Properties

Label 9196.2.a.t.1.1
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 16x^{8} - 3x^{7} + 84x^{6} + 16x^{5} - 174x^{4} - 16x^{3} + 122x^{2} - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.05348\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.05348 q^{3} +2.08326 q^{5} +3.50519 q^{7} +6.32373 q^{9} -2.38232 q^{13} -6.36119 q^{15} +1.39662 q^{17} -1.00000 q^{19} -10.7030 q^{21} -0.551290 q^{23} -0.660029 q^{25} -10.1490 q^{27} +8.08217 q^{29} +0.0680194 q^{31} +7.30222 q^{35} +10.0355 q^{37} +7.27436 q^{39} -10.9265 q^{41} -7.50111 q^{43} +13.1740 q^{45} -7.59871 q^{47} +5.28634 q^{49} -4.26456 q^{51} -8.04102 q^{53} +3.05348 q^{57} -0.812498 q^{59} +1.73955 q^{61} +22.1659 q^{63} -4.96299 q^{65} -10.9218 q^{67} +1.68335 q^{69} -16.1169 q^{71} -11.9028 q^{73} +2.01538 q^{75} -3.11141 q^{79} +12.0184 q^{81} -0.715131 q^{83} +2.90953 q^{85} -24.6787 q^{87} -13.9144 q^{89} -8.35047 q^{91} -0.207696 q^{93} -2.08326 q^{95} +3.53255 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 8 q^{5} + 5 q^{7} + 2 q^{9} - 2 q^{13} - 10 q^{15} + 4 q^{17} - 10 q^{19} + 6 q^{21} - 8 q^{23} - 10 q^{25} - 9 q^{27} - 3 q^{29} - 12 q^{31} + 9 q^{35} - 23 q^{37} - 18 q^{39} - 5 q^{41} - 14 q^{43}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.05348 −1.76293 −0.881463 0.472252i \(-0.843441\pi\)
−0.881463 + 0.472252i \(0.843441\pi\)
\(4\) 0 0
\(5\) 2.08326 0.931662 0.465831 0.884874i \(-0.345755\pi\)
0.465831 + 0.884874i \(0.345755\pi\)
\(6\) 0 0
\(7\) 3.50519 1.32484 0.662418 0.749134i \(-0.269530\pi\)
0.662418 + 0.749134i \(0.269530\pi\)
\(8\) 0 0
\(9\) 6.32373 2.10791
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.38232 −0.660736 −0.330368 0.943852i \(-0.607173\pi\)
−0.330368 + 0.943852i \(0.607173\pi\)
\(14\) 0 0
\(15\) −6.36119 −1.64245
\(16\) 0 0
\(17\) 1.39662 0.338731 0.169366 0.985553i \(-0.445828\pi\)
0.169366 + 0.985553i \(0.445828\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −10.7030 −2.33559
\(22\) 0 0
\(23\) −0.551290 −0.114952 −0.0574759 0.998347i \(-0.518305\pi\)
−0.0574759 + 0.998347i \(0.518305\pi\)
\(24\) 0 0
\(25\) −0.660029 −0.132006
\(26\) 0 0
\(27\) −10.1490 −1.95317
\(28\) 0 0
\(29\) 8.08217 1.50082 0.750411 0.660972i \(-0.229856\pi\)
0.750411 + 0.660972i \(0.229856\pi\)
\(30\) 0 0
\(31\) 0.0680194 0.0122166 0.00610832 0.999981i \(-0.498056\pi\)
0.00610832 + 0.999981i \(0.498056\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.30222 1.23430
\(36\) 0 0
\(37\) 10.0355 1.64982 0.824910 0.565265i \(-0.191226\pi\)
0.824910 + 0.565265i \(0.191226\pi\)
\(38\) 0 0
\(39\) 7.27436 1.16483
\(40\) 0 0
\(41\) −10.9265 −1.70643 −0.853215 0.521560i \(-0.825350\pi\)
−0.853215 + 0.521560i \(0.825350\pi\)
\(42\) 0 0
\(43\) −7.50111 −1.14391 −0.571955 0.820285i \(-0.693815\pi\)
−0.571955 + 0.820285i \(0.693815\pi\)
\(44\) 0 0
\(45\) 13.1740 1.96386
\(46\) 0 0
\(47\) −7.59871 −1.10839 −0.554193 0.832388i \(-0.686973\pi\)
−0.554193 + 0.832388i \(0.686973\pi\)
\(48\) 0 0
\(49\) 5.28634 0.755192
\(50\) 0 0
\(51\) −4.26456 −0.597158
\(52\) 0 0
\(53\) −8.04102 −1.10452 −0.552259 0.833672i \(-0.686234\pi\)
−0.552259 + 0.833672i \(0.686234\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.05348 0.404443
\(58\) 0 0
\(59\) −0.812498 −0.105778 −0.0528891 0.998600i \(-0.516843\pi\)
−0.0528891 + 0.998600i \(0.516843\pi\)
\(60\) 0 0
\(61\) 1.73955 0.222726 0.111363 0.993780i \(-0.464478\pi\)
0.111363 + 0.993780i \(0.464478\pi\)
\(62\) 0 0
\(63\) 22.1659 2.79264
\(64\) 0 0
\(65\) −4.96299 −0.615583
\(66\) 0 0
\(67\) −10.9218 −1.33431 −0.667153 0.744921i \(-0.732487\pi\)
−0.667153 + 0.744921i \(0.732487\pi\)
\(68\) 0 0
\(69\) 1.68335 0.202652
\(70\) 0 0
\(71\) −16.1169 −1.91273 −0.956365 0.292175i \(-0.905621\pi\)
−0.956365 + 0.292175i \(0.905621\pi\)
\(72\) 0 0
\(73\) −11.9028 −1.39312 −0.696560 0.717498i \(-0.745287\pi\)
−0.696560 + 0.717498i \(0.745287\pi\)
\(74\) 0 0
\(75\) 2.01538 0.232716
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.11141 −0.350061 −0.175031 0.984563i \(-0.556002\pi\)
−0.175031 + 0.984563i \(0.556002\pi\)
\(80\) 0 0
\(81\) 12.0184 1.33538
\(82\) 0 0
\(83\) −0.715131 −0.0784959 −0.0392479 0.999230i \(-0.512496\pi\)
−0.0392479 + 0.999230i \(0.512496\pi\)
\(84\) 0 0
\(85\) 2.90953 0.315583
\(86\) 0 0
\(87\) −24.6787 −2.64584
\(88\) 0 0
\(89\) −13.9144 −1.47492 −0.737462 0.675389i \(-0.763976\pi\)
−0.737462 + 0.675389i \(0.763976\pi\)
\(90\) 0 0
\(91\) −8.35047 −0.875367
\(92\) 0 0
\(93\) −0.207696 −0.0215370
\(94\) 0 0
\(95\) −2.08326 −0.213738
\(96\) 0 0
\(97\) 3.53255 0.358676 0.179338 0.983788i \(-0.442604\pi\)
0.179338 + 0.983788i \(0.442604\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.473952 −0.0471600 −0.0235800 0.999722i \(-0.507506\pi\)
−0.0235800 + 0.999722i \(0.507506\pi\)
\(102\) 0 0
\(103\) 11.2007 1.10364 0.551818 0.833965i \(-0.313934\pi\)
0.551818 + 0.833965i \(0.313934\pi\)
\(104\) 0 0
\(105\) −22.2972 −2.17598
\(106\) 0 0
\(107\) −7.87157 −0.760973 −0.380487 0.924786i \(-0.624243\pi\)
−0.380487 + 0.924786i \(0.624243\pi\)
\(108\) 0 0
\(109\) −7.26224 −0.695596 −0.347798 0.937569i \(-0.613070\pi\)
−0.347798 + 0.937569i \(0.613070\pi\)
\(110\) 0 0
\(111\) −30.6431 −2.90851
\(112\) 0 0
\(113\) 4.83686 0.455013 0.227507 0.973777i \(-0.426943\pi\)
0.227507 + 0.973777i \(0.426943\pi\)
\(114\) 0 0
\(115\) −1.14848 −0.107096
\(116\) 0 0
\(117\) −15.0651 −1.39277
\(118\) 0 0
\(119\) 4.89543 0.448763
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 33.3638 3.00831
\(124\) 0 0
\(125\) −11.7913 −1.05465
\(126\) 0 0
\(127\) −17.4610 −1.54941 −0.774706 0.632322i \(-0.782102\pi\)
−0.774706 + 0.632322i \(0.782102\pi\)
\(128\) 0 0
\(129\) 22.9045 2.01663
\(130\) 0 0
\(131\) 0.966995 0.0844868 0.0422434 0.999107i \(-0.486550\pi\)
0.0422434 + 0.999107i \(0.486550\pi\)
\(132\) 0 0
\(133\) −3.50519 −0.303938
\(134\) 0 0
\(135\) −21.1429 −1.81969
\(136\) 0 0
\(137\) 12.6932 1.08445 0.542226 0.840233i \(-0.317582\pi\)
0.542226 + 0.840233i \(0.317582\pi\)
\(138\) 0 0
\(139\) 16.9312 1.43609 0.718044 0.695998i \(-0.245038\pi\)
0.718044 + 0.695998i \(0.245038\pi\)
\(140\) 0 0
\(141\) 23.2025 1.95400
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 16.8373 1.39826
\(146\) 0 0
\(147\) −16.1417 −1.33135
\(148\) 0 0
\(149\) −2.11599 −0.173349 −0.0866743 0.996237i \(-0.527624\pi\)
−0.0866743 + 0.996237i \(0.527624\pi\)
\(150\) 0 0
\(151\) −11.8277 −0.962528 −0.481264 0.876576i \(-0.659822\pi\)
−0.481264 + 0.876576i \(0.659822\pi\)
\(152\) 0 0
\(153\) 8.83188 0.714015
\(154\) 0 0
\(155\) 0.141702 0.0113818
\(156\) 0 0
\(157\) 19.7632 1.57728 0.788639 0.614857i \(-0.210786\pi\)
0.788639 + 0.614857i \(0.210786\pi\)
\(158\) 0 0
\(159\) 24.5531 1.94719
\(160\) 0 0
\(161\) −1.93237 −0.152292
\(162\) 0 0
\(163\) 5.75390 0.450680 0.225340 0.974280i \(-0.427651\pi\)
0.225340 + 0.974280i \(0.427651\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.23982 0.173322 0.0866611 0.996238i \(-0.472380\pi\)
0.0866611 + 0.996238i \(0.472380\pi\)
\(168\) 0 0
\(169\) −7.32456 −0.563428
\(170\) 0 0
\(171\) −6.32373 −0.483588
\(172\) 0 0
\(173\) 3.93251 0.298983 0.149492 0.988763i \(-0.452236\pi\)
0.149492 + 0.988763i \(0.452236\pi\)
\(174\) 0 0
\(175\) −2.31352 −0.174886
\(176\) 0 0
\(177\) 2.48095 0.186479
\(178\) 0 0
\(179\) −20.9513 −1.56598 −0.782988 0.622036i \(-0.786306\pi\)
−0.782988 + 0.622036i \(0.786306\pi\)
\(180\) 0 0
\(181\) −20.4731 −1.52175 −0.760876 0.648897i \(-0.775231\pi\)
−0.760876 + 0.648897i \(0.775231\pi\)
\(182\) 0 0
\(183\) −5.31167 −0.392650
\(184\) 0 0
\(185\) 20.9065 1.53707
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −35.5740 −2.58763
\(190\) 0 0
\(191\) 15.5073 1.12207 0.561034 0.827792i \(-0.310404\pi\)
0.561034 + 0.827792i \(0.310404\pi\)
\(192\) 0 0
\(193\) −12.3196 −0.886787 −0.443394 0.896327i \(-0.646226\pi\)
−0.443394 + 0.896327i \(0.646226\pi\)
\(194\) 0 0
\(195\) 15.1544 1.08523
\(196\) 0 0
\(197\) 9.59230 0.683423 0.341712 0.939805i \(-0.388993\pi\)
0.341712 + 0.939805i \(0.388993\pi\)
\(198\) 0 0
\(199\) 5.07345 0.359648 0.179824 0.983699i \(-0.442447\pi\)
0.179824 + 0.983699i \(0.442447\pi\)
\(200\) 0 0
\(201\) 33.3494 2.35228
\(202\) 0 0
\(203\) 28.3295 1.98834
\(204\) 0 0
\(205\) −22.7627 −1.58982
\(206\) 0 0
\(207\) −3.48621 −0.242308
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.8848 −1.16240 −0.581198 0.813762i \(-0.697416\pi\)
−0.581198 + 0.813762i \(0.697416\pi\)
\(212\) 0 0
\(213\) 49.2128 3.37200
\(214\) 0 0
\(215\) −15.6268 −1.06574
\(216\) 0 0
\(217\) 0.238421 0.0161851
\(218\) 0 0
\(219\) 36.3450 2.45597
\(220\) 0 0
\(221\) −3.32720 −0.223812
\(222\) 0 0
\(223\) 4.10825 0.275109 0.137554 0.990494i \(-0.456076\pi\)
0.137554 + 0.990494i \(0.456076\pi\)
\(224\) 0 0
\(225\) −4.17385 −0.278256
\(226\) 0 0
\(227\) 1.41894 0.0941786 0.0470893 0.998891i \(-0.485005\pi\)
0.0470893 + 0.998891i \(0.485005\pi\)
\(228\) 0 0
\(229\) −10.4598 −0.691200 −0.345600 0.938382i \(-0.612325\pi\)
−0.345600 + 0.938382i \(0.612325\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.4052 1.79537 0.897686 0.440637i \(-0.145247\pi\)
0.897686 + 0.440637i \(0.145247\pi\)
\(234\) 0 0
\(235\) −15.8301 −1.03264
\(236\) 0 0
\(237\) 9.50063 0.617132
\(238\) 0 0
\(239\) 10.5793 0.684321 0.342160 0.939642i \(-0.388841\pi\)
0.342160 + 0.939642i \(0.388841\pi\)
\(240\) 0 0
\(241\) 26.2304 1.68965 0.844824 0.535045i \(-0.179705\pi\)
0.844824 + 0.535045i \(0.179705\pi\)
\(242\) 0 0
\(243\) −6.25110 −0.401008
\(244\) 0 0
\(245\) 11.0128 0.703583
\(246\) 0 0
\(247\) 2.38232 0.151583
\(248\) 0 0
\(249\) 2.18364 0.138382
\(250\) 0 0
\(251\) −14.7375 −0.930225 −0.465113 0.885252i \(-0.653986\pi\)
−0.465113 + 0.885252i \(0.653986\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.88419 −0.556350
\(256\) 0 0
\(257\) 25.5264 1.59229 0.796146 0.605104i \(-0.206869\pi\)
0.796146 + 0.605104i \(0.206869\pi\)
\(258\) 0 0
\(259\) 35.1762 2.18574
\(260\) 0 0
\(261\) 51.1095 3.16360
\(262\) 0 0
\(263\) −11.7944 −0.727276 −0.363638 0.931540i \(-0.618465\pi\)
−0.363638 + 0.931540i \(0.618465\pi\)
\(264\) 0 0
\(265\) −16.7515 −1.02904
\(266\) 0 0
\(267\) 42.4873 2.60018
\(268\) 0 0
\(269\) 19.2620 1.17443 0.587214 0.809432i \(-0.300225\pi\)
0.587214 + 0.809432i \(0.300225\pi\)
\(270\) 0 0
\(271\) 14.1232 0.857925 0.428962 0.903322i \(-0.358879\pi\)
0.428962 + 0.903322i \(0.358879\pi\)
\(272\) 0 0
\(273\) 25.4980 1.54321
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −28.8578 −1.73390 −0.866948 0.498399i \(-0.833921\pi\)
−0.866948 + 0.498399i \(0.833921\pi\)
\(278\) 0 0
\(279\) 0.430137 0.0257516
\(280\) 0 0
\(281\) −22.0345 −1.31447 −0.657235 0.753686i \(-0.728274\pi\)
−0.657235 + 0.753686i \(0.728274\pi\)
\(282\) 0 0
\(283\) 12.8574 0.764291 0.382145 0.924102i \(-0.375185\pi\)
0.382145 + 0.924102i \(0.375185\pi\)
\(284\) 0 0
\(285\) 6.36119 0.376804
\(286\) 0 0
\(287\) −38.2994 −2.26074
\(288\) 0 0
\(289\) −15.0494 −0.885261
\(290\) 0 0
\(291\) −10.7866 −0.632319
\(292\) 0 0
\(293\) 24.9253 1.45615 0.728077 0.685496i \(-0.240414\pi\)
0.728077 + 0.685496i \(0.240414\pi\)
\(294\) 0 0
\(295\) −1.69265 −0.0985496
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.31335 0.0759528
\(300\) 0 0
\(301\) −26.2928 −1.51549
\(302\) 0 0
\(303\) 1.44720 0.0831396
\(304\) 0 0
\(305\) 3.62393 0.207505
\(306\) 0 0
\(307\) −18.7523 −1.07025 −0.535125 0.844773i \(-0.679736\pi\)
−0.535125 + 0.844773i \(0.679736\pi\)
\(308\) 0 0
\(309\) −34.2010 −1.94563
\(310\) 0 0
\(311\) −33.7192 −1.91204 −0.956020 0.293301i \(-0.905246\pi\)
−0.956020 + 0.293301i \(0.905246\pi\)
\(312\) 0 0
\(313\) 0.808485 0.0456983 0.0228491 0.999739i \(-0.492726\pi\)
0.0228491 + 0.999739i \(0.492726\pi\)
\(314\) 0 0
\(315\) 46.1773 2.60179
\(316\) 0 0
\(317\) 8.10995 0.455500 0.227750 0.973720i \(-0.426863\pi\)
0.227750 + 0.973720i \(0.426863\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 24.0357 1.34154
\(322\) 0 0
\(323\) −1.39662 −0.0777103
\(324\) 0 0
\(325\) 1.57240 0.0872209
\(326\) 0 0
\(327\) 22.1751 1.22628
\(328\) 0 0
\(329\) −26.6349 −1.46843
\(330\) 0 0
\(331\) 8.07134 0.443641 0.221820 0.975088i \(-0.428800\pi\)
0.221820 + 0.975088i \(0.428800\pi\)
\(332\) 0 0
\(333\) 63.4616 3.47767
\(334\) 0 0
\(335\) −22.7529 −1.24312
\(336\) 0 0
\(337\) −15.2995 −0.833419 −0.416710 0.909040i \(-0.636817\pi\)
−0.416710 + 0.909040i \(0.636817\pi\)
\(338\) 0 0
\(339\) −14.7692 −0.802155
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −6.00670 −0.324331
\(344\) 0 0
\(345\) 3.50686 0.188803
\(346\) 0 0
\(347\) 14.1828 0.761374 0.380687 0.924704i \(-0.375687\pi\)
0.380687 + 0.924704i \(0.375687\pi\)
\(348\) 0 0
\(349\) 28.9302 1.54860 0.774299 0.632820i \(-0.218103\pi\)
0.774299 + 0.632820i \(0.218103\pi\)
\(350\) 0 0
\(351\) 24.1780 1.29053
\(352\) 0 0
\(353\) −24.1841 −1.28719 −0.643594 0.765367i \(-0.722558\pi\)
−0.643594 + 0.765367i \(0.722558\pi\)
\(354\) 0 0
\(355\) −33.5758 −1.78202
\(356\) 0 0
\(357\) −14.9481 −0.791137
\(358\) 0 0
\(359\) −12.9054 −0.681122 −0.340561 0.940222i \(-0.610617\pi\)
−0.340561 + 0.940222i \(0.610617\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −24.7967 −1.29792
\(366\) 0 0
\(367\) −20.0813 −1.04824 −0.524118 0.851646i \(-0.675605\pi\)
−0.524118 + 0.851646i \(0.675605\pi\)
\(368\) 0 0
\(369\) −69.0961 −3.59700
\(370\) 0 0
\(371\) −28.1853 −1.46331
\(372\) 0 0
\(373\) 18.9551 0.981459 0.490730 0.871312i \(-0.336730\pi\)
0.490730 + 0.871312i \(0.336730\pi\)
\(374\) 0 0
\(375\) 36.0045 1.85927
\(376\) 0 0
\(377\) −19.2543 −0.991647
\(378\) 0 0
\(379\) −17.2133 −0.884186 −0.442093 0.896969i \(-0.645764\pi\)
−0.442093 + 0.896969i \(0.645764\pi\)
\(380\) 0 0
\(381\) 53.3168 2.73150
\(382\) 0 0
\(383\) −21.0603 −1.07613 −0.538064 0.842904i \(-0.680844\pi\)
−0.538064 + 0.842904i \(0.680844\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −47.4350 −2.41126
\(388\) 0 0
\(389\) 8.89827 0.451160 0.225580 0.974225i \(-0.427572\pi\)
0.225580 + 0.974225i \(0.427572\pi\)
\(390\) 0 0
\(391\) −0.769945 −0.0389378
\(392\) 0 0
\(393\) −2.95270 −0.148944
\(394\) 0 0
\(395\) −6.48188 −0.326139
\(396\) 0 0
\(397\) 26.3146 1.32069 0.660345 0.750963i \(-0.270410\pi\)
0.660345 + 0.750963i \(0.270410\pi\)
\(398\) 0 0
\(399\) 10.7030 0.535821
\(400\) 0 0
\(401\) 11.0752 0.553070 0.276535 0.961004i \(-0.410814\pi\)
0.276535 + 0.961004i \(0.410814\pi\)
\(402\) 0 0
\(403\) −0.162044 −0.00807198
\(404\) 0 0
\(405\) 25.0375 1.24412
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 3.20897 0.158673 0.0793367 0.996848i \(-0.474720\pi\)
0.0793367 + 0.996848i \(0.474720\pi\)
\(410\) 0 0
\(411\) −38.7584 −1.91181
\(412\) 0 0
\(413\) −2.84796 −0.140139
\(414\) 0 0
\(415\) −1.48980 −0.0731316
\(416\) 0 0
\(417\) −51.6991 −2.53172
\(418\) 0 0
\(419\) 36.2166 1.76930 0.884648 0.466260i \(-0.154399\pi\)
0.884648 + 0.466260i \(0.154399\pi\)
\(420\) 0 0
\(421\) 13.3904 0.652607 0.326304 0.945265i \(-0.394197\pi\)
0.326304 + 0.945265i \(0.394197\pi\)
\(422\) 0 0
\(423\) −48.0522 −2.33638
\(424\) 0 0
\(425\) −0.921812 −0.0447145
\(426\) 0 0
\(427\) 6.09743 0.295076
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.73872 −0.0837513 −0.0418757 0.999123i \(-0.513333\pi\)
−0.0418757 + 0.999123i \(0.513333\pi\)
\(432\) 0 0
\(433\) −11.2285 −0.539605 −0.269803 0.962916i \(-0.586958\pi\)
−0.269803 + 0.962916i \(0.586958\pi\)
\(434\) 0 0
\(435\) −51.4122 −2.46503
\(436\) 0 0
\(437\) 0.551290 0.0263718
\(438\) 0 0
\(439\) 8.47555 0.404516 0.202258 0.979332i \(-0.435172\pi\)
0.202258 + 0.979332i \(0.435172\pi\)
\(440\) 0 0
\(441\) 33.4294 1.59188
\(442\) 0 0
\(443\) −8.64275 −0.410630 −0.205315 0.978696i \(-0.565822\pi\)
−0.205315 + 0.978696i \(0.565822\pi\)
\(444\) 0 0
\(445\) −28.9873 −1.37413
\(446\) 0 0
\(447\) 6.46113 0.305601
\(448\) 0 0
\(449\) −24.9761 −1.17870 −0.589348 0.807880i \(-0.700615\pi\)
−0.589348 + 0.807880i \(0.700615\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 36.1158 1.69687
\(454\) 0 0
\(455\) −17.3962 −0.815546
\(456\) 0 0
\(457\) 19.0076 0.889139 0.444570 0.895744i \(-0.353357\pi\)
0.444570 + 0.895744i \(0.353357\pi\)
\(458\) 0 0
\(459\) −14.1743 −0.661598
\(460\) 0 0
\(461\) 3.03082 0.141159 0.0705796 0.997506i \(-0.477515\pi\)
0.0705796 + 0.997506i \(0.477515\pi\)
\(462\) 0 0
\(463\) −3.52642 −0.163887 −0.0819433 0.996637i \(-0.526113\pi\)
−0.0819433 + 0.996637i \(0.526113\pi\)
\(464\) 0 0
\(465\) −0.432684 −0.0200653
\(466\) 0 0
\(467\) 1.37161 0.0634707 0.0317353 0.999496i \(-0.489897\pi\)
0.0317353 + 0.999496i \(0.489897\pi\)
\(468\) 0 0
\(469\) −38.2828 −1.76774
\(470\) 0 0
\(471\) −60.3466 −2.78062
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.660029 0.0302842
\(476\) 0 0
\(477\) −50.8492 −2.32823
\(478\) 0 0
\(479\) −22.7631 −1.04007 −0.520037 0.854143i \(-0.674082\pi\)
−0.520037 + 0.854143i \(0.674082\pi\)
\(480\) 0 0
\(481\) −23.9076 −1.09009
\(482\) 0 0
\(483\) 5.90046 0.268480
\(484\) 0 0
\(485\) 7.35921 0.334165
\(486\) 0 0
\(487\) −27.6490 −1.25290 −0.626448 0.779463i \(-0.715492\pi\)
−0.626448 + 0.779463i \(0.715492\pi\)
\(488\) 0 0
\(489\) −17.5694 −0.794517
\(490\) 0 0
\(491\) 19.6440 0.886520 0.443260 0.896393i \(-0.353822\pi\)
0.443260 + 0.896393i \(0.353822\pi\)
\(492\) 0 0
\(493\) 11.2878 0.508375
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −56.4929 −2.53405
\(498\) 0 0
\(499\) −33.9361 −1.51919 −0.759595 0.650396i \(-0.774603\pi\)
−0.759595 + 0.650396i \(0.774603\pi\)
\(500\) 0 0
\(501\) −6.83923 −0.305554
\(502\) 0 0
\(503\) 1.83967 0.0820269 0.0410134 0.999159i \(-0.486941\pi\)
0.0410134 + 0.999159i \(0.486941\pi\)
\(504\) 0 0
\(505\) −0.987365 −0.0439372
\(506\) 0 0
\(507\) 22.3654 0.993282
\(508\) 0 0
\(509\) 5.25743 0.233031 0.116516 0.993189i \(-0.462827\pi\)
0.116516 + 0.993189i \(0.462827\pi\)
\(510\) 0 0
\(511\) −41.7216 −1.84566
\(512\) 0 0
\(513\) 10.1490 0.448087
\(514\) 0 0
\(515\) 23.3339 1.02822
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0078 −0.527086
\(520\) 0 0
\(521\) −6.37350 −0.279228 −0.139614 0.990206i \(-0.544586\pi\)
−0.139614 + 0.990206i \(0.544586\pi\)
\(522\) 0 0
\(523\) 4.61267 0.201698 0.100849 0.994902i \(-0.467844\pi\)
0.100849 + 0.994902i \(0.467844\pi\)
\(524\) 0 0
\(525\) 7.06430 0.308311
\(526\) 0 0
\(527\) 0.0949976 0.00413816
\(528\) 0 0
\(529\) −22.6961 −0.986786
\(530\) 0 0
\(531\) −5.13802 −0.222971
\(532\) 0 0
\(533\) 26.0303 1.12750
\(534\) 0 0
\(535\) −16.3985 −0.708970
\(536\) 0 0
\(537\) 63.9745 2.76070
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.2770 0.699801 0.349901 0.936787i \(-0.386215\pi\)
0.349901 + 0.936787i \(0.386215\pi\)
\(542\) 0 0
\(543\) 62.5141 2.68274
\(544\) 0 0
\(545\) −15.1291 −0.648060
\(546\) 0 0
\(547\) −23.0109 −0.983874 −0.491937 0.870631i \(-0.663711\pi\)
−0.491937 + 0.870631i \(0.663711\pi\)
\(548\) 0 0
\(549\) 11.0004 0.469487
\(550\) 0 0
\(551\) −8.08217 −0.344312
\(552\) 0 0
\(553\) −10.9061 −0.463774
\(554\) 0 0
\(555\) −63.8375 −2.70975
\(556\) 0 0
\(557\) −16.1595 −0.684701 −0.342351 0.939572i \(-0.611223\pi\)
−0.342351 + 0.939572i \(0.611223\pi\)
\(558\) 0 0
\(559\) 17.8700 0.755822
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.0059 0.716712 0.358356 0.933585i \(-0.383337\pi\)
0.358356 + 0.933585i \(0.383337\pi\)
\(564\) 0 0
\(565\) 10.0764 0.423919
\(566\) 0 0
\(567\) 42.1268 1.76916
\(568\) 0 0
\(569\) 28.0037 1.17398 0.586989 0.809595i \(-0.300313\pi\)
0.586989 + 0.809595i \(0.300313\pi\)
\(570\) 0 0
\(571\) 43.2441 1.80971 0.904855 0.425721i \(-0.139979\pi\)
0.904855 + 0.425721i \(0.139979\pi\)
\(572\) 0 0
\(573\) −47.3512 −1.97813
\(574\) 0 0
\(575\) 0.363867 0.0151743
\(576\) 0 0
\(577\) −30.5136 −1.27030 −0.635149 0.772390i \(-0.719061\pi\)
−0.635149 + 0.772390i \(0.719061\pi\)
\(578\) 0 0
\(579\) 37.6178 1.56334
\(580\) 0 0
\(581\) −2.50667 −0.103994
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −31.3846 −1.29759
\(586\) 0 0
\(587\) −26.0375 −1.07468 −0.537341 0.843365i \(-0.680571\pi\)
−0.537341 + 0.843365i \(0.680571\pi\)
\(588\) 0 0
\(589\) −0.0680194 −0.00280269
\(590\) 0 0
\(591\) −29.2899 −1.20483
\(592\) 0 0
\(593\) 31.5922 1.29734 0.648668 0.761072i \(-0.275327\pi\)
0.648668 + 0.761072i \(0.275327\pi\)
\(594\) 0 0
\(595\) 10.1985 0.418096
\(596\) 0 0
\(597\) −15.4917 −0.634032
\(598\) 0 0
\(599\) −27.6041 −1.12787 −0.563936 0.825818i \(-0.690714\pi\)
−0.563936 + 0.825818i \(0.690714\pi\)
\(600\) 0 0
\(601\) 34.0255 1.38793 0.693964 0.720009i \(-0.255863\pi\)
0.693964 + 0.720009i \(0.255863\pi\)
\(602\) 0 0
\(603\) −69.0663 −2.81260
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −13.0663 −0.530346 −0.265173 0.964201i \(-0.585429\pi\)
−0.265173 + 0.964201i \(0.585429\pi\)
\(608\) 0 0
\(609\) −86.5036 −3.50530
\(610\) 0 0
\(611\) 18.1025 0.732350
\(612\) 0 0
\(613\) 30.6984 1.23990 0.619948 0.784643i \(-0.287154\pi\)
0.619948 + 0.784643i \(0.287154\pi\)
\(614\) 0 0
\(615\) 69.5054 2.80273
\(616\) 0 0
\(617\) −28.3062 −1.13956 −0.569782 0.821796i \(-0.692972\pi\)
−0.569782 + 0.821796i \(0.692972\pi\)
\(618\) 0 0
\(619\) 11.0167 0.442799 0.221399 0.975183i \(-0.428938\pi\)
0.221399 + 0.975183i \(0.428938\pi\)
\(620\) 0 0
\(621\) 5.59501 0.224520
\(622\) 0 0
\(623\) −48.7726 −1.95403
\(624\) 0 0
\(625\) −21.2642 −0.850569
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.0158 0.558845
\(630\) 0 0
\(631\) −23.7546 −0.945657 −0.472828 0.881155i \(-0.656767\pi\)
−0.472828 + 0.881155i \(0.656767\pi\)
\(632\) 0 0
\(633\) 51.5573 2.04922
\(634\) 0 0
\(635\) −36.3758 −1.44353
\(636\) 0 0
\(637\) −12.5937 −0.498982
\(638\) 0 0
\(639\) −101.919 −4.03186
\(640\) 0 0
\(641\) −36.4978 −1.44158 −0.720789 0.693154i \(-0.756220\pi\)
−0.720789 + 0.693154i \(0.756220\pi\)
\(642\) 0 0
\(643\) −5.89653 −0.232536 −0.116268 0.993218i \(-0.537093\pi\)
−0.116268 + 0.993218i \(0.537093\pi\)
\(644\) 0 0
\(645\) 47.7160 1.87882
\(646\) 0 0
\(647\) 16.8028 0.660586 0.330293 0.943879i \(-0.392852\pi\)
0.330293 + 0.943879i \(0.392852\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.728013 −0.0285331
\(652\) 0 0
\(653\) −22.1959 −0.868591 −0.434295 0.900771i \(-0.643003\pi\)
−0.434295 + 0.900771i \(0.643003\pi\)
\(654\) 0 0
\(655\) 2.01450 0.0787131
\(656\) 0 0
\(657\) −75.2703 −2.93657
\(658\) 0 0
\(659\) −1.41754 −0.0552197 −0.0276098 0.999619i \(-0.508790\pi\)
−0.0276098 + 0.999619i \(0.508790\pi\)
\(660\) 0 0
\(661\) 36.4936 1.41943 0.709717 0.704486i \(-0.248823\pi\)
0.709717 + 0.704486i \(0.248823\pi\)
\(662\) 0 0
\(663\) 10.1595 0.394564
\(664\) 0 0
\(665\) −7.30222 −0.283168
\(666\) 0 0
\(667\) −4.45562 −0.172522
\(668\) 0 0
\(669\) −12.5444 −0.484996
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 27.2994 1.05231 0.526157 0.850388i \(-0.323633\pi\)
0.526157 + 0.850388i \(0.323633\pi\)
\(674\) 0 0
\(675\) 6.69860 0.257829
\(676\) 0 0
\(677\) −19.8920 −0.764512 −0.382256 0.924056i \(-0.624853\pi\)
−0.382256 + 0.924056i \(0.624853\pi\)
\(678\) 0 0
\(679\) 12.3822 0.475187
\(680\) 0 0
\(681\) −4.33271 −0.166030
\(682\) 0 0
\(683\) −6.64803 −0.254380 −0.127190 0.991878i \(-0.540596\pi\)
−0.127190 + 0.991878i \(0.540596\pi\)
\(684\) 0 0
\(685\) 26.4432 1.01034
\(686\) 0 0
\(687\) 31.9386 1.21854
\(688\) 0 0
\(689\) 19.1563 0.729795
\(690\) 0 0
\(691\) 3.48030 0.132397 0.0661985 0.997806i \(-0.478913\pi\)
0.0661985 + 0.997806i \(0.478913\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35.2721 1.33795
\(696\) 0 0
\(697\) −15.2602 −0.578021
\(698\) 0 0
\(699\) −83.6810 −3.16511
\(700\) 0 0
\(701\) 24.0929 0.909977 0.454988 0.890497i \(-0.349643\pi\)
0.454988 + 0.890497i \(0.349643\pi\)
\(702\) 0 0
\(703\) −10.0355 −0.378494
\(704\) 0 0
\(705\) 48.3368 1.82047
\(706\) 0 0
\(707\) −1.66129 −0.0624792
\(708\) 0 0
\(709\) 17.0675 0.640985 0.320492 0.947251i \(-0.396152\pi\)
0.320492 + 0.947251i \(0.396152\pi\)
\(710\) 0 0
\(711\) −19.6757 −0.737898
\(712\) 0 0
\(713\) −0.0374984 −0.00140433
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −32.3038 −1.20641
\(718\) 0 0
\(719\) 4.55560 0.169895 0.0849477 0.996385i \(-0.472928\pi\)
0.0849477 + 0.996385i \(0.472928\pi\)
\(720\) 0 0
\(721\) 39.2605 1.46214
\(722\) 0 0
\(723\) −80.0939 −2.97872
\(724\) 0 0
\(725\) −5.33446 −0.198117
\(726\) 0 0
\(727\) −2.54229 −0.0942882 −0.0471441 0.998888i \(-0.515012\pi\)
−0.0471441 + 0.998888i \(0.515012\pi\)
\(728\) 0 0
\(729\) −16.9676 −0.628430
\(730\) 0 0
\(731\) −10.4762 −0.387478
\(732\) 0 0
\(733\) 17.2073 0.635566 0.317783 0.948164i \(-0.397062\pi\)
0.317783 + 0.948164i \(0.397062\pi\)
\(734\) 0 0
\(735\) −33.6274 −1.24037
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −24.8269 −0.913271 −0.456635 0.889654i \(-0.650946\pi\)
−0.456635 + 0.889654i \(0.650946\pi\)
\(740\) 0 0
\(741\) −7.27436 −0.267230
\(742\) 0 0
\(743\) 10.6452 0.390536 0.195268 0.980750i \(-0.437442\pi\)
0.195268 + 0.980750i \(0.437442\pi\)
\(744\) 0 0
\(745\) −4.40816 −0.161502
\(746\) 0 0
\(747\) −4.52230 −0.165462
\(748\) 0 0
\(749\) −27.5913 −1.00817
\(750\) 0 0
\(751\) −43.9781 −1.60478 −0.802392 0.596797i \(-0.796440\pi\)
−0.802392 + 0.596797i \(0.796440\pi\)
\(752\) 0 0
\(753\) 45.0008 1.63992
\(754\) 0 0
\(755\) −24.6403 −0.896751
\(756\) 0 0
\(757\) −27.6806 −1.00607 −0.503034 0.864266i \(-0.667783\pi\)
−0.503034 + 0.864266i \(0.667783\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −43.6445 −1.58211 −0.791057 0.611743i \(-0.790469\pi\)
−0.791057 + 0.611743i \(0.790469\pi\)
\(762\) 0 0
\(763\) −25.4555 −0.921551
\(764\) 0 0
\(765\) 18.3991 0.665221
\(766\) 0 0
\(767\) 1.93563 0.0698915
\(768\) 0 0
\(769\) 49.5413 1.78650 0.893252 0.449556i \(-0.148418\pi\)
0.893252 + 0.449556i \(0.148418\pi\)
\(770\) 0 0
\(771\) −77.9443 −2.80710
\(772\) 0 0
\(773\) −37.6221 −1.35317 −0.676587 0.736362i \(-0.736542\pi\)
−0.676587 + 0.736362i \(0.736542\pi\)
\(774\) 0 0
\(775\) −0.0448947 −0.00161267
\(776\) 0 0
\(777\) −107.410 −3.85330
\(778\) 0 0
\(779\) 10.9265 0.391482
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −82.0255 −2.93135
\(784\) 0 0
\(785\) 41.1719 1.46949
\(786\) 0 0
\(787\) 24.8221 0.884814 0.442407 0.896814i \(-0.354125\pi\)
0.442407 + 0.896814i \(0.354125\pi\)
\(788\) 0 0
\(789\) 36.0140 1.28213
\(790\) 0 0
\(791\) 16.9541 0.602818
\(792\) 0 0
\(793\) −4.14415 −0.147163
\(794\) 0 0
\(795\) 51.1504 1.81412
\(796\) 0 0
\(797\) −6.60415 −0.233931 −0.116966 0.993136i \(-0.537317\pi\)
−0.116966 + 0.993136i \(0.537317\pi\)
\(798\) 0 0
\(799\) −10.6125 −0.375445
\(800\) 0 0
\(801\) −87.9910 −3.10901
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −4.02564 −0.141885
\(806\) 0 0
\(807\) −58.8162 −2.07043
\(808\) 0 0
\(809\) −10.1926 −0.358353 −0.179177 0.983817i \(-0.557343\pi\)
−0.179177 + 0.983817i \(0.557343\pi\)
\(810\) 0 0
\(811\) −25.3847 −0.891378 −0.445689 0.895188i \(-0.647041\pi\)
−0.445689 + 0.895188i \(0.647041\pi\)
\(812\) 0 0
\(813\) −43.1250 −1.51246
\(814\) 0 0
\(815\) 11.9869 0.419882
\(816\) 0 0
\(817\) 7.50111 0.262431
\(818\) 0 0
\(819\) −52.8062 −1.84520
\(820\) 0 0
\(821\) −42.6490 −1.48846 −0.744231 0.667922i \(-0.767184\pi\)
−0.744231 + 0.667922i \(0.767184\pi\)
\(822\) 0 0
\(823\) 49.9772 1.74210 0.871048 0.491199i \(-0.163441\pi\)
0.871048 + 0.491199i \(0.163441\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1252 1.32574 0.662872 0.748733i \(-0.269337\pi\)
0.662872 + 0.748733i \(0.269337\pi\)
\(828\) 0 0
\(829\) 50.6945 1.76069 0.880347 0.474330i \(-0.157310\pi\)
0.880347 + 0.474330i \(0.157310\pi\)
\(830\) 0 0
\(831\) 88.1166 3.05673
\(832\) 0 0
\(833\) 7.38303 0.255807
\(834\) 0 0
\(835\) 4.66612 0.161478
\(836\) 0 0
\(837\) −0.690325 −0.0238611
\(838\) 0 0
\(839\) 1.66069 0.0573334 0.0286667 0.999589i \(-0.490874\pi\)
0.0286667 + 0.999589i \(0.490874\pi\)
\(840\) 0 0
\(841\) 36.3215 1.25246
\(842\) 0 0
\(843\) 67.2820 2.31731
\(844\) 0 0
\(845\) −15.2590 −0.524924
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −39.2597 −1.34739
\(850\) 0 0
\(851\) −5.53244 −0.189650
\(852\) 0 0
\(853\) −41.4654 −1.41975 −0.709875 0.704328i \(-0.751249\pi\)
−0.709875 + 0.704328i \(0.751249\pi\)
\(854\) 0 0
\(855\) −13.1740 −0.450541
\(856\) 0 0
\(857\) 15.9836 0.545990 0.272995 0.962015i \(-0.411986\pi\)
0.272995 + 0.962015i \(0.411986\pi\)
\(858\) 0 0
\(859\) 16.5496 0.564665 0.282332 0.959317i \(-0.408892\pi\)
0.282332 + 0.959317i \(0.408892\pi\)
\(860\) 0 0
\(861\) 116.946 3.98552
\(862\) 0 0
\(863\) 9.96667 0.339269 0.169635 0.985507i \(-0.445741\pi\)
0.169635 + 0.985507i \(0.445741\pi\)
\(864\) 0 0
\(865\) 8.19245 0.278552
\(866\) 0 0
\(867\) 45.9531 1.56065
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 26.0191 0.881624
\(872\) 0 0
\(873\) 22.3389 0.756057
\(874\) 0 0
\(875\) −41.3308 −1.39723
\(876\) 0 0
\(877\) 49.8742 1.68413 0.842065 0.539376i \(-0.181340\pi\)
0.842065 + 0.539376i \(0.181340\pi\)
\(878\) 0 0
\(879\) −76.1090 −2.56709
\(880\) 0 0
\(881\) −8.44750 −0.284604 −0.142302 0.989823i \(-0.545450\pi\)
−0.142302 + 0.989823i \(0.545450\pi\)
\(882\) 0 0
\(883\) 12.2373 0.411817 0.205909 0.978571i \(-0.433985\pi\)
0.205909 + 0.978571i \(0.433985\pi\)
\(884\) 0 0
\(885\) 5.16846 0.173736
\(886\) 0 0
\(887\) −2.60472 −0.0874580 −0.0437290 0.999043i \(-0.513924\pi\)
−0.0437290 + 0.999043i \(0.513924\pi\)
\(888\) 0 0
\(889\) −61.2040 −2.05272
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.59871 0.254281
\(894\) 0 0
\(895\) −43.6471 −1.45896
\(896\) 0 0
\(897\) −4.01028 −0.133899
\(898\) 0 0
\(899\) 0.549744 0.0183350
\(900\) 0 0
\(901\) −11.2303 −0.374135
\(902\) 0 0
\(903\) 80.2845 2.67170
\(904\) 0 0
\(905\) −42.6507 −1.41776
\(906\) 0 0
\(907\) −43.0986 −1.43106 −0.715532 0.698580i \(-0.753816\pi\)
−0.715532 + 0.698580i \(0.753816\pi\)
\(908\) 0 0
\(909\) −2.99714 −0.0994090
\(910\) 0 0
\(911\) −24.0874 −0.798050 −0.399025 0.916940i \(-0.630651\pi\)
−0.399025 + 0.916940i \(0.630651\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −11.0656 −0.365817
\(916\) 0 0
\(917\) 3.38950 0.111931
\(918\) 0 0
\(919\) 27.4929 0.906907 0.453453 0.891280i \(-0.350192\pi\)
0.453453 + 0.891280i \(0.350192\pi\)
\(920\) 0 0
\(921\) 57.2598 1.88677
\(922\) 0 0
\(923\) 38.3957 1.26381
\(924\) 0 0
\(925\) −6.62369 −0.217786
\(926\) 0 0
\(927\) 70.8301 2.32637
\(928\) 0 0
\(929\) −43.6254 −1.43130 −0.715652 0.698457i \(-0.753870\pi\)
−0.715652 + 0.698457i \(0.753870\pi\)
\(930\) 0 0
\(931\) −5.28634 −0.173253
\(932\) 0 0
\(933\) 102.961 3.37079
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.0810 0.950034 0.475017 0.879977i \(-0.342442\pi\)
0.475017 + 0.879977i \(0.342442\pi\)
\(938\) 0 0
\(939\) −2.46869 −0.0805627
\(940\) 0 0
\(941\) −34.6526 −1.12964 −0.564822 0.825213i \(-0.691055\pi\)
−0.564822 + 0.825213i \(0.691055\pi\)
\(942\) 0 0
\(943\) 6.02365 0.196157
\(944\) 0 0
\(945\) −74.1098 −2.41079
\(946\) 0 0
\(947\) −10.7999 −0.350949 −0.175475 0.984484i \(-0.556146\pi\)
−0.175475 + 0.984484i \(0.556146\pi\)
\(948\) 0 0
\(949\) 28.3563 0.920485
\(950\) 0 0
\(951\) −24.7636 −0.803014
\(952\) 0 0
\(953\) −52.3488 −1.69574 −0.847872 0.530201i \(-0.822117\pi\)
−0.847872 + 0.530201i \(0.822117\pi\)
\(954\) 0 0
\(955\) 32.3057 1.04539
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 44.4920 1.43672
\(960\) 0 0
\(961\) −30.9954 −0.999851
\(962\) 0 0
\(963\) −49.7777 −1.60406
\(964\) 0 0
\(965\) −25.6650 −0.826186
\(966\) 0 0
\(967\) 11.1964 0.360053 0.180026 0.983662i \(-0.442382\pi\)
0.180026 + 0.983662i \(0.442382\pi\)
\(968\) 0 0
\(969\) 4.26456 0.136998
\(970\) 0 0
\(971\) 44.6433 1.43267 0.716336 0.697756i \(-0.245818\pi\)
0.716336 + 0.697756i \(0.245818\pi\)
\(972\) 0 0
\(973\) 59.3471 1.90258
\(974\) 0 0
\(975\) −4.80128 −0.153764
\(976\) 0 0
\(977\) 6.05033 0.193567 0.0967836 0.995305i \(-0.469145\pi\)
0.0967836 + 0.995305i \(0.469145\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −45.9244 −1.46625
\(982\) 0 0
\(983\) 44.3592 1.41484 0.707420 0.706794i \(-0.249859\pi\)
0.707420 + 0.706794i \(0.249859\pi\)
\(984\) 0 0
\(985\) 19.9833 0.636720
\(986\) 0 0
\(987\) 81.3291 2.58873
\(988\) 0 0
\(989\) 4.13529 0.131494
\(990\) 0 0
\(991\) 54.2098 1.72203 0.861016 0.508578i \(-0.169829\pi\)
0.861016 + 0.508578i \(0.169829\pi\)
\(992\) 0 0
\(993\) −24.6457 −0.782107
\(994\) 0 0
\(995\) 10.5693 0.335070
\(996\) 0 0
\(997\) 22.7327 0.719952 0.359976 0.932962i \(-0.382785\pi\)
0.359976 + 0.932962i \(0.382785\pi\)
\(998\) 0 0
\(999\) −101.849 −3.22237
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.t.1.1 10
11.7 odd 10 836.2.j.b.533.5 yes 20
11.8 odd 10 836.2.j.b.229.5 20
11.10 odd 2 9196.2.a.s.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.b.229.5 20 11.8 odd 10
836.2.j.b.533.5 yes 20 11.7 odd 10
9196.2.a.s.1.1 10 11.10 odd 2
9196.2.a.t.1.1 10 1.1 even 1 trivial