Properties

Label 9196.2.a.w.1.3
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} - 26 x^{18} + 208 x^{17} + 185 x^{16} - 2910 x^{15} + 687 x^{14} + 21067 x^{13} + \cdots - 3520 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.45218\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.45218 q^{3} +0.520700 q^{5} -0.586094 q^{7} +3.01318 q^{9} +3.56613 q^{13} -1.27685 q^{15} -3.94008 q^{17} +1.00000 q^{19} +1.43721 q^{21} -5.71492 q^{23} -4.72887 q^{25} -0.0323087 q^{27} +9.77619 q^{29} -0.656936 q^{31} -0.305179 q^{35} +3.51752 q^{37} -8.74478 q^{39} -11.2712 q^{41} +10.5252 q^{43} +1.56896 q^{45} +10.1084 q^{47} -6.65649 q^{49} +9.66177 q^{51} -10.5248 q^{53} -2.45218 q^{57} +8.47821 q^{59} -5.34925 q^{61} -1.76600 q^{63} +1.85688 q^{65} -2.38499 q^{67} +14.0140 q^{69} +10.4904 q^{71} -4.46532 q^{73} +11.5960 q^{75} -6.22693 q^{79} -8.96030 q^{81} +0.430250 q^{83} -2.05160 q^{85} -23.9730 q^{87} -16.3343 q^{89} -2.09009 q^{91} +1.61092 q^{93} +0.520700 q^{95} +13.3949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 2 q^{5} - 4 q^{7} + 28 q^{9} + 5 q^{13} + 14 q^{15} + 6 q^{17} + 20 q^{19} + q^{21} + 18 q^{23} + 44 q^{25} + 24 q^{27} - q^{29} + 23 q^{31} + 36 q^{35} + q^{37} - 21 q^{39} - 6 q^{41}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.45218 −1.41577 −0.707883 0.706330i \(-0.750349\pi\)
−0.707883 + 0.706330i \(0.750349\pi\)
\(4\) 0 0
\(5\) 0.520700 0.232864 0.116432 0.993199i \(-0.462854\pi\)
0.116432 + 0.993199i \(0.462854\pi\)
\(6\) 0 0
\(7\) −0.586094 −0.221523 −0.110761 0.993847i \(-0.535329\pi\)
−0.110761 + 0.993847i \(0.535329\pi\)
\(8\) 0 0
\(9\) 3.01318 1.00439
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 3.56613 0.989066 0.494533 0.869159i \(-0.335339\pi\)
0.494533 + 0.869159i \(0.335339\pi\)
\(14\) 0 0
\(15\) −1.27685 −0.329681
\(16\) 0 0
\(17\) −3.94008 −0.955609 −0.477804 0.878466i \(-0.658567\pi\)
−0.477804 + 0.878466i \(0.658567\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.43721 0.313624
\(22\) 0 0
\(23\) −5.71492 −1.19164 −0.595822 0.803117i \(-0.703173\pi\)
−0.595822 + 0.803117i \(0.703173\pi\)
\(24\) 0 0
\(25\) −4.72887 −0.945774
\(26\) 0 0
\(27\) −0.0323087 −0.00621781
\(28\) 0 0
\(29\) 9.77619 1.81539 0.907696 0.419628i \(-0.137839\pi\)
0.907696 + 0.419628i \(0.137839\pi\)
\(30\) 0 0
\(31\) −0.656936 −0.117989 −0.0589946 0.998258i \(-0.518789\pi\)
−0.0589946 + 0.998258i \(0.518789\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.305179 −0.0515847
\(36\) 0 0
\(37\) 3.51752 0.578276 0.289138 0.957287i \(-0.406631\pi\)
0.289138 + 0.957287i \(0.406631\pi\)
\(38\) 0 0
\(39\) −8.74478 −1.40029
\(40\) 0 0
\(41\) −11.2712 −1.76026 −0.880129 0.474734i \(-0.842544\pi\)
−0.880129 + 0.474734i \(0.842544\pi\)
\(42\) 0 0
\(43\) 10.5252 1.60508 0.802540 0.596598i \(-0.203481\pi\)
0.802540 + 0.596598i \(0.203481\pi\)
\(44\) 0 0
\(45\) 1.56896 0.233887
\(46\) 0 0
\(47\) 10.1084 1.47447 0.737234 0.675637i \(-0.236131\pi\)
0.737234 + 0.675637i \(0.236131\pi\)
\(48\) 0 0
\(49\) −6.65649 −0.950928
\(50\) 0 0
\(51\) 9.66177 1.35292
\(52\) 0 0
\(53\) −10.5248 −1.44569 −0.722844 0.691011i \(-0.757166\pi\)
−0.722844 + 0.691011i \(0.757166\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.45218 −0.324799
\(58\) 0 0
\(59\) 8.47821 1.10377 0.551884 0.833921i \(-0.313909\pi\)
0.551884 + 0.833921i \(0.313909\pi\)
\(60\) 0 0
\(61\) −5.34925 −0.684901 −0.342451 0.939536i \(-0.611257\pi\)
−0.342451 + 0.939536i \(0.611257\pi\)
\(62\) 0 0
\(63\) −1.76600 −0.222495
\(64\) 0 0
\(65\) 1.85688 0.230318
\(66\) 0 0
\(67\) −2.38499 −0.291373 −0.145686 0.989331i \(-0.546539\pi\)
−0.145686 + 0.989331i \(0.546539\pi\)
\(68\) 0 0
\(69\) 14.0140 1.68709
\(70\) 0 0
\(71\) 10.4904 1.24498 0.622490 0.782628i \(-0.286121\pi\)
0.622490 + 0.782628i \(0.286121\pi\)
\(72\) 0 0
\(73\) −4.46532 −0.522627 −0.261313 0.965254i \(-0.584156\pi\)
−0.261313 + 0.965254i \(0.584156\pi\)
\(74\) 0 0
\(75\) 11.5960 1.33899
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.22693 −0.700584 −0.350292 0.936640i \(-0.613918\pi\)
−0.350292 + 0.936640i \(0.613918\pi\)
\(80\) 0 0
\(81\) −8.96030 −0.995589
\(82\) 0 0
\(83\) 0.430250 0.0472261 0.0236130 0.999721i \(-0.492483\pi\)
0.0236130 + 0.999721i \(0.492483\pi\)
\(84\) 0 0
\(85\) −2.05160 −0.222527
\(86\) 0 0
\(87\) −23.9730 −2.57017
\(88\) 0 0
\(89\) −16.3343 −1.73143 −0.865714 0.500540i \(-0.833135\pi\)
−0.865714 + 0.500540i \(0.833135\pi\)
\(90\) 0 0
\(91\) −2.09009 −0.219100
\(92\) 0 0
\(93\) 1.61092 0.167045
\(94\) 0 0
\(95\) 0.520700 0.0534227
\(96\) 0 0
\(97\) 13.3949 1.36005 0.680023 0.733191i \(-0.261970\pi\)
0.680023 + 0.733191i \(0.261970\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.4916 1.83999 0.919993 0.391936i \(-0.128195\pi\)
0.919993 + 0.391936i \(0.128195\pi\)
\(102\) 0 0
\(103\) 16.1344 1.58977 0.794887 0.606758i \(-0.207530\pi\)
0.794887 + 0.606758i \(0.207530\pi\)
\(104\) 0 0
\(105\) 0.748353 0.0730318
\(106\) 0 0
\(107\) 14.3626 1.38848 0.694242 0.719742i \(-0.255740\pi\)
0.694242 + 0.719742i \(0.255740\pi\)
\(108\) 0 0
\(109\) −1.93081 −0.184938 −0.0924692 0.995716i \(-0.529476\pi\)
−0.0924692 + 0.995716i \(0.529476\pi\)
\(110\) 0 0
\(111\) −8.62557 −0.818703
\(112\) 0 0
\(113\) −11.0377 −1.03834 −0.519169 0.854671i \(-0.673759\pi\)
−0.519169 + 0.854671i \(0.673759\pi\)
\(114\) 0 0
\(115\) −2.97576 −0.277491
\(116\) 0 0
\(117\) 10.7454 0.993410
\(118\) 0 0
\(119\) 2.30925 0.211689
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 27.6389 2.49211
\(124\) 0 0
\(125\) −5.06583 −0.453101
\(126\) 0 0
\(127\) −5.71470 −0.507098 −0.253549 0.967323i \(-0.581598\pi\)
−0.253549 + 0.967323i \(0.581598\pi\)
\(128\) 0 0
\(129\) −25.8097 −2.27242
\(130\) 0 0
\(131\) 0.655087 0.0572352 0.0286176 0.999590i \(-0.490889\pi\)
0.0286176 + 0.999590i \(0.490889\pi\)
\(132\) 0 0
\(133\) −0.586094 −0.0508208
\(134\) 0 0
\(135\) −0.0168231 −0.00144791
\(136\) 0 0
\(137\) −1.22032 −0.104259 −0.0521296 0.998640i \(-0.516601\pi\)
−0.0521296 + 0.998640i \(0.516601\pi\)
\(138\) 0 0
\(139\) −14.1265 −1.19820 −0.599099 0.800675i \(-0.704474\pi\)
−0.599099 + 0.800675i \(0.704474\pi\)
\(140\) 0 0
\(141\) −24.7877 −2.08750
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.09046 0.422740
\(146\) 0 0
\(147\) 16.3229 1.34629
\(148\) 0 0
\(149\) −0.642009 −0.0525954 −0.0262977 0.999654i \(-0.508372\pi\)
−0.0262977 + 0.999654i \(0.508372\pi\)
\(150\) 0 0
\(151\) −4.65871 −0.379120 −0.189560 0.981869i \(-0.560706\pi\)
−0.189560 + 0.981869i \(0.560706\pi\)
\(152\) 0 0
\(153\) −11.8721 −0.959806
\(154\) 0 0
\(155\) −0.342067 −0.0274755
\(156\) 0 0
\(157\) −11.8542 −0.946064 −0.473032 0.881045i \(-0.656841\pi\)
−0.473032 + 0.881045i \(0.656841\pi\)
\(158\) 0 0
\(159\) 25.8086 2.04676
\(160\) 0 0
\(161\) 3.34948 0.263976
\(162\) 0 0
\(163\) −17.8842 −1.40080 −0.700400 0.713751i \(-0.746995\pi\)
−0.700400 + 0.713751i \(0.746995\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.89669 0.146770 0.0733851 0.997304i \(-0.476620\pi\)
0.0733851 + 0.997304i \(0.476620\pi\)
\(168\) 0 0
\(169\) −0.282722 −0.0217478
\(170\) 0 0
\(171\) 3.01318 0.230423
\(172\) 0 0
\(173\) 3.93706 0.299329 0.149665 0.988737i \(-0.452181\pi\)
0.149665 + 0.988737i \(0.452181\pi\)
\(174\) 0 0
\(175\) 2.77156 0.209510
\(176\) 0 0
\(177\) −20.7901 −1.56268
\(178\) 0 0
\(179\) 13.6414 1.01961 0.509805 0.860290i \(-0.329718\pi\)
0.509805 + 0.860290i \(0.329718\pi\)
\(180\) 0 0
\(181\) 10.8817 0.808832 0.404416 0.914575i \(-0.367475\pi\)
0.404416 + 0.914575i \(0.367475\pi\)
\(182\) 0 0
\(183\) 13.1173 0.969659
\(184\) 0 0
\(185\) 1.83157 0.134660
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.0189359 0.00137738
\(190\) 0 0
\(191\) 10.7140 0.775236 0.387618 0.921820i \(-0.373298\pi\)
0.387618 + 0.921820i \(0.373298\pi\)
\(192\) 0 0
\(193\) −18.7181 −1.34736 −0.673679 0.739024i \(-0.735287\pi\)
−0.673679 + 0.739024i \(0.735287\pi\)
\(194\) 0 0
\(195\) −4.55341 −0.326076
\(196\) 0 0
\(197\) −25.9523 −1.84902 −0.924512 0.381154i \(-0.875527\pi\)
−0.924512 + 0.381154i \(0.875527\pi\)
\(198\) 0 0
\(199\) −6.01887 −0.426667 −0.213333 0.976979i \(-0.568432\pi\)
−0.213333 + 0.976979i \(0.568432\pi\)
\(200\) 0 0
\(201\) 5.84842 0.412516
\(202\) 0 0
\(203\) −5.72976 −0.402150
\(204\) 0 0
\(205\) −5.86889 −0.409901
\(206\) 0 0
\(207\) −17.2201 −1.19688
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 15.8843 1.09352 0.546760 0.837289i \(-0.315861\pi\)
0.546760 + 0.837289i \(0.315861\pi\)
\(212\) 0 0
\(213\) −25.7243 −1.76260
\(214\) 0 0
\(215\) 5.48048 0.373766
\(216\) 0 0
\(217\) 0.385026 0.0261373
\(218\) 0 0
\(219\) 10.9498 0.739917
\(220\) 0 0
\(221\) −14.0508 −0.945160
\(222\) 0 0
\(223\) −15.5144 −1.03892 −0.519461 0.854494i \(-0.673867\pi\)
−0.519461 + 0.854494i \(0.673867\pi\)
\(224\) 0 0
\(225\) −14.2489 −0.949928
\(226\) 0 0
\(227\) 1.59384 0.105787 0.0528935 0.998600i \(-0.483156\pi\)
0.0528935 + 0.998600i \(0.483156\pi\)
\(228\) 0 0
\(229\) 20.8659 1.37886 0.689429 0.724354i \(-0.257862\pi\)
0.689429 + 0.724354i \(0.257862\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.6149 1.15399 0.576996 0.816747i \(-0.304225\pi\)
0.576996 + 0.816747i \(0.304225\pi\)
\(234\) 0 0
\(235\) 5.26347 0.343351
\(236\) 0 0
\(237\) 15.2695 0.991863
\(238\) 0 0
\(239\) 0.802519 0.0519106 0.0259553 0.999663i \(-0.491737\pi\)
0.0259553 + 0.999663i \(0.491737\pi\)
\(240\) 0 0
\(241\) −19.1726 −1.23502 −0.617509 0.786564i \(-0.711858\pi\)
−0.617509 + 0.786564i \(0.711858\pi\)
\(242\) 0 0
\(243\) 22.0692 1.41574
\(244\) 0 0
\(245\) −3.46604 −0.221437
\(246\) 0 0
\(247\) 3.56613 0.226907
\(248\) 0 0
\(249\) −1.05505 −0.0668610
\(250\) 0 0
\(251\) 0.442602 0.0279368 0.0139684 0.999902i \(-0.495554\pi\)
0.0139684 + 0.999902i \(0.495554\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 5.03088 0.315046
\(256\) 0 0
\(257\) −24.1880 −1.50880 −0.754402 0.656412i \(-0.772073\pi\)
−0.754402 + 0.656412i \(0.772073\pi\)
\(258\) 0 0
\(259\) −2.06159 −0.128101
\(260\) 0 0
\(261\) 29.4574 1.82337
\(262\) 0 0
\(263\) 13.5494 0.835492 0.417746 0.908564i \(-0.362820\pi\)
0.417746 + 0.908564i \(0.362820\pi\)
\(264\) 0 0
\(265\) −5.48025 −0.336649
\(266\) 0 0
\(267\) 40.0545 2.45129
\(268\) 0 0
\(269\) 18.3177 1.11685 0.558425 0.829555i \(-0.311406\pi\)
0.558425 + 0.829555i \(0.311406\pi\)
\(270\) 0 0
\(271\) 14.0859 0.855659 0.427830 0.903859i \(-0.359278\pi\)
0.427830 + 0.903859i \(0.359278\pi\)
\(272\) 0 0
\(273\) 5.12526 0.310195
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.4707 1.59047 0.795235 0.606301i \(-0.207347\pi\)
0.795235 + 0.606301i \(0.207347\pi\)
\(278\) 0 0
\(279\) −1.97946 −0.118507
\(280\) 0 0
\(281\) 18.3868 1.09686 0.548431 0.836196i \(-0.315225\pi\)
0.548431 + 0.836196i \(0.315225\pi\)
\(282\) 0 0
\(283\) −29.5117 −1.75429 −0.877143 0.480229i \(-0.840554\pi\)
−0.877143 + 0.480229i \(0.840554\pi\)
\(284\) 0 0
\(285\) −1.27685 −0.0756340
\(286\) 0 0
\(287\) 6.60595 0.389937
\(288\) 0 0
\(289\) −1.47581 −0.0868121
\(290\) 0 0
\(291\) −32.8467 −1.92550
\(292\) 0 0
\(293\) −0.0316771 −0.00185060 −0.000925299 1.00000i \(-0.500295\pi\)
−0.000925299 1.00000i \(0.500295\pi\)
\(294\) 0 0
\(295\) 4.41461 0.257028
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.3801 −1.17861
\(300\) 0 0
\(301\) −6.16876 −0.355562
\(302\) 0 0
\(303\) −45.3447 −2.60499
\(304\) 0 0
\(305\) −2.78535 −0.159489
\(306\) 0 0
\(307\) −21.2743 −1.21419 −0.607095 0.794629i \(-0.707665\pi\)
−0.607095 + 0.794629i \(0.707665\pi\)
\(308\) 0 0
\(309\) −39.5645 −2.25075
\(310\) 0 0
\(311\) −1.91647 −0.108673 −0.0543365 0.998523i \(-0.517304\pi\)
−0.0543365 + 0.998523i \(0.517304\pi\)
\(312\) 0 0
\(313\) 7.08754 0.400611 0.200306 0.979733i \(-0.435806\pi\)
0.200306 + 0.979733i \(0.435806\pi\)
\(314\) 0 0
\(315\) −0.919558 −0.0518112
\(316\) 0 0
\(317\) 28.4258 1.59655 0.798277 0.602290i \(-0.205745\pi\)
0.798277 + 0.602290i \(0.205745\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −35.2196 −1.96577
\(322\) 0 0
\(323\) −3.94008 −0.219232
\(324\) 0 0
\(325\) −16.8638 −0.935433
\(326\) 0 0
\(327\) 4.73470 0.261830
\(328\) 0 0
\(329\) −5.92449 −0.326628
\(330\) 0 0
\(331\) 12.8389 0.705691 0.352845 0.935682i \(-0.385214\pi\)
0.352845 + 0.935682i \(0.385214\pi\)
\(332\) 0 0
\(333\) 10.5989 0.580816
\(334\) 0 0
\(335\) −1.24186 −0.0678503
\(336\) 0 0
\(337\) 9.05943 0.493499 0.246749 0.969079i \(-0.420638\pi\)
0.246749 + 0.969079i \(0.420638\pi\)
\(338\) 0 0
\(339\) 27.0664 1.47004
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00398 0.432174
\(344\) 0 0
\(345\) 7.29709 0.392862
\(346\) 0 0
\(347\) −27.8527 −1.49521 −0.747605 0.664143i \(-0.768796\pi\)
−0.747605 + 0.664143i \(0.768796\pi\)
\(348\) 0 0
\(349\) 32.4159 1.73519 0.867593 0.497275i \(-0.165666\pi\)
0.867593 + 0.497275i \(0.165666\pi\)
\(350\) 0 0
\(351\) −0.115217 −0.00614983
\(352\) 0 0
\(353\) 23.8089 1.26722 0.633609 0.773653i \(-0.281573\pi\)
0.633609 + 0.773653i \(0.281573\pi\)
\(354\) 0 0
\(355\) 5.46235 0.289911
\(356\) 0 0
\(357\) −5.66270 −0.299702
\(358\) 0 0
\(359\) −1.73025 −0.0913192 −0.0456596 0.998957i \(-0.514539\pi\)
−0.0456596 + 0.998957i \(0.514539\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.32509 −0.121701
\(366\) 0 0
\(367\) −1.03496 −0.0540244 −0.0270122 0.999635i \(-0.508599\pi\)
−0.0270122 + 0.999635i \(0.508599\pi\)
\(368\) 0 0
\(369\) −33.9620 −1.76799
\(370\) 0 0
\(371\) 6.16850 0.320253
\(372\) 0 0
\(373\) −6.12290 −0.317032 −0.158516 0.987356i \(-0.550671\pi\)
−0.158516 + 0.987356i \(0.550671\pi\)
\(374\) 0 0
\(375\) 12.4223 0.641485
\(376\) 0 0
\(377\) 34.8632 1.79554
\(378\) 0 0
\(379\) 13.4004 0.688335 0.344167 0.938908i \(-0.388161\pi\)
0.344167 + 0.938908i \(0.388161\pi\)
\(380\) 0 0
\(381\) 14.0135 0.717931
\(382\) 0 0
\(383\) 29.8753 1.52655 0.763277 0.646071i \(-0.223589\pi\)
0.763277 + 0.646071i \(0.223589\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 31.7143 1.61213
\(388\) 0 0
\(389\) 31.3583 1.58993 0.794963 0.606658i \(-0.207490\pi\)
0.794963 + 0.606658i \(0.207490\pi\)
\(390\) 0 0
\(391\) 22.5172 1.13874
\(392\) 0 0
\(393\) −1.60639 −0.0810316
\(394\) 0 0
\(395\) −3.24236 −0.163141
\(396\) 0 0
\(397\) 0.821202 0.0412150 0.0206075 0.999788i \(-0.493440\pi\)
0.0206075 + 0.999788i \(0.493440\pi\)
\(398\) 0 0
\(399\) 1.43721 0.0719503
\(400\) 0 0
\(401\) 18.5139 0.924539 0.462269 0.886740i \(-0.347035\pi\)
0.462269 + 0.886740i \(0.347035\pi\)
\(402\) 0 0
\(403\) −2.34272 −0.116699
\(404\) 0 0
\(405\) −4.66563 −0.231837
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.39924 0.266975 0.133488 0.991050i \(-0.457382\pi\)
0.133488 + 0.991050i \(0.457382\pi\)
\(410\) 0 0
\(411\) 2.99245 0.147607
\(412\) 0 0
\(413\) −4.96902 −0.244510
\(414\) 0 0
\(415\) 0.224031 0.0109973
\(416\) 0 0
\(417\) 34.6408 1.69637
\(418\) 0 0
\(419\) 6.28062 0.306829 0.153414 0.988162i \(-0.450973\pi\)
0.153414 + 0.988162i \(0.450973\pi\)
\(420\) 0 0
\(421\) 7.67563 0.374087 0.187044 0.982352i \(-0.440109\pi\)
0.187044 + 0.982352i \(0.440109\pi\)
\(422\) 0 0
\(423\) 30.4585 1.48094
\(424\) 0 0
\(425\) 18.6321 0.903790
\(426\) 0 0
\(427\) 3.13516 0.151721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.46664 −0.166982 −0.0834910 0.996509i \(-0.526607\pi\)
−0.0834910 + 0.996509i \(0.526607\pi\)
\(432\) 0 0
\(433\) −0.501246 −0.0240884 −0.0120442 0.999927i \(-0.503834\pi\)
−0.0120442 + 0.999927i \(0.503834\pi\)
\(434\) 0 0
\(435\) −12.4827 −0.598501
\(436\) 0 0
\(437\) −5.71492 −0.273382
\(438\) 0 0
\(439\) 12.7463 0.608348 0.304174 0.952616i \(-0.401620\pi\)
0.304174 + 0.952616i \(0.401620\pi\)
\(440\) 0 0
\(441\) −20.0572 −0.955104
\(442\) 0 0
\(443\) 0.821111 0.0390122 0.0195061 0.999810i \(-0.493791\pi\)
0.0195061 + 0.999810i \(0.493791\pi\)
\(444\) 0 0
\(445\) −8.50525 −0.403187
\(446\) 0 0
\(447\) 1.57432 0.0744628
\(448\) 0 0
\(449\) 20.2411 0.955235 0.477617 0.878568i \(-0.341501\pi\)
0.477617 + 0.878568i \(0.341501\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 11.4240 0.536745
\(454\) 0 0
\(455\) −1.08831 −0.0510207
\(456\) 0 0
\(457\) 22.3012 1.04321 0.521604 0.853188i \(-0.325334\pi\)
0.521604 + 0.853188i \(0.325334\pi\)
\(458\) 0 0
\(459\) 0.127299 0.00594179
\(460\) 0 0
\(461\) 25.9697 1.20953 0.604766 0.796403i \(-0.293267\pi\)
0.604766 + 0.796403i \(0.293267\pi\)
\(462\) 0 0
\(463\) −3.83882 −0.178405 −0.0892026 0.996014i \(-0.528432\pi\)
−0.0892026 + 0.996014i \(0.528432\pi\)
\(464\) 0 0
\(465\) 0.838809 0.0388988
\(466\) 0 0
\(467\) 19.6234 0.908062 0.454031 0.890986i \(-0.349986\pi\)
0.454031 + 0.890986i \(0.349986\pi\)
\(468\) 0 0
\(469\) 1.39783 0.0645457
\(470\) 0 0
\(471\) 29.0685 1.33941
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.72887 −0.216975
\(476\) 0 0
\(477\) −31.7130 −1.45204
\(478\) 0 0
\(479\) −5.07599 −0.231928 −0.115964 0.993253i \(-0.536996\pi\)
−0.115964 + 0.993253i \(0.536996\pi\)
\(480\) 0 0
\(481\) 12.5439 0.571953
\(482\) 0 0
\(483\) −8.21351 −0.373728
\(484\) 0 0
\(485\) 6.97472 0.316706
\(486\) 0 0
\(487\) 19.1188 0.866357 0.433178 0.901308i \(-0.357392\pi\)
0.433178 + 0.901308i \(0.357392\pi\)
\(488\) 0 0
\(489\) 43.8553 1.98320
\(490\) 0 0
\(491\) −17.5199 −0.790660 −0.395330 0.918539i \(-0.629370\pi\)
−0.395330 + 0.918539i \(0.629370\pi\)
\(492\) 0 0
\(493\) −38.5189 −1.73480
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.14835 −0.275791
\(498\) 0 0
\(499\) −4.78582 −0.214243 −0.107121 0.994246i \(-0.534163\pi\)
−0.107121 + 0.994246i \(0.534163\pi\)
\(500\) 0 0
\(501\) −4.65102 −0.207792
\(502\) 0 0
\(503\) −15.1151 −0.673949 −0.336975 0.941514i \(-0.609404\pi\)
−0.336975 + 0.941514i \(0.609404\pi\)
\(504\) 0 0
\(505\) 9.62859 0.428467
\(506\) 0 0
\(507\) 0.693284 0.0307898
\(508\) 0 0
\(509\) −8.99352 −0.398631 −0.199315 0.979935i \(-0.563872\pi\)
−0.199315 + 0.979935i \(0.563872\pi\)
\(510\) 0 0
\(511\) 2.61710 0.115774
\(512\) 0 0
\(513\) −0.0323087 −0.00142646
\(514\) 0 0
\(515\) 8.40120 0.370201
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −9.65437 −0.423780
\(520\) 0 0
\(521\) 20.2618 0.887688 0.443844 0.896104i \(-0.353614\pi\)
0.443844 + 0.896104i \(0.353614\pi\)
\(522\) 0 0
\(523\) 25.8442 1.13009 0.565045 0.825060i \(-0.308859\pi\)
0.565045 + 0.825060i \(0.308859\pi\)
\(524\) 0 0
\(525\) −6.79636 −0.296617
\(526\) 0 0
\(527\) 2.58838 0.112752
\(528\) 0 0
\(529\) 9.66031 0.420013
\(530\) 0 0
\(531\) 25.5463 1.10862
\(532\) 0 0
\(533\) −40.1944 −1.74101
\(534\) 0 0
\(535\) 7.47860 0.323328
\(536\) 0 0
\(537\) −33.4512 −1.44353
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.47571 0.278413 0.139206 0.990263i \(-0.455545\pi\)
0.139206 + 0.990263i \(0.455545\pi\)
\(542\) 0 0
\(543\) −26.6839 −1.14512
\(544\) 0 0
\(545\) −1.00538 −0.0430656
\(546\) 0 0
\(547\) −40.0938 −1.71429 −0.857144 0.515078i \(-0.827763\pi\)
−0.857144 + 0.515078i \(0.827763\pi\)
\(548\) 0 0
\(549\) −16.1182 −0.687909
\(550\) 0 0
\(551\) 9.77619 0.416480
\(552\) 0 0
\(553\) 3.64956 0.155195
\(554\) 0 0
\(555\) −4.49134 −0.190647
\(556\) 0 0
\(557\) 10.4559 0.443031 0.221516 0.975157i \(-0.428900\pi\)
0.221516 + 0.975157i \(0.428900\pi\)
\(558\) 0 0
\(559\) 37.5343 1.58753
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.80512 0.0760768 0.0380384 0.999276i \(-0.487889\pi\)
0.0380384 + 0.999276i \(0.487889\pi\)
\(564\) 0 0
\(565\) −5.74733 −0.241792
\(566\) 0 0
\(567\) 5.25157 0.220545
\(568\) 0 0
\(569\) −0.181632 −0.00761443 −0.00380721 0.999993i \(-0.501212\pi\)
−0.00380721 + 0.999993i \(0.501212\pi\)
\(570\) 0 0
\(571\) 29.3911 1.22998 0.614989 0.788536i \(-0.289161\pi\)
0.614989 + 0.788536i \(0.289161\pi\)
\(572\) 0 0
\(573\) −26.2726 −1.09755
\(574\) 0 0
\(575\) 27.0251 1.12703
\(576\) 0 0
\(577\) −32.2896 −1.34423 −0.672117 0.740445i \(-0.734615\pi\)
−0.672117 + 0.740445i \(0.734615\pi\)
\(578\) 0 0
\(579\) 45.9001 1.90754
\(580\) 0 0
\(581\) −0.252167 −0.0104616
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 5.59512 0.231330
\(586\) 0 0
\(587\) 3.58558 0.147993 0.0739963 0.997259i \(-0.476425\pi\)
0.0739963 + 0.997259i \(0.476425\pi\)
\(588\) 0 0
\(589\) −0.656936 −0.0270686
\(590\) 0 0
\(591\) 63.6396 2.61778
\(592\) 0 0
\(593\) −30.3828 −1.24767 −0.623835 0.781556i \(-0.714426\pi\)
−0.623835 + 0.781556i \(0.714426\pi\)
\(594\) 0 0
\(595\) 1.20243 0.0492948
\(596\) 0 0
\(597\) 14.7593 0.604060
\(598\) 0 0
\(599\) 19.9076 0.813403 0.406701 0.913561i \(-0.366679\pi\)
0.406701 + 0.913561i \(0.366679\pi\)
\(600\) 0 0
\(601\) −47.4452 −1.93533 −0.967665 0.252240i \(-0.918833\pi\)
−0.967665 + 0.252240i \(0.918833\pi\)
\(602\) 0 0
\(603\) −7.18639 −0.292653
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.5260 −0.589591 −0.294795 0.955560i \(-0.595252\pi\)
−0.294795 + 0.955560i \(0.595252\pi\)
\(608\) 0 0
\(609\) 14.0504 0.569351
\(610\) 0 0
\(611\) 36.0480 1.45835
\(612\) 0 0
\(613\) 23.7397 0.958838 0.479419 0.877586i \(-0.340847\pi\)
0.479419 + 0.877586i \(0.340847\pi\)
\(614\) 0 0
\(615\) 14.3916 0.580324
\(616\) 0 0
\(617\) 11.8261 0.476102 0.238051 0.971253i \(-0.423491\pi\)
0.238051 + 0.971253i \(0.423491\pi\)
\(618\) 0 0
\(619\) 44.1910 1.77619 0.888094 0.459663i \(-0.152030\pi\)
0.888094 + 0.459663i \(0.152030\pi\)
\(620\) 0 0
\(621\) 0.184642 0.00740941
\(622\) 0 0
\(623\) 9.57340 0.383550
\(624\) 0 0
\(625\) 21.0066 0.840263
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.8593 −0.552605
\(630\) 0 0
\(631\) 37.5180 1.49357 0.746783 0.665068i \(-0.231597\pi\)
0.746783 + 0.665068i \(0.231597\pi\)
\(632\) 0 0
\(633\) −38.9511 −1.54817
\(634\) 0 0
\(635\) −2.97565 −0.118085
\(636\) 0 0
\(637\) −23.7379 −0.940531
\(638\) 0 0
\(639\) 31.6094 1.25045
\(640\) 0 0
\(641\) 25.6798 1.01429 0.507145 0.861861i \(-0.330701\pi\)
0.507145 + 0.861861i \(0.330701\pi\)
\(642\) 0 0
\(643\) −4.99182 −0.196858 −0.0984291 0.995144i \(-0.531382\pi\)
−0.0984291 + 0.995144i \(0.531382\pi\)
\(644\) 0 0
\(645\) −13.4391 −0.529165
\(646\) 0 0
\(647\) 13.7462 0.540419 0.270210 0.962802i \(-0.412907\pi\)
0.270210 + 0.962802i \(0.412907\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.944153 −0.0370043
\(652\) 0 0
\(653\) −8.24860 −0.322793 −0.161396 0.986890i \(-0.551600\pi\)
−0.161396 + 0.986890i \(0.551600\pi\)
\(654\) 0 0
\(655\) 0.341104 0.0133280
\(656\) 0 0
\(657\) −13.4548 −0.524922
\(658\) 0 0
\(659\) −16.7449 −0.652289 −0.326144 0.945320i \(-0.605750\pi\)
−0.326144 + 0.945320i \(0.605750\pi\)
\(660\) 0 0
\(661\) 37.3254 1.45179 0.725895 0.687806i \(-0.241426\pi\)
0.725895 + 0.687806i \(0.241426\pi\)
\(662\) 0 0
\(663\) 34.4551 1.33813
\(664\) 0 0
\(665\) −0.305179 −0.0118343
\(666\) 0 0
\(667\) −55.8701 −2.16330
\(668\) 0 0
\(669\) 38.0441 1.47087
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −31.9717 −1.23242 −0.616209 0.787583i \(-0.711332\pi\)
−0.616209 + 0.787583i \(0.711332\pi\)
\(674\) 0 0
\(675\) 0.152784 0.00588064
\(676\) 0 0
\(677\) 34.2136 1.31493 0.657467 0.753483i \(-0.271628\pi\)
0.657467 + 0.753483i \(0.271628\pi\)
\(678\) 0 0
\(679\) −7.85066 −0.301281
\(680\) 0 0
\(681\) −3.90838 −0.149770
\(682\) 0 0
\(683\) −0.710355 −0.0271810 −0.0135905 0.999908i \(-0.504326\pi\)
−0.0135905 + 0.999908i \(0.504326\pi\)
\(684\) 0 0
\(685\) −0.635422 −0.0242782
\(686\) 0 0
\(687\) −51.1669 −1.95214
\(688\) 0 0
\(689\) −37.5327 −1.42988
\(690\) 0 0
\(691\) 41.4320 1.57615 0.788074 0.615581i \(-0.211079\pi\)
0.788074 + 0.615581i \(0.211079\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.35570 −0.279017
\(696\) 0 0
\(697\) 44.4092 1.68212
\(698\) 0 0
\(699\) −43.1949 −1.63378
\(700\) 0 0
\(701\) −0.404165 −0.0152651 −0.00763255 0.999971i \(-0.502430\pi\)
−0.00763255 + 0.999971i \(0.502430\pi\)
\(702\) 0 0
\(703\) 3.51752 0.132666
\(704\) 0 0
\(705\) −12.9070 −0.486104
\(706\) 0 0
\(707\) −10.8378 −0.407598
\(708\) 0 0
\(709\) 49.1993 1.84772 0.923859 0.382733i \(-0.125017\pi\)
0.923859 + 0.382733i \(0.125017\pi\)
\(710\) 0 0
\(711\) −18.7628 −0.703661
\(712\) 0 0
\(713\) 3.75434 0.140601
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.96792 −0.0734933
\(718\) 0 0
\(719\) 15.7532 0.587496 0.293748 0.955883i \(-0.405097\pi\)
0.293748 + 0.955883i \(0.405097\pi\)
\(720\) 0 0
\(721\) −9.45629 −0.352171
\(722\) 0 0
\(723\) 47.0147 1.74849
\(724\) 0 0
\(725\) −46.2303 −1.71695
\(726\) 0 0
\(727\) 41.6876 1.54611 0.773053 0.634341i \(-0.218729\pi\)
0.773053 + 0.634341i \(0.218729\pi\)
\(728\) 0 0
\(729\) −27.2366 −1.00876
\(730\) 0 0
\(731\) −41.4701 −1.53383
\(732\) 0 0
\(733\) 15.1128 0.558203 0.279101 0.960262i \(-0.409963\pi\)
0.279101 + 0.960262i \(0.409963\pi\)
\(734\) 0 0
\(735\) 8.49934 0.313503
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.4779 0.642936 0.321468 0.946920i \(-0.395824\pi\)
0.321468 + 0.946920i \(0.395824\pi\)
\(740\) 0 0
\(741\) −8.74478 −0.321248
\(742\) 0 0
\(743\) 4.25658 0.156159 0.0780794 0.996947i \(-0.475121\pi\)
0.0780794 + 0.996947i \(0.475121\pi\)
\(744\) 0 0
\(745\) −0.334294 −0.0122476
\(746\) 0 0
\(747\) 1.29642 0.0474335
\(748\) 0 0
\(749\) −8.41782 −0.307580
\(750\) 0 0
\(751\) 19.9941 0.729595 0.364798 0.931087i \(-0.381138\pi\)
0.364798 + 0.931087i \(0.381138\pi\)
\(752\) 0 0
\(753\) −1.08534 −0.0395520
\(754\) 0 0
\(755\) −2.42579 −0.0882835
\(756\) 0 0
\(757\) −42.0100 −1.52688 −0.763440 0.645879i \(-0.776491\pi\)
−0.763440 + 0.645879i \(0.776491\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.73673 −0.352956 −0.176478 0.984305i \(-0.556470\pi\)
−0.176478 + 0.984305i \(0.556470\pi\)
\(762\) 0 0
\(763\) 1.13164 0.0409680
\(764\) 0 0
\(765\) −6.18182 −0.223504
\(766\) 0 0
\(767\) 30.2344 1.09170
\(768\) 0 0
\(769\) −34.9177 −1.25916 −0.629582 0.776934i \(-0.716774\pi\)
−0.629582 + 0.776934i \(0.716774\pi\)
\(770\) 0 0
\(771\) 59.3132 2.13611
\(772\) 0 0
\(773\) −33.0979 −1.19045 −0.595225 0.803559i \(-0.702937\pi\)
−0.595225 + 0.803559i \(0.702937\pi\)
\(774\) 0 0
\(775\) 3.10657 0.111591
\(776\) 0 0
\(777\) 5.05539 0.181361
\(778\) 0 0
\(779\) −11.2712 −0.403831
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.315856 −0.0112878
\(784\) 0 0
\(785\) −6.17246 −0.220304
\(786\) 0 0
\(787\) 4.13672 0.147458 0.0737291 0.997278i \(-0.476510\pi\)
0.0737291 + 0.997278i \(0.476510\pi\)
\(788\) 0 0
\(789\) −33.2255 −1.18286
\(790\) 0 0
\(791\) 6.46912 0.230015
\(792\) 0 0
\(793\) −19.0761 −0.677413
\(794\) 0 0
\(795\) 13.4386 0.476616
\(796\) 0 0
\(797\) 50.8157 1.79999 0.899993 0.435905i \(-0.143572\pi\)
0.899993 + 0.435905i \(0.143572\pi\)
\(798\) 0 0
\(799\) −39.8280 −1.40901
\(800\) 0 0
\(801\) −49.2180 −1.73903
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.74407 0.0614705
\(806\) 0 0
\(807\) −44.9182 −1.58120
\(808\) 0 0
\(809\) 15.0597 0.529471 0.264735 0.964321i \(-0.414715\pi\)
0.264735 + 0.964321i \(0.414715\pi\)
\(810\) 0 0
\(811\) −16.5147 −0.579908 −0.289954 0.957041i \(-0.593640\pi\)
−0.289954 + 0.957041i \(0.593640\pi\)
\(812\) 0 0
\(813\) −34.5412 −1.21141
\(814\) 0 0
\(815\) −9.31231 −0.326196
\(816\) 0 0
\(817\) 10.5252 0.368231
\(818\) 0 0
\(819\) −6.29779 −0.220063
\(820\) 0 0
\(821\) 5.89178 0.205624 0.102812 0.994701i \(-0.467216\pi\)
0.102812 + 0.994701i \(0.467216\pi\)
\(822\) 0 0
\(823\) −29.5668 −1.03063 −0.515316 0.857000i \(-0.672326\pi\)
−0.515316 + 0.857000i \(0.672326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.837957 −0.0291386 −0.0145693 0.999894i \(-0.504638\pi\)
−0.0145693 + 0.999894i \(0.504638\pi\)
\(828\) 0 0
\(829\) −53.3043 −1.85134 −0.925668 0.378337i \(-0.876496\pi\)
−0.925668 + 0.378337i \(0.876496\pi\)
\(830\) 0 0
\(831\) −64.9109 −2.25173
\(832\) 0 0
\(833\) 26.2271 0.908715
\(834\) 0 0
\(835\) 0.987607 0.0341775
\(836\) 0 0
\(837\) 0.0212247 0.000733635 0
\(838\) 0 0
\(839\) −21.3985 −0.738758 −0.369379 0.929279i \(-0.620430\pi\)
−0.369379 + 0.929279i \(0.620430\pi\)
\(840\) 0 0
\(841\) 66.5739 2.29565
\(842\) 0 0
\(843\) −45.0876 −1.55290
\(844\) 0 0
\(845\) −0.147213 −0.00506429
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 72.3678 2.48366
\(850\) 0 0
\(851\) −20.1023 −0.689099
\(852\) 0 0
\(853\) −5.46110 −0.186984 −0.0934922 0.995620i \(-0.529803\pi\)
−0.0934922 + 0.995620i \(0.529803\pi\)
\(854\) 0 0
\(855\) 1.56896 0.0536573
\(856\) 0 0
\(857\) 18.5240 0.632767 0.316384 0.948631i \(-0.397531\pi\)
0.316384 + 0.948631i \(0.397531\pi\)
\(858\) 0 0
\(859\) 5.03468 0.171781 0.0858905 0.996305i \(-0.472626\pi\)
0.0858905 + 0.996305i \(0.472626\pi\)
\(860\) 0 0
\(861\) −16.1990 −0.552059
\(862\) 0 0
\(863\) 57.9672 1.97323 0.986613 0.163079i \(-0.0521426\pi\)
0.986613 + 0.163079i \(0.0521426\pi\)
\(864\) 0 0
\(865\) 2.05003 0.0697031
\(866\) 0 0
\(867\) 3.61894 0.122906
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −8.50518 −0.288187
\(872\) 0 0
\(873\) 40.3612 1.36602
\(874\) 0 0
\(875\) 2.96905 0.100372
\(876\) 0 0
\(877\) 30.9803 1.04613 0.523065 0.852293i \(-0.324789\pi\)
0.523065 + 0.852293i \(0.324789\pi\)
\(878\) 0 0
\(879\) 0.0776779 0.00262001
\(880\) 0 0
\(881\) −32.5662 −1.09718 −0.548592 0.836090i \(-0.684836\pi\)
−0.548592 + 0.836090i \(0.684836\pi\)
\(882\) 0 0
\(883\) 22.0122 0.740769 0.370385 0.928879i \(-0.379226\pi\)
0.370385 + 0.928879i \(0.379226\pi\)
\(884\) 0 0
\(885\) −10.8254 −0.363892
\(886\) 0 0
\(887\) −13.4632 −0.452048 −0.226024 0.974122i \(-0.572573\pi\)
−0.226024 + 0.974122i \(0.572573\pi\)
\(888\) 0 0
\(889\) 3.34935 0.112334
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1084 0.338266
\(894\) 0 0
\(895\) 7.10310 0.237430
\(896\) 0 0
\(897\) 49.9757 1.66864
\(898\) 0 0
\(899\) −6.42233 −0.214197
\(900\) 0 0
\(901\) 41.4684 1.38151
\(902\) 0 0
\(903\) 15.1269 0.503392
\(904\) 0 0
\(905\) 5.66611 0.188348
\(906\) 0 0
\(907\) −7.52753 −0.249948 −0.124974 0.992160i \(-0.539885\pi\)
−0.124974 + 0.992160i \(0.539885\pi\)
\(908\) 0 0
\(909\) 55.7185 1.84807
\(910\) 0 0
\(911\) 32.7854 1.08623 0.543115 0.839658i \(-0.317245\pi\)
0.543115 + 0.839658i \(0.317245\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 6.83018 0.225799
\(916\) 0 0
\(917\) −0.383942 −0.0126789
\(918\) 0 0
\(919\) 57.4814 1.89614 0.948068 0.318069i \(-0.103034\pi\)
0.948068 + 0.318069i \(0.103034\pi\)
\(920\) 0 0
\(921\) 52.1685 1.71901
\(922\) 0 0
\(923\) 37.4101 1.23137
\(924\) 0 0
\(925\) −16.6339 −0.546918
\(926\) 0 0
\(927\) 48.6159 1.59676
\(928\) 0 0
\(929\) 7.88261 0.258620 0.129310 0.991604i \(-0.458724\pi\)
0.129310 + 0.991604i \(0.458724\pi\)
\(930\) 0 0
\(931\) −6.65649 −0.218158
\(932\) 0 0
\(933\) 4.69953 0.153856
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −16.3210 −0.533184 −0.266592 0.963809i \(-0.585898\pi\)
−0.266592 + 0.963809i \(0.585898\pi\)
\(938\) 0 0
\(939\) −17.3799 −0.567172
\(940\) 0 0
\(941\) −25.5088 −0.831563 −0.415782 0.909465i \(-0.636492\pi\)
−0.415782 + 0.909465i \(0.636492\pi\)
\(942\) 0 0
\(943\) 64.4137 2.09760
\(944\) 0 0
\(945\) 0.00985993 0.000320744 0
\(946\) 0 0
\(947\) 58.7890 1.91039 0.955193 0.295985i \(-0.0956478\pi\)
0.955193 + 0.295985i \(0.0956478\pi\)
\(948\) 0 0
\(949\) −15.9239 −0.516912
\(950\) 0 0
\(951\) −69.7052 −2.26035
\(952\) 0 0
\(953\) 18.9467 0.613744 0.306872 0.951751i \(-0.400718\pi\)
0.306872 + 0.951751i \(0.400718\pi\)
\(954\) 0 0
\(955\) 5.57877 0.180525
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.715223 0.0230958
\(960\) 0 0
\(961\) −30.5684 −0.986079
\(962\) 0 0
\(963\) 43.2770 1.39458
\(964\) 0 0
\(965\) −9.74651 −0.313751
\(966\) 0 0
\(967\) −48.7523 −1.56777 −0.783884 0.620908i \(-0.786764\pi\)
−0.783884 + 0.620908i \(0.786764\pi\)
\(968\) 0 0
\(969\) 9.66177 0.310381
\(970\) 0 0
\(971\) 15.3032 0.491102 0.245551 0.969384i \(-0.421031\pi\)
0.245551 + 0.969384i \(0.421031\pi\)
\(972\) 0 0
\(973\) 8.27948 0.265428
\(974\) 0 0
\(975\) 41.3530 1.32435
\(976\) 0 0
\(977\) −28.3023 −0.905472 −0.452736 0.891645i \(-0.649552\pi\)
−0.452736 + 0.891645i \(0.649552\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5.81788 −0.185751
\(982\) 0 0
\(983\) −0.619163 −0.0197482 −0.00987411 0.999951i \(-0.503143\pi\)
−0.00987411 + 0.999951i \(0.503143\pi\)
\(984\) 0 0
\(985\) −13.5134 −0.430571
\(986\) 0 0
\(987\) 14.5279 0.462429
\(988\) 0 0
\(989\) −60.1508 −1.91268
\(990\) 0 0
\(991\) 41.1874 1.30836 0.654180 0.756339i \(-0.273014\pi\)
0.654180 + 0.756339i \(0.273014\pi\)
\(992\) 0 0
\(993\) −31.4833 −0.999093
\(994\) 0 0
\(995\) −3.13403 −0.0993554
\(996\) 0 0
\(997\) 11.0829 0.351000 0.175500 0.984479i \(-0.443846\pi\)
0.175500 + 0.984479i \(0.443846\pi\)
\(998\) 0 0
\(999\) −0.113646 −0.00359561
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.w.1.3 20
11.2 odd 10 836.2.j.c.609.2 40
11.6 odd 10 836.2.j.c.685.2 yes 40
11.10 odd 2 9196.2.a.x.1.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.c.609.2 40 11.2 odd 10
836.2.j.c.685.2 yes 40 11.6 odd 10
9196.2.a.w.1.3 20 1.1 even 1 trivial
9196.2.a.x.1.3 20 11.10 odd 2