6.33387 0.373876
\(288\) 0 0
\(289\) 6.40070 0.376512
\(290\) 0 0
\(291\) −23.6481 −1.38628
\(292\) 0 0
\(293\) 11.1895 0.653696 0.326848 0.945077i \(-0.394013\pi\)
0.326848 + 0.945077i \(0.394013\pi\)
\(294\) 0 0
\(295\) −1.05470 −0.0614069
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.1313 1.10639
\(300\) 0 0
\(301\) −2.76459 −0.159348
\(302\) 0 0
\(303\) −38.0672 −2.18690
\(304\) 0 0
\(305\) 2.50506 0.143439
\(306\) 0 0
\(307\) −8.94447 −0.510488 −0.255244 0.966877i \(-0.582156\pi\)
−0.255244 + 0.966877i \(0.582156\pi\)
\(308\) 0 0
\(309\) −8.44724 −0.480547
\(310\) 0 0
\(311\) 30.5837 1.73425 0.867123 0.498095i \(-0.165967\pi\)
0.867123 + 0.498095i \(0.165967\pi\)
\(312\) 0 0
\(313\) −4.81524 −0.272173 −0.136087 0.990697i \(-0.543453\pi\)
−0.136087 + 0.990697i \(0.543453\pi\)
\(314\) 0 0
\(315\) 0.389280 0.0219334
\(316\) 0 0
\(317\) −12.0570 −0.677187 −0.338593 0.940933i \(-0.609951\pi\)
−0.338593 + 0.940933i \(0.609951\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −30.9216 −1.72587
\(322\) 0 0
\(323\) 4.83743 0.269162
\(324\) 0 0
\(325\) 23.8243 1.32153
\(326\) 0 0
\(327\) −8.88724 −0.491466
\(328\) 0 0
\(329\) −5.47753 −0.301986
\(330\) 0 0
\(331\) 13.4580 0.739716 0.369858 0.929088i \(-0.379406\pi\)
0.369858 + 0.929088i \(0.379406\pi\)
\(332\) 0 0
\(333\) 12.2166 0.669463
\(334\) 0 0
\(335\) −2.02217 −0.110483
\(336\) 0 0
\(337\) −19.9823 −1.08850 −0.544252 0.838922i \(-0.683186\pi\)
−0.544252 + 0.838922i \(0.683186\pi\)
\(338\) 0 0
\(339\) 5.95902 0.323649
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 9.36299 0.505554
\(344\) 0 0
\(345\) 3.49922 0.188392
\(346\) 0 0
\(347\) −32.5836 −1.74918 −0.874589 0.484865i \(-0.838869\pi\)
−0.874589 + 0.484865i \(0.838869\pi\)
\(348\) 0 0
\(349\) −3.49470 −0.187067 −0.0935336 0.995616i \(-0.529816\pi\)
−0.0935336 + 0.995616i \(0.529816\pi\)
\(350\) 0 0
\(351\) 17.6001 0.939423
\(352\) 0 0
\(353\) 23.4018 1.24555 0.622775 0.782401i \(-0.286005\pi\)
0.622775 + 0.782401i \(0.286005\pi\)
\(354\) 0 0
\(355\) −0.630428 −0.0334597
\(356\) 0 0
\(357\) −6.93350 −0.366960
\(358\) 0 0
\(359\) −2.66333 −0.140565 −0.0702825 0.997527i \(-0.522390\pi\)
−0.0702825 + 0.997527i \(0.522390\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.322389 0.0168746
\(366\) 0 0
\(367\) 1.68791 0.0881080 0.0440540 0.999029i \(-0.485973\pi\)
0.0440540 + 0.999029i \(0.485973\pi\)
\(368\) 0 0
\(369\) −11.7420 −0.611262
\(370\) 0 0
\(371\) −5.05164 −0.262268
\(372\) 0 0
\(373\) 22.8819 1.18478 0.592389 0.805652i \(-0.298185\pi\)
0.592389 + 0.805652i \(0.298185\pi\)
\(374\) 0 0
\(375\) 8.88894 0.459023
\(376\) 0 0
\(377\) −0.104769 −0.00539590
\(378\) 0 0
\(379\) 1.27786 0.0656393 0.0328197 0.999461i \(-0.489551\pi\)
0.0328197 + 0.999461i \(0.489551\pi\)
\(380\) 0 0
\(381\) −42.2391 −2.16397
\(382\) 0 0
\(383\) 28.0210 1.43181 0.715904 0.698199i \(-0.246015\pi\)
0.715904 + 0.698199i \(0.246015\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.12510 0.260524
\(388\) 0 0
\(389\) 17.3045 0.877372 0.438686 0.898641i \(-0.355444\pi\)
0.438686 + 0.898641i \(0.355444\pi\)
\(390\) 0 0
\(391\) −18.6779 −0.944583
\(392\) 0 0
\(393\) −1.12189 −0.0565918
\(394\) 0 0
\(395\) 7.14558 0.359533
\(396\) 0 0
\(397\) 19.8924 0.998370 0.499185 0.866496i \(-0.333633\pi\)
0.499185 + 0.866496i \(0.333633\pi\)
\(398\) 0 0
\(399\) −1.43330 −0.0717549
\(400\) 0 0
\(401\) 0.186866 0.00933163 0.00466581 0.999989i \(-0.498515\pi\)
0.00466581 + 0.999989i \(0.498515\pi\)
\(402\) 0 0
\(403\) −27.9127 −1.39043
\(404\) 0 0
\(405\) 4.90555 0.243759
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.79117 −0.138014 −0.0690072 0.997616i \(-0.521983\pi\)
−0.0690072 + 0.997616i \(0.521983\pi\)
\(410\) 0 0
\(411\) 18.1747 0.896492
\(412\) 0 0
\(413\) −1.66805 −0.0820793
\(414\) 0 0
\(415\) 7.03317 0.345245
\(416\) 0 0
\(417\) 9.78010 0.478934
\(418\) 0 0
\(419\) −1.89571 −0.0926117 −0.0463059 0.998927i \(-0.514745\pi\)
−0.0463059 + 0.998927i \(0.514745\pi\)
\(420\) 0 0
\(421\) 15.0501 0.733497 0.366748 0.930320i \(-0.380471\pi\)
0.366748 + 0.930320i \(0.380471\pi\)
\(422\) 0 0
\(423\) 10.1544 0.493726
\(424\) 0 0
\(425\) −23.2597 −1.12826
\(426\) 0 0
\(427\) 3.96185 0.191727
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.50689 0.168921 0.0844604 0.996427i \(-0.473083\pi\)
0.0844604 + 0.996427i \(0.473083\pi\)
\(432\) 0 0
\(433\) −36.5590 −1.75691 −0.878456 0.477824i \(-0.841426\pi\)
−0.878456 + 0.477824i \(0.841426\pi\)
\(434\) 0 0
\(435\) −0.0191629 −0.000918790 0
\(436\) 0 0
\(437\) −3.86113 −0.184703
\(438\) 0 0
\(439\) 29.9247 1.42823 0.714113 0.700031i \(-0.246830\pi\)
0.714113 + 0.700031i \(0.246830\pi\)
\(440\) 0 0
\(441\) −8.37089 −0.398614
\(442\) 0 0
\(443\) −13.9182 −0.661272 −0.330636 0.943758i \(-0.607263\pi\)
−0.330636 + 0.943758i \(0.607263\pi\)
\(444\) 0 0
\(445\) 1.85059 0.0877263
\(446\) 0 0
\(447\) −23.3771 −1.10570
\(448\) 0 0
\(449\) −22.1501 −1.04533 −0.522663 0.852539i \(-0.675062\pi\)
−0.522663 + 0.852539i \(0.675062\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 25.9575 1.21959
\(454\) 0 0
\(455\) −1.50244 −0.0704356
\(456\) 0 0
\(457\) 17.2929 0.808928 0.404464 0.914554i \(-0.367458\pi\)
0.404464 + 0.914554i \(0.367458\pi\)
\(458\) 0 0
\(459\) −17.1830 −0.802032
\(460\) 0 0
\(461\) −18.4497 −0.859289 −0.429645 0.902998i \(-0.641361\pi\)
−0.429645 + 0.902998i \(0.641361\pi\)
\(462\) 0 0
\(463\) −39.8532 −1.85213 −0.926067 0.377359i \(-0.876832\pi\)
−0.926067 + 0.377359i \(0.876832\pi\)
\(464\) 0 0
\(465\) −5.10539 −0.236757
\(466\) 0 0
\(467\) 6.80337 0.314823 0.157411 0.987533i \(-0.449685\pi\)
0.157411 + 0.987533i \(0.449685\pi\)
\(468\) 0 0
\(469\) −3.19814 −0.147676
\(470\) 0 0
\(471\) −19.9506 −0.919276
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.80827 −0.220619
\(476\) 0 0
\(477\) 9.36493 0.428790
\(478\) 0 0
\(479\) 7.50981 0.343132 0.171566 0.985173i \(-0.445117\pi\)
0.171566 + 0.985173i \(0.445117\pi\)
\(480\) 0 0
\(481\) −47.1503 −2.14987
\(482\) 0 0
\(483\) 5.53416 0.251813
\(484\) 0 0
\(485\) 5.00295 0.227172
\(486\) 0 0
\(487\) 6.06847 0.274989 0.137494 0.990503i \(-0.456095\pi\)
0.137494 + 0.990503i \(0.456095\pi\)
\(488\) 0 0
\(489\) −42.8539 −1.93792
\(490\) 0 0
\(491\) −6.40136 −0.288889 −0.144445 0.989513i \(-0.546140\pi\)
−0.144445 + 0.989513i \(0.546140\pi\)
\(492\) 0 0
\(493\) 0.102286 0.00460675
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.997049 −0.0447237
\(498\) 0 0
\(499\) 8.06069 0.360846 0.180423 0.983589i \(-0.442253\pi\)
0.180423 + 0.983589i \(0.442253\pi\)
\(500\) 0 0
\(501\) 33.2024 1.48337
\(502\) 0 0
\(503\) 4.21016 0.187722 0.0938608 0.995585i \(-0.470079\pi\)
0.0938608 + 0.995585i \(0.470079\pi\)
\(504\) 0 0
\(505\) 8.05340 0.358372
\(506\) 0 0
\(507\) 23.9067 1.06173
\(508\) 0 0
\(509\) −5.81571 −0.257777 −0.128888 0.991659i \(-0.541141\pi\)
−0.128888 + 0.991659i \(0.541141\pi\)
\(510\) 0 0
\(511\) 0.509872 0.0225554
\(512\) 0 0
\(513\) −3.55209 −0.156829
\(514\) 0 0
\(515\) 1.78708 0.0787481
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −48.3405 −2.12191
\(520\) 0 0
\(521\) 33.7663 1.47933 0.739664 0.672976i \(-0.234984\pi\)
0.739664 + 0.672976i \(0.234984\pi\)
\(522\) 0 0
\(523\) 9.52752 0.416609 0.208305 0.978064i \(-0.433205\pi\)
0.208305 + 0.978064i \(0.433205\pi\)
\(524\) 0 0
\(525\) 6.89171 0.300779
\(526\) 0 0
\(527\) 27.2512 1.18708
\(528\) 0 0
\(529\) −8.09170 −0.351813
\(530\) 0 0
\(531\) 3.09229 0.134194
\(532\) 0 0
\(533\) 45.3186 1.96297
\(534\) 0 0
\(535\) 6.54170 0.282822
\(536\) 0 0
\(537\) −17.3859 −0.750258
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 26.2891 1.13026 0.565128 0.825003i \(-0.308827\pi\)
0.565128 + 0.825003i \(0.308827\pi\)
\(542\) 0 0
\(543\) −30.5485 −1.31096
\(544\) 0 0
\(545\) 1.88016 0.0805374
\(546\) 0 0
\(547\) 13.0877 0.559591 0.279796 0.960060i \(-0.409733\pi\)
0.279796 + 0.960060i \(0.409733\pi\)
\(548\) 0 0
\(549\) −7.34462 −0.313461
\(550\) 0 0
\(551\) 0.0211448 0.000900799 0
\(552\) 0 0
\(553\) 11.3010 0.480568
\(554\) 0 0
\(555\) −8.62404 −0.366070
\(556\) 0 0
\(557\) −13.5096 −0.572422 −0.286211 0.958167i \(-0.592396\pi\)
−0.286211 + 0.958167i \(0.592396\pi\)
\(558\) 0 0
\(559\) −19.7806 −0.836629
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.4952 1.49595 0.747973 0.663730i \(-0.231027\pi\)
0.747973 + 0.663730i \(0.231027\pi\)
\(564\) 0 0
\(565\) −1.26068 −0.0530370
\(566\) 0 0
\(567\) 7.75832 0.325819
\(568\) 0 0
\(569\) 1.71511 0.0719012 0.0359506 0.999354i \(-0.488554\pi\)
0.0359506 + 0.999354i \(0.488554\pi\)
\(570\) 0 0
\(571\) 39.6069 1.65750 0.828748 0.559622i \(-0.189054\pi\)
0.828748 + 0.559622i \(0.189054\pi\)
\(572\) 0 0
\(573\) 19.0483 0.795753
\(574\) 0 0
\(575\) 18.5653 0.774229
\(576\) 0 0
\(577\) 24.5056 1.02018 0.510091 0.860121i \(-0.329612\pi\)
0.510091 + 0.860121i \(0.329612\pi\)
\(578\) 0 0
\(579\) 9.86908 0.410145
\(580\) 0 0
\(581\) 11.1233 0.461470
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.78528 0.115157
\(586\) 0 0
\(587\) −16.3384 −0.674359 −0.337180 0.941440i \(-0.609473\pi\)
−0.337180 + 0.941440i \(0.609473\pi\)
\(588\) 0 0
\(589\) 5.63341 0.232121
\(590\) 0 0
\(591\) 30.6277 1.25985
\(592\) 0 0
\(593\) 17.6981 0.726776 0.363388 0.931638i \(-0.381620\pi\)
0.363388 + 0.931638i \(0.381620\pi\)
\(594\) 0 0
\(595\) 1.46683 0.0601344
\(596\) 0 0
\(597\) −23.3653 −0.956276
\(598\) 0 0
\(599\) −24.0307 −0.981868 −0.490934 0.871197i \(-0.663344\pi\)
−0.490934 + 0.871197i \(0.663344\pi\)
\(600\) 0 0
\(601\) −39.0654 −1.59351 −0.796756 0.604301i \(-0.793453\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(602\) 0 0
\(603\) 5.92883 0.241440
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.47512 −0.0598732 −0.0299366 0.999552i \(-0.509531\pi\)
−0.0299366 + 0.999552i \(0.509531\pi\)
\(608\) 0 0
\(609\) −0.0303069 −0.00122810
\(610\) 0 0
\(611\) −39.1915 −1.58552
\(612\) 0 0
\(613\) −28.8847 −1.16664 −0.583321 0.812242i \(-0.698247\pi\)
−0.583321 + 0.812242i \(0.698247\pi\)
\(614\) 0 0
\(615\) 8.28901 0.334245
\(616\) 0 0
\(617\) −43.5693 −1.75403 −0.877016 0.480461i \(-0.840469\pi\)
−0.877016 + 0.480461i \(0.840469\pi\)
\(618\) 0 0
\(619\) −10.6711 −0.428906 −0.214453 0.976734i \(-0.568797\pi\)
−0.214453 + 0.976734i \(0.568797\pi\)
\(620\) 0 0
\(621\) 13.7151 0.550367
\(622\) 0 0
\(623\) 2.92678 0.117259
\(624\) 0 0
\(625\) 22.1608 0.886433
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 46.0329 1.83545
\(630\) 0 0
\(631\) −12.6253 −0.502605 −0.251303 0.967909i \(-0.580859\pi\)
−0.251303 + 0.967909i \(0.580859\pi\)
\(632\) 0 0
\(633\) −4.08478 −0.162355
\(634\) 0 0
\(635\) 8.93601 0.354615
\(636\) 0 0
\(637\) 32.3078 1.28008
\(638\) 0 0
\(639\) 1.84837 0.0731202
\(640\) 0 0
\(641\) −3.57802 −0.141323 −0.0706617 0.997500i \(-0.522511\pi\)
−0.0706617 + 0.997500i \(0.522511\pi\)
\(642\) 0 0
\(643\) 14.5338 0.573155 0.286578 0.958057i \(-0.407482\pi\)
0.286578 + 0.958057i \(0.407482\pi\)
\(644\) 0 0
\(645\) −3.61797 −0.142457
\(646\) 0 0
\(647\) 14.5002 0.570063 0.285031 0.958518i \(-0.407996\pi\)
0.285031 + 0.958518i \(0.407996\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −8.07438 −0.316460
\(652\) 0 0
\(653\) 20.9992 0.821762 0.410881 0.911689i \(-0.365221\pi\)
0.410881 + 0.911689i \(0.365221\pi\)
\(654\) 0 0
\(655\) 0.237344 0.00927380
\(656\) 0 0
\(657\) −0.945219 −0.0368765
\(658\) 0 0
\(659\) −43.7854 −1.70564 −0.852819 0.522206i \(-0.825109\pi\)
−0.852819 + 0.522206i \(0.825109\pi\)
\(660\) 0 0
\(661\) 44.4370 1.72840 0.864199 0.503150i \(-0.167826\pi\)
0.864199 + 0.503150i \(0.167826\pi\)
\(662\) 0 0
\(663\) −49.6089 −1.92665
\(664\) 0 0
\(665\) 0.303226 0.0117586
\(666\) 0 0
\(667\) −0.0816428 −0.00316122
\(668\) 0 0
\(669\) −36.8280 −1.42385
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 19.6117 0.755976 0.377988 0.925810i \(-0.376616\pi\)
0.377988 + 0.925810i \(0.376616\pi\)
\(674\) 0 0
\(675\) 17.0794 0.657387
\(676\) 0 0
\(677\) 37.0347 1.42336 0.711680 0.702504i \(-0.247934\pi\)
0.711680 + 0.702504i \(0.247934\pi\)
\(678\) 0 0
\(679\) 7.91236 0.303649
\(680\) 0 0
\(681\) 17.0332 0.652714
\(682\) 0 0
\(683\) 17.9808 0.688015 0.344007 0.938967i \(-0.388215\pi\)
0.344007 + 0.938967i \(0.388215\pi\)
\(684\) 0 0
\(685\) −3.84500 −0.146910
\(686\) 0 0
\(687\) 10.8222 0.412893
\(688\) 0 0
\(689\) −36.1443 −1.37699
\(690\) 0 0
\(691\) 16.0334 0.609938 0.304969 0.952362i \(-0.401354\pi\)
0.304969 + 0.952362i \(0.401354\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.06906 −0.0784838
\(696\) 0 0
\(697\) −44.2446 −1.67588
\(698\) 0 0
\(699\) −39.8085 −1.50569
\(700\) 0 0
\(701\) −8.23224 −0.310927 −0.155464 0.987842i \(-0.549687\pi\)
−0.155464 + 0.987842i \(0.549687\pi\)
\(702\) 0 0
\(703\) 9.51598 0.358902
\(704\) 0 0
\(705\) −7.16833 −0.269975
\(706\) 0 0
\(707\) 12.7368 0.479016
\(708\) 0 0
\(709\) 7.90414 0.296846 0.148423 0.988924i \(-0.452580\pi\)
0.148423 + 0.988924i \(0.452580\pi\)
\(710\) 0 0
\(711\) −20.9503 −0.785696
\(712\) 0 0
\(713\) −21.7513 −0.814593
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5.19619 −0.194055
\(718\) 0 0
\(719\) 14.9502 0.557549 0.278774 0.960357i \(-0.410072\pi\)
0.278774 + 0.960357i \(0.410072\pi\)
\(720\) 0 0
\(721\) 2.82634 0.105258
\(722\) 0 0
\(723\) 47.0100 1.74832
\(724\) 0 0
\(725\) −0.101670 −0.00377593
\(726\) 0 0
\(727\) −8.92157 −0.330883 −0.165441 0.986220i \(-0.552905\pi\)
−0.165441 + 0.986220i \(0.552905\pi\)
\(728\) 0 0
\(729\) 7.67295 0.284183
\(730\) 0 0
\(731\) 19.3118 0.714271
\(732\) 0 0
\(733\) −46.9378 −1.73369 −0.866844 0.498579i \(-0.833855\pi\)
−0.866844 + 0.498579i \(0.833855\pi\)
\(734\) 0 0
\(735\) 5.90927 0.217967
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 13.1963 0.485434 0.242717 0.970097i \(-0.421961\pi\)
0.242717 + 0.970097i \(0.421961\pi\)
\(740\) 0 0
\(741\) −10.2552 −0.376735
\(742\) 0 0
\(743\) 4.99731 0.183334 0.0916668 0.995790i \(-0.470781\pi\)
0.0916668 + 0.995790i \(0.470781\pi\)
\(744\) 0 0
\(745\) 4.94560 0.181193
\(746\) 0 0
\(747\) −20.6207 −0.754472
\(748\) 0 0
\(749\) 10.3460 0.378033
\(750\) 0 0
\(751\) −37.4419 −1.36627 −0.683136 0.730291i \(-0.739385\pi\)
−0.683136 + 0.730291i \(0.739385\pi\)
\(752\) 0 0
\(753\) 45.8749 1.67177
\(754\) 0 0
\(755\) −5.49150 −0.199856
\(756\) 0 0
\(757\) 2.19395 0.0797405 0.0398703 0.999205i \(-0.487306\pi\)
0.0398703 + 0.999205i \(0.487306\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.7512 0.969732 0.484866 0.874589i \(-0.338868\pi\)
0.484866 + 0.874589i \(0.338868\pi\)
\(762\) 0 0
\(763\) 2.97356 0.107650
\(764\) 0 0
\(765\) −2.71927 −0.0983155
\(766\) 0 0
\(767\) −11.9348 −0.430942
\(768\) 0 0
\(769\) −50.5117 −1.82150 −0.910749 0.412961i \(-0.864495\pi\)
−0.910749 + 0.412961i \(0.864495\pi\)
\(770\) 0 0
\(771\) −58.1519 −2.09429
\(772\) 0 0
\(773\) 13.2270 0.475740 0.237870 0.971297i \(-0.423551\pi\)
0.237870 + 0.971297i \(0.423551\pi\)
\(774\) 0 0
\(775\) −27.0870 −0.972992
\(776\) 0 0
\(777\) −13.6393 −0.489306
\(778\) 0 0
\(779\) −9.14630 −0.327700
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.0751082 −0.00268415
\(784\) 0 0
\(785\) 4.22071 0.150643
\(786\) 0 0
\(787\) −33.2240 −1.18431 −0.592154 0.805825i \(-0.701722\pi\)
−0.592154 + 0.805825i \(0.701722\pi\)
\(788\) 0 0
\(789\) 9.46869 0.337094
\(790\) 0 0
\(791\) −1.99381 −0.0708918
\(792\) 0 0
\(793\) 28.3469 1.00663
\(794\) 0 0
\(795\) −6.61099 −0.234468
\(796\) 0 0
\(797\) −28.8947 −1.02350 −0.511751 0.859134i \(-0.671003\pi\)
−0.511751 + 0.859134i \(0.671003\pi\)
\(798\) 0 0
\(799\) 38.2627 1.35364
\(800\) 0 0
\(801\) −5.42578 −0.191710
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1.17080 −0.0412651
\(806\) 0 0
\(807\) 23.2777 0.819415
\(808\) 0 0
\(809\) 31.4004 1.10398 0.551989 0.833851i \(-0.313869\pi\)
0.551989 + 0.833851i \(0.313869\pi\)
\(810\) 0 0
\(811\) −32.3605 −1.13633 −0.568166 0.822914i \(-0.692347\pi\)
−0.568166 + 0.822914i \(0.692347\pi\)
\(812\) 0 0
\(813\) 58.3995 2.04816
\(814\) 0 0
\(815\) 9.06607 0.317571
\(816\) 0 0
\(817\) 3.99216 0.139668
\(818\) 0 0
\(819\) 4.40504 0.153925
\(820\) 0 0
\(821\) −7.10604 −0.248003 −0.124001 0.992282i \(-0.539573\pi\)
−0.124001 + 0.992282i \(0.539573\pi\)
\(822\) 0 0
\(823\) −14.7226 −0.513198 −0.256599 0.966518i \(-0.582602\pi\)
−0.256599 + 0.966518i \(0.582602\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.45289 −0.189616 −0.0948078 0.995496i \(-0.530224\pi\)
−0.0948078 + 0.995496i \(0.530224\pi\)
\(828\) 0 0
\(829\) 41.3069 1.43465 0.717324 0.696740i \(-0.245367\pi\)
0.717324 + 0.696740i \(0.245367\pi\)
\(830\) 0 0
\(831\) 4.47802 0.155341
\(832\) 0 0
\(833\) −31.5421 −1.09287
\(834\) 0 0
\(835\) −7.02422 −0.243083
\(836\) 0 0
\(837\) −20.0104 −0.691660
\(838\) 0 0
\(839\) −37.6135 −1.29856 −0.649280 0.760549i \(-0.724930\pi\)
−0.649280 + 0.760549i \(0.724930\pi\)
\(840\) 0 0
\(841\) −28.9996 −0.999985
\(842\) 0 0
\(843\) −12.9168 −0.444880
\(844\) 0 0
\(845\) −5.05764 −0.173988
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −46.6460 −1.60089
\(850\) 0 0
\(851\) −36.7424 −1.25951
\(852\) 0 0
\(853\) −9.52973 −0.326292 −0.163146 0.986602i \(-0.552164\pi\)
−0.163146 + 0.986602i \(0.552164\pi\)
\(854\) 0 0
\(855\) −0.562132 −0.0192245
\(856\) 0 0
\(857\) 38.4495 1.31341 0.656705 0.754147i \(-0.271950\pi\)
0.656705 + 0.754147i \(0.271950\pi\)
\(858\) 0 0
\(859\) −15.0710 −0.514216 −0.257108 0.966383i \(-0.582770\pi\)
−0.257108 + 0.966383i \(0.582770\pi\)
\(860\) 0 0
\(861\) 13.1094 0.446768
\(862\) 0 0
\(863\) −9.98060 −0.339743 −0.169872 0.985466i \(-0.554335\pi\)
−0.169872 + 0.985466i \(0.554335\pi\)
\(864\) 0 0
\(865\) 10.2268 0.347722
\(866\) 0 0
\(867\) 13.2477 0.449917
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −22.8826 −0.775346
\(872\) 0 0
\(873\) −14.6682 −0.496445
\(874\) 0 0
\(875\) −2.97413 −0.100544
\(876\) 0 0
\(877\) −8.76513 −0.295977 −0.147989 0.988989i \(-0.547280\pi\)
−0.147989 + 0.988989i \(0.547280\pi\)
\(878\) 0 0
\(879\) 23.1592 0.781141
\(880\) 0 0
\(881\) −8.25318 −0.278057 −0.139028 0.990288i \(-0.544398\pi\)
−0.139028 + 0.990288i \(0.544398\pi\)
\(882\) 0 0
\(883\) 38.5899 1.29865 0.649327 0.760509i \(-0.275051\pi\)
0.649327 + 0.760509i \(0.275051\pi\)
\(884\) 0 0
\(885\) −2.18294 −0.0733788
\(886\) 0 0
\(887\) 26.8505 0.901553 0.450776 0.892637i \(-0.351147\pi\)
0.450776 + 0.892637i \(0.351147\pi\)
\(888\) 0 0
\(889\) 14.1327 0.473994
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.90972 0.264689
\(894\) 0 0
\(895\) 3.67813 0.122946
\(896\) 0 0
\(897\) 39.5968 1.32210
\(898\) 0 0
\(899\) 0.119117 0.00397279
\(900\) 0 0
\(901\) 35.2877 1.17560
\(902\) 0 0
\(903\) −5.72197 −0.190415
\(904\) 0 0
\(905\) 6.46276 0.214830
\(906\) 0 0
\(907\) 4.64221 0.154142 0.0770710 0.997026i \(-0.475443\pi\)
0.0770710 + 0.997026i \(0.475443\pi\)
\(908\) 0 0
\(909\) −23.6119 −0.783158
\(910\) 0 0
\(911\) 43.6674 1.44677 0.723383 0.690447i \(-0.242586\pi\)
0.723383 + 0.690447i \(0.242586\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 5.18480 0.171404
\(916\) 0 0
\(917\) 0.375369 0.0123958
\(918\) 0 0
\(919\) 29.8684 0.985269 0.492634 0.870236i \(-0.336034\pi\)
0.492634 + 0.870236i \(0.336034\pi\)
\(920\) 0 0
\(921\) −18.5127 −0.610013
\(922\) 0 0
\(923\) −7.13385 −0.234813
\(924\) 0 0
\(925\) −45.7554 −1.50443
\(926\) 0 0
\(927\) −5.23957 −0.172090
\(928\) 0 0
\(929\) −52.6120 −1.72614 −0.863071 0.505082i \(-0.831462\pi\)
−0.863071 + 0.505082i \(0.831462\pi\)
\(930\) 0 0
\(931\) −6.52044 −0.213699
\(932\) 0 0
\(933\) 63.3002 2.07236
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.8852 0.910970 0.455485 0.890244i \(-0.349466\pi\)
0.455485 + 0.890244i \(0.349466\pi\)
\(938\) 0 0
\(939\) −9.96626 −0.325236
\(940\) 0 0
\(941\) −23.1273 −0.753927 −0.376964 0.926228i \(-0.623032\pi\)
−0.376964 + 0.926228i \(0.623032\pi\)
\(942\) 0 0
\(943\) 35.3150 1.15002
\(944\) 0 0
\(945\) −1.07709 −0.0350376
\(946\) 0 0
\(947\) −47.2334 −1.53488 −0.767440 0.641120i \(-0.778470\pi\)
−0.767440 + 0.641120i \(0.778470\pi\)
\(948\) 0 0
\(949\) 3.64811 0.118423
\(950\) 0 0
\(951\) −24.9547 −0.809212
\(952\) 0 0
\(953\) −7.64014 −0.247488 −0.123744 0.992314i \(-0.539490\pi\)
−0.123744 + 0.992314i \(0.539490\pi\)
\(954\) 0 0
\(955\) −4.02981 −0.130402
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.08102 −0.196367
\(960\) 0 0
\(961\) 0.735306 0.0237195
\(962\) 0 0
\(963\) −19.1797 −0.618059
\(964\) 0 0
\(965\) −2.08788 −0.0672112
\(966\) 0 0
\(967\) 41.2560 1.32670 0.663351 0.748308i \(-0.269134\pi\)
0.663351 + 0.748308i \(0.269134\pi\)
\(968\) 0 0
\(969\) 10.0122 0.321638
\(970\) 0 0
\(971\) −20.0087 −0.642109 −0.321054 0.947061i \(-0.604037\pi\)
−0.321054 + 0.947061i \(0.604037\pi\)
\(972\) 0 0
\(973\) −3.27230 −0.104905
\(974\) 0 0
\(975\) 49.3099 1.57918
\(976\) 0 0
\(977\) −1.57451 −0.0503730 −0.0251865 0.999683i \(-0.508018\pi\)
−0.0251865 + 0.999683i \(0.508018\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5.51249 −0.176000
\(982\) 0 0
\(983\) −32.5468 −1.03808 −0.519042 0.854749i \(-0.673711\pi\)
−0.519042 + 0.854749i \(0.673711\pi\)
\(984\) 0 0
\(985\) −6.47952 −0.206455
\(986\) 0 0
\(987\) −11.3370 −0.360861
\(988\) 0 0
\(989\) −15.4142 −0.490144
\(990\) 0 0
\(991\) 40.7111 1.29323 0.646616 0.762816i \(-0.276184\pi\)
0.646616 + 0.762816i \(0.276184\pi\)
\(992\) 0 0
\(993\) 27.8544 0.883931
\(994\) 0 0
\(995\) 4.94310 0.156707
\(996\) 0 0
\(997\) 48.2060 1.52670 0.763350 0.645985i \(-0.223553\pi\)
0.763350 + 0.645985i \(0.223553\pi\)
\(998\) 0 0
\(999\) −33.8016 −1.06944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.l.1.6 6
11.10 odd 2 9196.2.a.m.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.l.1.6 6 1.1 even 1 trivial
9196.2.a.m.1.6 yes 6 11.10 odd 2