Properties

Label 9196.2.a.x.1.19
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} - 26 x^{18} + 208 x^{17} + 185 x^{16} - 2910 x^{15} + 687 x^{14} + 21067 x^{13} + \cdots - 3520 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Root \(3.12040\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.12040 q^{3} -2.72877 q^{5} +5.12972 q^{7} +6.73690 q^{9} -2.22565 q^{13} -8.51486 q^{15} +7.31671 q^{17} -1.00000 q^{19} +16.0068 q^{21} -1.47420 q^{23} +2.44619 q^{25} +11.6606 q^{27} +3.39993 q^{29} -3.33744 q^{31} -13.9978 q^{35} +1.98551 q^{37} -6.94492 q^{39} -8.50050 q^{41} -2.36107 q^{43} -18.3835 q^{45} +0.985870 q^{47} +19.3141 q^{49} +22.8311 q^{51} -2.14192 q^{53} -3.12040 q^{57} +7.58232 q^{59} -3.63177 q^{61} +34.5584 q^{63} +6.07329 q^{65} +13.8608 q^{67} -4.60009 q^{69} +14.3974 q^{71} +2.93658 q^{73} +7.63310 q^{75} +10.9359 q^{79} +16.1751 q^{81} +9.69263 q^{83} -19.9656 q^{85} +10.6091 q^{87} +6.94960 q^{89} -11.4170 q^{91} -10.4142 q^{93} +2.72877 q^{95} -1.66145 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 2 q^{5} + 4 q^{7} + 28 q^{9} - 5 q^{13} + 14 q^{15} - 6 q^{17} - 20 q^{19} - q^{21} + 18 q^{23} + 44 q^{25} + 24 q^{27} + q^{29} + 23 q^{31} - 36 q^{35} + q^{37} + 21 q^{39} + 6 q^{41}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.12040 1.80156 0.900782 0.434271i \(-0.142994\pi\)
0.900782 + 0.434271i \(0.142994\pi\)
\(4\) 0 0
\(5\) −2.72877 −1.22034 −0.610172 0.792269i \(-0.708900\pi\)
−0.610172 + 0.792269i \(0.708900\pi\)
\(6\) 0 0
\(7\) 5.12972 1.93885 0.969427 0.245380i \(-0.0789129\pi\)
0.969427 + 0.245380i \(0.0789129\pi\)
\(8\) 0 0
\(9\) 6.73690 2.24563
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.22565 −0.617284 −0.308642 0.951178i \(-0.599874\pi\)
−0.308642 + 0.951178i \(0.599874\pi\)
\(14\) 0 0
\(15\) −8.51486 −2.19853
\(16\) 0 0
\(17\) 7.31671 1.77456 0.887282 0.461228i \(-0.152591\pi\)
0.887282 + 0.461228i \(0.152591\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 16.0068 3.49297
\(22\) 0 0
\(23\) −1.47420 −0.307392 −0.153696 0.988118i \(-0.549118\pi\)
−0.153696 + 0.988118i \(0.549118\pi\)
\(24\) 0 0
\(25\) 2.44619 0.489238
\(26\) 0 0
\(27\) 11.6606 2.24409
\(28\) 0 0
\(29\) 3.39993 0.631351 0.315676 0.948867i \(-0.397769\pi\)
0.315676 + 0.948867i \(0.397769\pi\)
\(30\) 0 0
\(31\) −3.33744 −0.599423 −0.299711 0.954030i \(-0.596890\pi\)
−0.299711 + 0.954030i \(0.596890\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −13.9978 −2.36607
\(36\) 0 0
\(37\) 1.98551 0.326415 0.163208 0.986592i \(-0.447816\pi\)
0.163208 + 0.986592i \(0.447816\pi\)
\(38\) 0 0
\(39\) −6.94492 −1.11208
\(40\) 0 0
\(41\) −8.50050 −1.32756 −0.663778 0.747930i \(-0.731048\pi\)
−0.663778 + 0.747930i \(0.731048\pi\)
\(42\) 0 0
\(43\) −2.36107 −0.360060 −0.180030 0.983661i \(-0.557619\pi\)
−0.180030 + 0.983661i \(0.557619\pi\)
\(44\) 0 0
\(45\) −18.3835 −2.74044
\(46\) 0 0
\(47\) 0.985870 0.143804 0.0719020 0.997412i \(-0.477093\pi\)
0.0719020 + 0.997412i \(0.477093\pi\)
\(48\) 0 0
\(49\) 19.3141 2.75915
\(50\) 0 0
\(51\) 22.8311 3.19699
\(52\) 0 0
\(53\) −2.14192 −0.294215 −0.147108 0.989121i \(-0.546996\pi\)
−0.147108 + 0.989121i \(0.546996\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.12040 −0.413307
\(58\) 0 0
\(59\) 7.58232 0.987134 0.493567 0.869708i \(-0.335693\pi\)
0.493567 + 0.869708i \(0.335693\pi\)
\(60\) 0 0
\(61\) −3.63177 −0.465001 −0.232500 0.972596i \(-0.574691\pi\)
−0.232500 + 0.972596i \(0.574691\pi\)
\(62\) 0 0
\(63\) 34.5584 4.35395
\(64\) 0 0
\(65\) 6.07329 0.753298
\(66\) 0 0
\(67\) 13.8608 1.69337 0.846683 0.532097i \(-0.178596\pi\)
0.846683 + 0.532097i \(0.178596\pi\)
\(68\) 0 0
\(69\) −4.60009 −0.553786
\(70\) 0 0
\(71\) 14.3974 1.70865 0.854327 0.519736i \(-0.173970\pi\)
0.854327 + 0.519736i \(0.173970\pi\)
\(72\) 0 0
\(73\) 2.93658 0.343701 0.171851 0.985123i \(-0.445025\pi\)
0.171851 + 0.985123i \(0.445025\pi\)
\(74\) 0 0
\(75\) 7.63310 0.881394
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.9359 1.23039 0.615194 0.788375i \(-0.289078\pi\)
0.615194 + 0.788375i \(0.289078\pi\)
\(80\) 0 0
\(81\) 16.1751 1.79724
\(82\) 0 0
\(83\) 9.69263 1.06390 0.531952 0.846774i \(-0.321459\pi\)
0.531952 + 0.846774i \(0.321459\pi\)
\(84\) 0 0
\(85\) −19.9656 −2.16558
\(86\) 0 0
\(87\) 10.6091 1.13742
\(88\) 0 0
\(89\) 6.94960 0.736656 0.368328 0.929696i \(-0.379930\pi\)
0.368328 + 0.929696i \(0.379930\pi\)
\(90\) 0 0
\(91\) −11.4170 −1.19682
\(92\) 0 0
\(93\) −10.4142 −1.07990
\(94\) 0 0
\(95\) 2.72877 0.279966
\(96\) 0 0
\(97\) −1.66145 −0.168694 −0.0843472 0.996436i \(-0.526880\pi\)
−0.0843472 + 0.996436i \(0.526880\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.33794 −0.929160 −0.464580 0.885531i \(-0.653795\pi\)
−0.464580 + 0.885531i \(0.653795\pi\)
\(102\) 0 0
\(103\) −14.9154 −1.46966 −0.734829 0.678253i \(-0.762738\pi\)
−0.734829 + 0.678253i \(0.762738\pi\)
\(104\) 0 0
\(105\) −43.6789 −4.26262
\(106\) 0 0
\(107\) −7.06895 −0.683381 −0.341690 0.939813i \(-0.610999\pi\)
−0.341690 + 0.939813i \(0.610999\pi\)
\(108\) 0 0
\(109\) −12.9175 −1.23727 −0.618634 0.785680i \(-0.712313\pi\)
−0.618634 + 0.785680i \(0.712313\pi\)
\(110\) 0 0
\(111\) 6.19558 0.588058
\(112\) 0 0
\(113\) 16.1876 1.52280 0.761400 0.648282i \(-0.224512\pi\)
0.761400 + 0.648282i \(0.224512\pi\)
\(114\) 0 0
\(115\) 4.02275 0.375124
\(116\) 0 0
\(117\) −14.9940 −1.38619
\(118\) 0 0
\(119\) 37.5327 3.44062
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −26.5250 −2.39168
\(124\) 0 0
\(125\) 6.96876 0.623305
\(126\) 0 0
\(127\) 3.09073 0.274258 0.137129 0.990553i \(-0.456213\pi\)
0.137129 + 0.990553i \(0.456213\pi\)
\(128\) 0 0
\(129\) −7.36749 −0.648671
\(130\) 0 0
\(131\) −9.54201 −0.833689 −0.416845 0.908978i \(-0.636864\pi\)
−0.416845 + 0.908978i \(0.636864\pi\)
\(132\) 0 0
\(133\) −5.12972 −0.444804
\(134\) 0 0
\(135\) −31.8192 −2.73856
\(136\) 0 0
\(137\) −8.89967 −0.760350 −0.380175 0.924915i \(-0.624136\pi\)
−0.380175 + 0.924915i \(0.624136\pi\)
\(138\) 0 0
\(139\) −10.6310 −0.901707 −0.450853 0.892598i \(-0.648880\pi\)
−0.450853 + 0.892598i \(0.648880\pi\)
\(140\) 0 0
\(141\) 3.07631 0.259072
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.27763 −0.770466
\(146\) 0 0
\(147\) 60.2677 4.97079
\(148\) 0 0
\(149\) −9.60713 −0.787047 −0.393524 0.919315i \(-0.628744\pi\)
−0.393524 + 0.919315i \(0.628744\pi\)
\(150\) 0 0
\(151\) −6.33174 −0.515269 −0.257635 0.966242i \(-0.582943\pi\)
−0.257635 + 0.966242i \(0.582943\pi\)
\(152\) 0 0
\(153\) 49.2920 3.98502
\(154\) 0 0
\(155\) 9.10712 0.731501
\(156\) 0 0
\(157\) −9.73160 −0.776667 −0.388333 0.921519i \(-0.626949\pi\)
−0.388333 + 0.921519i \(0.626949\pi\)
\(158\) 0 0
\(159\) −6.68364 −0.530047
\(160\) 0 0
\(161\) −7.56224 −0.595988
\(162\) 0 0
\(163\) −15.5100 −1.21484 −0.607418 0.794382i \(-0.707795\pi\)
−0.607418 + 0.794382i \(0.707795\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.30159 −0.410249 −0.205125 0.978736i \(-0.565760\pi\)
−0.205125 + 0.978736i \(0.565760\pi\)
\(168\) 0 0
\(169\) −8.04649 −0.618961
\(170\) 0 0
\(171\) −6.73690 −0.515184
\(172\) 0 0
\(173\) 16.2736 1.23726 0.618631 0.785682i \(-0.287688\pi\)
0.618631 + 0.785682i \(0.287688\pi\)
\(174\) 0 0
\(175\) 12.5483 0.948561
\(176\) 0 0
\(177\) 23.6599 1.77839
\(178\) 0 0
\(179\) 0.762189 0.0569687 0.0284843 0.999594i \(-0.490932\pi\)
0.0284843 + 0.999594i \(0.490932\pi\)
\(180\) 0 0
\(181\) −13.9838 −1.03940 −0.519702 0.854348i \(-0.673957\pi\)
−0.519702 + 0.854348i \(0.673957\pi\)
\(182\) 0 0
\(183\) −11.3326 −0.837729
\(184\) 0 0
\(185\) −5.41799 −0.398339
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 59.8158 4.35096
\(190\) 0 0
\(191\) 24.1936 1.75059 0.875294 0.483592i \(-0.160668\pi\)
0.875294 + 0.483592i \(0.160668\pi\)
\(192\) 0 0
\(193\) 7.88369 0.567480 0.283740 0.958901i \(-0.408425\pi\)
0.283740 + 0.958901i \(0.408425\pi\)
\(194\) 0 0
\(195\) 18.9511 1.35712
\(196\) 0 0
\(197\) −0.633797 −0.0451561 −0.0225781 0.999745i \(-0.507187\pi\)
−0.0225781 + 0.999745i \(0.507187\pi\)
\(198\) 0 0
\(199\) 22.5019 1.59512 0.797558 0.603242i \(-0.206125\pi\)
0.797558 + 0.603242i \(0.206125\pi\)
\(200\) 0 0
\(201\) 43.2513 3.05071
\(202\) 0 0
\(203\) 17.4407 1.22410
\(204\) 0 0
\(205\) 23.1959 1.62007
\(206\) 0 0
\(207\) −9.93154 −0.690290
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −25.3248 −1.74343 −0.871714 0.490014i \(-0.836992\pi\)
−0.871714 + 0.490014i \(0.836992\pi\)
\(212\) 0 0
\(213\) 44.9256 3.07825
\(214\) 0 0
\(215\) 6.44282 0.439397
\(216\) 0 0
\(217\) −17.1202 −1.16219
\(218\) 0 0
\(219\) 9.16332 0.619200
\(220\) 0 0
\(221\) −16.2844 −1.09541
\(222\) 0 0
\(223\) −27.2163 −1.82254 −0.911269 0.411811i \(-0.864897\pi\)
−0.911269 + 0.411811i \(0.864897\pi\)
\(224\) 0 0
\(225\) 16.4797 1.09865
\(226\) 0 0
\(227\) −1.07037 −0.0710432 −0.0355216 0.999369i \(-0.511309\pi\)
−0.0355216 + 0.999369i \(0.511309\pi\)
\(228\) 0 0
\(229\) 3.81557 0.252140 0.126070 0.992021i \(-0.459764\pi\)
0.126070 + 0.992021i \(0.459764\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0501 0.723919 0.361959 0.932194i \(-0.382108\pi\)
0.361959 + 0.932194i \(0.382108\pi\)
\(234\) 0 0
\(235\) −2.69021 −0.175490
\(236\) 0 0
\(237\) 34.1245 2.21662
\(238\) 0 0
\(239\) 10.9977 0.711385 0.355692 0.934603i \(-0.384245\pi\)
0.355692 + 0.934603i \(0.384245\pi\)
\(240\) 0 0
\(241\) 6.17226 0.397590 0.198795 0.980041i \(-0.436297\pi\)
0.198795 + 0.980041i \(0.436297\pi\)
\(242\) 0 0
\(243\) 15.4910 0.993747
\(244\) 0 0
\(245\) −52.7037 −3.36712
\(246\) 0 0
\(247\) 2.22565 0.141615
\(248\) 0 0
\(249\) 30.2449 1.91669
\(250\) 0 0
\(251\) 5.28856 0.333811 0.166906 0.985973i \(-0.446622\pi\)
0.166906 + 0.985973i \(0.446622\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −62.3008 −3.90143
\(256\) 0 0
\(257\) 5.04237 0.314535 0.157267 0.987556i \(-0.449732\pi\)
0.157267 + 0.987556i \(0.449732\pi\)
\(258\) 0 0
\(259\) 10.1851 0.632872
\(260\) 0 0
\(261\) 22.9050 1.41778
\(262\) 0 0
\(263\) −24.8686 −1.53346 −0.766731 0.641968i \(-0.778118\pi\)
−0.766731 + 0.641968i \(0.778118\pi\)
\(264\) 0 0
\(265\) 5.84480 0.359043
\(266\) 0 0
\(267\) 21.6855 1.32713
\(268\) 0 0
\(269\) 5.24639 0.319878 0.159939 0.987127i \(-0.448870\pi\)
0.159939 + 0.987127i \(0.448870\pi\)
\(270\) 0 0
\(271\) −16.5708 −1.00660 −0.503301 0.864111i \(-0.667881\pi\)
−0.503301 + 0.864111i \(0.667881\pi\)
\(272\) 0 0
\(273\) −35.6255 −2.15615
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.8505 −0.952365 −0.476183 0.879346i \(-0.657980\pi\)
−0.476183 + 0.879346i \(0.657980\pi\)
\(278\) 0 0
\(279\) −22.4840 −1.34608
\(280\) 0 0
\(281\) 18.9786 1.13217 0.566085 0.824347i \(-0.308458\pi\)
0.566085 + 0.824347i \(0.308458\pi\)
\(282\) 0 0
\(283\) 22.6770 1.34801 0.674003 0.738729i \(-0.264574\pi\)
0.674003 + 0.738729i \(0.264574\pi\)
\(284\) 0 0
\(285\) 8.51486 0.504377
\(286\) 0 0
\(287\) −43.6052 −2.57394
\(288\) 0 0
\(289\) 36.5343 2.14907
\(290\) 0 0
\(291\) −5.18438 −0.303914
\(292\) 0 0
\(293\) 5.60276 0.327317 0.163658 0.986517i \(-0.447671\pi\)
0.163658 + 0.986517i \(0.447671\pi\)
\(294\) 0 0
\(295\) −20.6904 −1.20464
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.28105 0.189748
\(300\) 0 0
\(301\) −12.1116 −0.698104
\(302\) 0 0
\(303\) −29.1381 −1.67394
\(304\) 0 0
\(305\) 9.91027 0.567461
\(306\) 0 0
\(307\) 8.93573 0.509989 0.254994 0.966943i \(-0.417926\pi\)
0.254994 + 0.966943i \(0.417926\pi\)
\(308\) 0 0
\(309\) −46.5420 −2.64768
\(310\) 0 0
\(311\) −8.19687 −0.464802 −0.232401 0.972620i \(-0.574658\pi\)
−0.232401 + 0.972620i \(0.574658\pi\)
\(312\) 0 0
\(313\) −8.52611 −0.481924 −0.240962 0.970534i \(-0.577463\pi\)
−0.240962 + 0.970534i \(0.577463\pi\)
\(314\) 0 0
\(315\) −94.3021 −5.31332
\(316\) 0 0
\(317\) 5.83246 0.327583 0.163792 0.986495i \(-0.447628\pi\)
0.163792 + 0.986495i \(0.447628\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −22.0579 −1.23115
\(322\) 0 0
\(323\) −7.31671 −0.407113
\(324\) 0 0
\(325\) −5.44436 −0.301999
\(326\) 0 0
\(327\) −40.3076 −2.22902
\(328\) 0 0
\(329\) 5.05724 0.278815
\(330\) 0 0
\(331\) 13.6180 0.748513 0.374256 0.927325i \(-0.377898\pi\)
0.374256 + 0.927325i \(0.377898\pi\)
\(332\) 0 0
\(333\) 13.3762 0.733009
\(334\) 0 0
\(335\) −37.8230 −2.06649
\(336\) 0 0
\(337\) 3.95006 0.215173 0.107587 0.994196i \(-0.465688\pi\)
0.107587 + 0.994196i \(0.465688\pi\)
\(338\) 0 0
\(339\) 50.5118 2.74342
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 63.1678 3.41074
\(344\) 0 0
\(345\) 12.5526 0.675809
\(346\) 0 0
\(347\) −14.7101 −0.789681 −0.394841 0.918750i \(-0.629200\pi\)
−0.394841 + 0.918750i \(0.629200\pi\)
\(348\) 0 0
\(349\) 10.4894 0.561483 0.280741 0.959783i \(-0.409420\pi\)
0.280741 + 0.959783i \(0.409420\pi\)
\(350\) 0 0
\(351\) −25.9525 −1.38524
\(352\) 0 0
\(353\) 17.3929 0.925733 0.462867 0.886428i \(-0.346821\pi\)
0.462867 + 0.886428i \(0.346821\pi\)
\(354\) 0 0
\(355\) −39.2871 −2.08514
\(356\) 0 0
\(357\) 117.117 6.19849
\(358\) 0 0
\(359\) 18.4006 0.971144 0.485572 0.874197i \(-0.338611\pi\)
0.485572 + 0.874197i \(0.338611\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.01327 −0.419433
\(366\) 0 0
\(367\) −14.0611 −0.733982 −0.366991 0.930224i \(-0.619612\pi\)
−0.366991 + 0.930224i \(0.619612\pi\)
\(368\) 0 0
\(369\) −57.2670 −2.98120
\(370\) 0 0
\(371\) −10.9875 −0.570440
\(372\) 0 0
\(373\) −36.3515 −1.88221 −0.941106 0.338112i \(-0.890212\pi\)
−0.941106 + 0.338112i \(0.890212\pi\)
\(374\) 0 0
\(375\) 21.7453 1.12292
\(376\) 0 0
\(377\) −7.56705 −0.389723
\(378\) 0 0
\(379\) 24.5666 1.26190 0.630952 0.775822i \(-0.282665\pi\)
0.630952 + 0.775822i \(0.282665\pi\)
\(380\) 0 0
\(381\) 9.64431 0.494093
\(382\) 0 0
\(383\) −16.7080 −0.853739 −0.426870 0.904313i \(-0.640384\pi\)
−0.426870 + 0.904313i \(0.640384\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −15.9063 −0.808563
\(388\) 0 0
\(389\) 3.83619 0.194502 0.0972512 0.995260i \(-0.468995\pi\)
0.0972512 + 0.995260i \(0.468995\pi\)
\(390\) 0 0
\(391\) −10.7863 −0.545486
\(392\) 0 0
\(393\) −29.7749 −1.50194
\(394\) 0 0
\(395\) −29.8417 −1.50150
\(396\) 0 0
\(397\) 36.1233 1.81297 0.906487 0.422233i \(-0.138753\pi\)
0.906487 + 0.422233i \(0.138753\pi\)
\(398\) 0 0
\(399\) −16.0068 −0.801342
\(400\) 0 0
\(401\) 16.1216 0.805072 0.402536 0.915404i \(-0.368129\pi\)
0.402536 + 0.915404i \(0.368129\pi\)
\(402\) 0 0
\(403\) 7.42798 0.370014
\(404\) 0 0
\(405\) −44.1382 −2.19324
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −23.1921 −1.14678 −0.573389 0.819283i \(-0.694372\pi\)
−0.573389 + 0.819283i \(0.694372\pi\)
\(410\) 0 0
\(411\) −27.7705 −1.36982
\(412\) 0 0
\(413\) 38.8952 1.91391
\(414\) 0 0
\(415\) −26.4490 −1.29833
\(416\) 0 0
\(417\) −33.1729 −1.62448
\(418\) 0 0
\(419\) −2.05703 −0.100492 −0.0502462 0.998737i \(-0.516001\pi\)
−0.0502462 + 0.998737i \(0.516001\pi\)
\(420\) 0 0
\(421\) 1.40967 0.0687030 0.0343515 0.999410i \(-0.489063\pi\)
0.0343515 + 0.999410i \(0.489063\pi\)
\(422\) 0 0
\(423\) 6.64171 0.322931
\(424\) 0 0
\(425\) 17.8981 0.868184
\(426\) 0 0
\(427\) −18.6300 −0.901568
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.49061 −0.264473 −0.132237 0.991218i \(-0.542216\pi\)
−0.132237 + 0.991218i \(0.542216\pi\)
\(432\) 0 0
\(433\) −14.5878 −0.701046 −0.350523 0.936554i \(-0.613996\pi\)
−0.350523 + 0.936554i \(0.613996\pi\)
\(434\) 0 0
\(435\) −28.9499 −1.38804
\(436\) 0 0
\(437\) 1.47420 0.0705205
\(438\) 0 0
\(439\) 6.27926 0.299693 0.149846 0.988709i \(-0.452122\pi\)
0.149846 + 0.988709i \(0.452122\pi\)
\(440\) 0 0
\(441\) 130.117 6.19605
\(442\) 0 0
\(443\) 8.62815 0.409936 0.204968 0.978769i \(-0.434291\pi\)
0.204968 + 0.978769i \(0.434291\pi\)
\(444\) 0 0
\(445\) −18.9639 −0.898973
\(446\) 0 0
\(447\) −29.9781 −1.41792
\(448\) 0 0
\(449\) 21.9377 1.03531 0.517653 0.855591i \(-0.326806\pi\)
0.517653 + 0.855591i \(0.326806\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −19.7576 −0.928291
\(454\) 0 0
\(455\) 31.1543 1.46054
\(456\) 0 0
\(457\) 12.0124 0.561918 0.280959 0.959720i \(-0.409348\pi\)
0.280959 + 0.959720i \(0.409348\pi\)
\(458\) 0 0
\(459\) 85.3174 3.98228
\(460\) 0 0
\(461\) −22.7493 −1.05954 −0.529771 0.848141i \(-0.677722\pi\)
−0.529771 + 0.848141i \(0.677722\pi\)
\(462\) 0 0
\(463\) 19.1300 0.889049 0.444524 0.895767i \(-0.353373\pi\)
0.444524 + 0.895767i \(0.353373\pi\)
\(464\) 0 0
\(465\) 28.4179 1.31785
\(466\) 0 0
\(467\) 38.9724 1.80343 0.901714 0.432334i \(-0.142310\pi\)
0.901714 + 0.432334i \(0.142310\pi\)
\(468\) 0 0
\(469\) 71.1021 3.28319
\(470\) 0 0
\(471\) −30.3665 −1.39921
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −2.44619 −0.112239
\(476\) 0 0
\(477\) −14.4299 −0.660699
\(478\) 0 0
\(479\) −19.8793 −0.908307 −0.454153 0.890923i \(-0.650058\pi\)
−0.454153 + 0.890923i \(0.650058\pi\)
\(480\) 0 0
\(481\) −4.41904 −0.201491
\(482\) 0 0
\(483\) −23.5972 −1.07371
\(484\) 0 0
\(485\) 4.53371 0.205865
\(486\) 0 0
\(487\) 30.2953 1.37281 0.686407 0.727218i \(-0.259187\pi\)
0.686407 + 0.727218i \(0.259187\pi\)
\(488\) 0 0
\(489\) −48.3974 −2.18861
\(490\) 0 0
\(491\) −22.3023 −1.00649 −0.503245 0.864144i \(-0.667861\pi\)
−0.503245 + 0.864144i \(0.667861\pi\)
\(492\) 0 0
\(493\) 24.8763 1.12037
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 73.8545 3.31283
\(498\) 0 0
\(499\) 10.4149 0.466234 0.233117 0.972449i \(-0.425108\pi\)
0.233117 + 0.972449i \(0.425108\pi\)
\(500\) 0 0
\(501\) −16.5431 −0.739090
\(502\) 0 0
\(503\) 28.6298 1.27654 0.638270 0.769813i \(-0.279650\pi\)
0.638270 + 0.769813i \(0.279650\pi\)
\(504\) 0 0
\(505\) 25.4811 1.13389
\(506\) 0 0
\(507\) −25.1083 −1.11510
\(508\) 0 0
\(509\) −22.0977 −0.979465 −0.489733 0.871873i \(-0.662906\pi\)
−0.489733 + 0.871873i \(0.662906\pi\)
\(510\) 0 0
\(511\) 15.0639 0.666386
\(512\) 0 0
\(513\) −11.6606 −0.514829
\(514\) 0 0
\(515\) 40.7007 1.79349
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 50.7803 2.22901
\(520\) 0 0
\(521\) −26.1243 −1.14453 −0.572263 0.820070i \(-0.693934\pi\)
−0.572263 + 0.820070i \(0.693934\pi\)
\(522\) 0 0
\(523\) −9.16845 −0.400909 −0.200454 0.979703i \(-0.564242\pi\)
−0.200454 + 0.979703i \(0.564242\pi\)
\(524\) 0 0
\(525\) 39.1557 1.70889
\(526\) 0 0
\(527\) −24.4191 −1.06371
\(528\) 0 0
\(529\) −20.8267 −0.905510
\(530\) 0 0
\(531\) 51.0813 2.21674
\(532\) 0 0
\(533\) 18.9191 0.819479
\(534\) 0 0
\(535\) 19.2895 0.833959
\(536\) 0 0
\(537\) 2.37834 0.102633
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14.2689 −0.613469 −0.306735 0.951795i \(-0.599236\pi\)
−0.306735 + 0.951795i \(0.599236\pi\)
\(542\) 0 0
\(543\) −43.6349 −1.87255
\(544\) 0 0
\(545\) 35.2488 1.50989
\(546\) 0 0
\(547\) 14.0347 0.600078 0.300039 0.953927i \(-0.403000\pi\)
0.300039 + 0.953927i \(0.403000\pi\)
\(548\) 0 0
\(549\) −24.4669 −1.04422
\(550\) 0 0
\(551\) −3.39993 −0.144842
\(552\) 0 0
\(553\) 56.0983 2.38554
\(554\) 0 0
\(555\) −16.9063 −0.717633
\(556\) 0 0
\(557\) −31.6373 −1.34052 −0.670259 0.742128i \(-0.733817\pi\)
−0.670259 + 0.742128i \(0.733817\pi\)
\(558\) 0 0
\(559\) 5.25492 0.222259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −39.7092 −1.67355 −0.836773 0.547551i \(-0.815560\pi\)
−0.836773 + 0.547551i \(0.815560\pi\)
\(564\) 0 0
\(565\) −44.1722 −1.85834
\(566\) 0 0
\(567\) 82.9739 3.48458
\(568\) 0 0
\(569\) 27.2590 1.14276 0.571378 0.820687i \(-0.306409\pi\)
0.571378 + 0.820687i \(0.306409\pi\)
\(570\) 0 0
\(571\) 17.1231 0.716579 0.358290 0.933610i \(-0.383360\pi\)
0.358290 + 0.933610i \(0.383360\pi\)
\(572\) 0 0
\(573\) 75.4937 3.15379
\(574\) 0 0
\(575\) −3.60617 −0.150388
\(576\) 0 0
\(577\) 9.01665 0.375368 0.187684 0.982229i \(-0.439902\pi\)
0.187684 + 0.982229i \(0.439902\pi\)
\(578\) 0 0
\(579\) 24.6003 1.02235
\(580\) 0 0
\(581\) 49.7205 2.06276
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 40.9151 1.69163
\(586\) 0 0
\(587\) 46.6777 1.92659 0.963297 0.268438i \(-0.0865074\pi\)
0.963297 + 0.268438i \(0.0865074\pi\)
\(588\) 0 0
\(589\) 3.33744 0.137517
\(590\) 0 0
\(591\) −1.97770 −0.0813517
\(592\) 0 0
\(593\) −44.7414 −1.83731 −0.918655 0.395060i \(-0.870724\pi\)
−0.918655 + 0.395060i \(0.870724\pi\)
\(594\) 0 0
\(595\) −102.418 −4.19874
\(596\) 0 0
\(597\) 70.2149 2.87370
\(598\) 0 0
\(599\) −37.2767 −1.52308 −0.761542 0.648115i \(-0.775557\pi\)
−0.761542 + 0.648115i \(0.775557\pi\)
\(600\) 0 0
\(601\) −10.2258 −0.417119 −0.208560 0.978010i \(-0.566878\pi\)
−0.208560 + 0.978010i \(0.566878\pi\)
\(602\) 0 0
\(603\) 93.3788 3.80268
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.88075 −0.116926 −0.0584630 0.998290i \(-0.518620\pi\)
−0.0584630 + 0.998290i \(0.518620\pi\)
\(608\) 0 0
\(609\) 54.4220 2.20529
\(610\) 0 0
\(611\) −2.19420 −0.0887679
\(612\) 0 0
\(613\) −13.5527 −0.547390 −0.273695 0.961817i \(-0.588246\pi\)
−0.273695 + 0.961817i \(0.588246\pi\)
\(614\) 0 0
\(615\) 72.3806 2.91867
\(616\) 0 0
\(617\) −13.4888 −0.543039 −0.271519 0.962433i \(-0.587526\pi\)
−0.271519 + 0.962433i \(0.587526\pi\)
\(618\) 0 0
\(619\) 19.5451 0.785586 0.392793 0.919627i \(-0.371509\pi\)
0.392793 + 0.919627i \(0.371509\pi\)
\(620\) 0 0
\(621\) −17.1901 −0.689815
\(622\) 0 0
\(623\) 35.6495 1.42827
\(624\) 0 0
\(625\) −31.2471 −1.24988
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.5274 0.579245
\(630\) 0 0
\(631\) 0.157148 0.00625597 0.00312799 0.999995i \(-0.499004\pi\)
0.00312799 + 0.999995i \(0.499004\pi\)
\(632\) 0 0
\(633\) −79.0234 −3.14090
\(634\) 0 0
\(635\) −8.43389 −0.334689
\(636\) 0 0
\(637\) −42.9864 −1.70318
\(638\) 0 0
\(639\) 96.9936 3.83701
\(640\) 0 0
\(641\) 0.492765 0.0194631 0.00973153 0.999953i \(-0.496902\pi\)
0.00973153 + 0.999953i \(0.496902\pi\)
\(642\) 0 0
\(643\) −43.3127 −1.70809 −0.854044 0.520201i \(-0.825857\pi\)
−0.854044 + 0.520201i \(0.825857\pi\)
\(644\) 0 0
\(645\) 20.1042 0.791602
\(646\) 0 0
\(647\) −43.4075 −1.70652 −0.853262 0.521483i \(-0.825379\pi\)
−0.853262 + 0.521483i \(0.825379\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −53.4218 −2.09376
\(652\) 0 0
\(653\) −15.5859 −0.609925 −0.304962 0.952364i \(-0.598644\pi\)
−0.304962 + 0.952364i \(0.598644\pi\)
\(654\) 0 0
\(655\) 26.0380 1.01739
\(656\) 0 0
\(657\) 19.7835 0.771827
\(658\) 0 0
\(659\) 14.2499 0.555099 0.277549 0.960711i \(-0.410478\pi\)
0.277549 + 0.960711i \(0.410478\pi\)
\(660\) 0 0
\(661\) 16.8837 0.656699 0.328350 0.944556i \(-0.393508\pi\)
0.328350 + 0.944556i \(0.393508\pi\)
\(662\) 0 0
\(663\) −50.8139 −1.97345
\(664\) 0 0
\(665\) 13.9978 0.542813
\(666\) 0 0
\(667\) −5.01218 −0.194072
\(668\) 0 0
\(669\) −84.9258 −3.28342
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.1449 1.50892 0.754462 0.656343i \(-0.227898\pi\)
0.754462 + 0.656343i \(0.227898\pi\)
\(674\) 0 0
\(675\) 28.5241 1.09789
\(676\) 0 0
\(677\) 36.6870 1.41000 0.704998 0.709209i \(-0.250948\pi\)
0.704998 + 0.709209i \(0.250948\pi\)
\(678\) 0 0
\(679\) −8.52276 −0.327074
\(680\) 0 0
\(681\) −3.34000 −0.127989
\(682\) 0 0
\(683\) −9.25467 −0.354120 −0.177060 0.984200i \(-0.556659\pi\)
−0.177060 + 0.984200i \(0.556659\pi\)
\(684\) 0 0
\(685\) 24.2852 0.927888
\(686\) 0 0
\(687\) 11.9061 0.454247
\(688\) 0 0
\(689\) 4.76716 0.181614
\(690\) 0 0
\(691\) −43.3418 −1.64880 −0.824400 0.566008i \(-0.808487\pi\)
−0.824400 + 0.566008i \(0.808487\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29.0095 1.10039
\(696\) 0 0
\(697\) −62.1957 −2.35583
\(698\) 0 0
\(699\) 34.4809 1.30419
\(700\) 0 0
\(701\) 17.6127 0.665223 0.332611 0.943064i \(-0.392070\pi\)
0.332611 + 0.943064i \(0.392070\pi\)
\(702\) 0 0
\(703\) −1.98551 −0.0748848
\(704\) 0 0
\(705\) −8.39455 −0.316157
\(706\) 0 0
\(707\) −47.9011 −1.80151
\(708\) 0 0
\(709\) −21.2610 −0.798473 −0.399237 0.916848i \(-0.630725\pi\)
−0.399237 + 0.916848i \(0.630725\pi\)
\(710\) 0 0
\(711\) 73.6743 2.76300
\(712\) 0 0
\(713\) 4.92006 0.184258
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 34.3174 1.28161
\(718\) 0 0
\(719\) −34.6096 −1.29072 −0.645359 0.763879i \(-0.723292\pi\)
−0.645359 + 0.763879i \(0.723292\pi\)
\(720\) 0 0
\(721\) −76.5119 −2.84945
\(722\) 0 0
\(723\) 19.2599 0.716284
\(724\) 0 0
\(725\) 8.31688 0.308881
\(726\) 0 0
\(727\) −34.3480 −1.27390 −0.636948 0.770906i \(-0.719804\pi\)
−0.636948 + 0.770906i \(0.719804\pi\)
\(728\) 0 0
\(729\) −0.187287 −0.00693657
\(730\) 0 0
\(731\) −17.2753 −0.638949
\(732\) 0 0
\(733\) −22.9284 −0.846879 −0.423439 0.905924i \(-0.639177\pi\)
−0.423439 + 0.905924i \(0.639177\pi\)
\(734\) 0 0
\(735\) −164.457 −6.06607
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.615346 0.0226359 0.0113179 0.999936i \(-0.496397\pi\)
0.0113179 + 0.999936i \(0.496397\pi\)
\(740\) 0 0
\(741\) 6.94492 0.255128
\(742\) 0 0
\(743\) −31.4662 −1.15438 −0.577191 0.816609i \(-0.695851\pi\)
−0.577191 + 0.816609i \(0.695851\pi\)
\(744\) 0 0
\(745\) 26.2157 0.960468
\(746\) 0 0
\(747\) 65.2983 2.38914
\(748\) 0 0
\(749\) −36.2618 −1.32498
\(750\) 0 0
\(751\) −45.8699 −1.67382 −0.836908 0.547344i \(-0.815639\pi\)
−0.836908 + 0.547344i \(0.815639\pi\)
\(752\) 0 0
\(753\) 16.5024 0.601382
\(754\) 0 0
\(755\) 17.2779 0.628806
\(756\) 0 0
\(757\) 27.8578 1.01251 0.506255 0.862384i \(-0.331030\pi\)
0.506255 + 0.862384i \(0.331030\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −35.7692 −1.29663 −0.648317 0.761370i \(-0.724527\pi\)
−0.648317 + 0.761370i \(0.724527\pi\)
\(762\) 0 0
\(763\) −66.2630 −2.39888
\(764\) 0 0
\(765\) −134.506 −4.86309
\(766\) 0 0
\(767\) −16.8756 −0.609342
\(768\) 0 0
\(769\) 36.8627 1.32930 0.664651 0.747154i \(-0.268580\pi\)
0.664651 + 0.747154i \(0.268580\pi\)
\(770\) 0 0
\(771\) 15.7342 0.566654
\(772\) 0 0
\(773\) 17.5177 0.630068 0.315034 0.949080i \(-0.397984\pi\)
0.315034 + 0.949080i \(0.397984\pi\)
\(774\) 0 0
\(775\) −8.16403 −0.293260
\(776\) 0 0
\(777\) 31.7816 1.14016
\(778\) 0 0
\(779\) 8.50050 0.304562
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 39.6453 1.41681
\(784\) 0 0
\(785\) 26.5553 0.947800
\(786\) 0 0
\(787\) −54.4756 −1.94184 −0.970922 0.239396i \(-0.923051\pi\)
−0.970922 + 0.239396i \(0.923051\pi\)
\(788\) 0 0
\(789\) −77.6000 −2.76263
\(790\) 0 0
\(791\) 83.0379 2.95249
\(792\) 0 0
\(793\) 8.08305 0.287037
\(794\) 0 0
\(795\) 18.2381 0.646840
\(796\) 0 0
\(797\) 27.5174 0.974715 0.487358 0.873202i \(-0.337961\pi\)
0.487358 + 0.873202i \(0.337961\pi\)
\(798\) 0 0
\(799\) 7.21333 0.255189
\(800\) 0 0
\(801\) 46.8187 1.65426
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 20.6356 0.727310
\(806\) 0 0
\(807\) 16.3708 0.576281
\(808\) 0 0
\(809\) 14.7423 0.518310 0.259155 0.965836i \(-0.416556\pi\)
0.259155 + 0.965836i \(0.416556\pi\)
\(810\) 0 0
\(811\) −25.6478 −0.900615 −0.450308 0.892873i \(-0.648686\pi\)
−0.450308 + 0.892873i \(0.648686\pi\)
\(812\) 0 0
\(813\) −51.7074 −1.81346
\(814\) 0 0
\(815\) 42.3232 1.48252
\(816\) 0 0
\(817\) 2.36107 0.0826034
\(818\) 0 0
\(819\) −76.9150 −2.68763
\(820\) 0 0
\(821\) −35.9928 −1.25616 −0.628078 0.778150i \(-0.716158\pi\)
−0.628078 + 0.778150i \(0.716158\pi\)
\(822\) 0 0
\(823\) −18.6406 −0.649770 −0.324885 0.945754i \(-0.605326\pi\)
−0.324885 + 0.945754i \(0.605326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.277915 0.00966406 0.00483203 0.999988i \(-0.498462\pi\)
0.00483203 + 0.999988i \(0.498462\pi\)
\(828\) 0 0
\(829\) 3.44865 0.119777 0.0598883 0.998205i \(-0.480926\pi\)
0.0598883 + 0.998205i \(0.480926\pi\)
\(830\) 0 0
\(831\) −49.4600 −1.71575
\(832\) 0 0
\(833\) 141.316 4.89629
\(834\) 0 0
\(835\) 14.4668 0.500645
\(836\) 0 0
\(837\) −38.9167 −1.34516
\(838\) 0 0
\(839\) 11.4613 0.395687 0.197843 0.980234i \(-0.436606\pi\)
0.197843 + 0.980234i \(0.436606\pi\)
\(840\) 0 0
\(841\) −17.4405 −0.601395
\(842\) 0 0
\(843\) 59.2209 2.03968
\(844\) 0 0
\(845\) 21.9570 0.755344
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 70.7612 2.42852
\(850\) 0 0
\(851\) −2.92703 −0.100337
\(852\) 0 0
\(853\) −13.3326 −0.456500 −0.228250 0.973603i \(-0.573300\pi\)
−0.228250 + 0.973603i \(0.573300\pi\)
\(854\) 0 0
\(855\) 18.3835 0.628701
\(856\) 0 0
\(857\) 6.22828 0.212754 0.106377 0.994326i \(-0.466075\pi\)
0.106377 + 0.994326i \(0.466075\pi\)
\(858\) 0 0
\(859\) −11.5705 −0.394782 −0.197391 0.980325i \(-0.563247\pi\)
−0.197391 + 0.980325i \(0.563247\pi\)
\(860\) 0 0
\(861\) −136.066 −4.63711
\(862\) 0 0
\(863\) 52.8830 1.80016 0.900079 0.435727i \(-0.143509\pi\)
0.900079 + 0.435727i \(0.143509\pi\)
\(864\) 0 0
\(865\) −44.4070 −1.50988
\(866\) 0 0
\(867\) 114.002 3.87170
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −30.8493 −1.04529
\(872\) 0 0
\(873\) −11.1930 −0.378826
\(874\) 0 0
\(875\) 35.7478 1.20850
\(876\) 0 0
\(877\) 31.9765 1.07977 0.539884 0.841739i \(-0.318468\pi\)
0.539884 + 0.841739i \(0.318468\pi\)
\(878\) 0 0
\(879\) 17.4828 0.589682
\(880\) 0 0
\(881\) −5.86371 −0.197553 −0.0987767 0.995110i \(-0.531493\pi\)
−0.0987767 + 0.995110i \(0.531493\pi\)
\(882\) 0 0
\(883\) −45.3608 −1.52651 −0.763256 0.646096i \(-0.776401\pi\)
−0.763256 + 0.646096i \(0.776401\pi\)
\(884\) 0 0
\(885\) −64.5624 −2.17024
\(886\) 0 0
\(887\) 4.84138 0.162557 0.0812787 0.996691i \(-0.474100\pi\)
0.0812787 + 0.996691i \(0.474100\pi\)
\(888\) 0 0
\(889\) 15.8546 0.531746
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.985870 −0.0329909
\(894\) 0 0
\(895\) −2.07984 −0.0695214
\(896\) 0 0
\(897\) 10.2382 0.341843
\(898\) 0 0
\(899\) −11.3471 −0.378446
\(900\) 0 0
\(901\) −15.6718 −0.522103
\(902\) 0 0
\(903\) −37.7932 −1.25768
\(904\) 0 0
\(905\) 38.1585 1.26843
\(906\) 0 0
\(907\) 2.81871 0.0935937 0.0467968 0.998904i \(-0.485099\pi\)
0.0467968 + 0.998904i \(0.485099\pi\)
\(908\) 0 0
\(909\) −62.9088 −2.08655
\(910\) 0 0
\(911\) 11.4181 0.378299 0.189150 0.981948i \(-0.439427\pi\)
0.189150 + 0.981948i \(0.439427\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 30.9240 1.02232
\(916\) 0 0
\(917\) −48.9479 −1.61640
\(918\) 0 0
\(919\) −20.3585 −0.671564 −0.335782 0.941940i \(-0.609001\pi\)
−0.335782 + 0.941940i \(0.609001\pi\)
\(920\) 0 0
\(921\) 27.8831 0.918778
\(922\) 0 0
\(923\) −32.0435 −1.05472
\(924\) 0 0
\(925\) 4.85693 0.159695
\(926\) 0 0
\(927\) −100.484 −3.30031
\(928\) 0 0
\(929\) −2.44257 −0.0801381 −0.0400690 0.999197i \(-0.512758\pi\)
−0.0400690 + 0.999197i \(0.512758\pi\)
\(930\) 0 0
\(931\) −19.3141 −0.632993
\(932\) 0 0
\(933\) −25.5775 −0.837371
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −44.5993 −1.45700 −0.728498 0.685048i \(-0.759781\pi\)
−0.728498 + 0.685048i \(0.759781\pi\)
\(938\) 0 0
\(939\) −26.6049 −0.868218
\(940\) 0 0
\(941\) 10.8386 0.353327 0.176664 0.984271i \(-0.443469\pi\)
0.176664 + 0.984271i \(0.443469\pi\)
\(942\) 0 0
\(943\) 12.5314 0.408080
\(944\) 0 0
\(945\) −163.224 −5.30966
\(946\) 0 0
\(947\) 0.142195 0.00462071 0.00231036 0.999997i \(-0.499265\pi\)
0.00231036 + 0.999997i \(0.499265\pi\)
\(948\) 0 0
\(949\) −6.53581 −0.212161
\(950\) 0 0
\(951\) 18.1996 0.590162
\(952\) 0 0
\(953\) 38.6299 1.25135 0.625673 0.780085i \(-0.284824\pi\)
0.625673 + 0.780085i \(0.284824\pi\)
\(954\) 0 0
\(955\) −66.0188 −2.13632
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −45.6529 −1.47421
\(960\) 0 0
\(961\) −19.8615 −0.640693
\(962\) 0 0
\(963\) −47.6228 −1.53462
\(964\) 0 0
\(965\) −21.5128 −0.692521
\(966\) 0 0
\(967\) −16.4135 −0.527824 −0.263912 0.964547i \(-0.585013\pi\)
−0.263912 + 0.964547i \(0.585013\pi\)
\(968\) 0 0
\(969\) −22.8311 −0.733440
\(970\) 0 0
\(971\) −50.3184 −1.61479 −0.807397 0.590009i \(-0.799124\pi\)
−0.807397 + 0.590009i \(0.799124\pi\)
\(972\) 0 0
\(973\) −54.5339 −1.74828
\(974\) 0 0
\(975\) −16.9886 −0.544070
\(976\) 0 0
\(977\) 11.4858 0.367463 0.183731 0.982976i \(-0.441182\pi\)
0.183731 + 0.982976i \(0.441182\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −87.0236 −2.77845
\(982\) 0 0
\(983\) −18.2947 −0.583510 −0.291755 0.956493i \(-0.594239\pi\)
−0.291755 + 0.956493i \(0.594239\pi\)
\(984\) 0 0
\(985\) 1.72949 0.0551060
\(986\) 0 0
\(987\) 15.7806 0.502303
\(988\) 0 0
\(989\) 3.48069 0.110680
\(990\) 0 0
\(991\) 10.8582 0.344922 0.172461 0.985016i \(-0.444828\pi\)
0.172461 + 0.985016i \(0.444828\pi\)
\(992\) 0 0
\(993\) 42.4936 1.34849
\(994\) 0 0
\(995\) −61.4025 −1.94659
\(996\) 0 0
\(997\) 11.7038 0.370662 0.185331 0.982676i \(-0.440664\pi\)
0.185331 + 0.982676i \(0.440664\pi\)
\(998\) 0 0
\(999\) 23.1523 0.732505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.x.1.19 20
11.3 even 5 836.2.j.c.229.2 40
11.4 even 5 836.2.j.c.533.2 yes 40
11.10 odd 2 9196.2.a.w.1.19 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.c.229.2 40 11.3 even 5
836.2.j.c.533.2 yes 40 11.4 even 5
9196.2.a.w.1.19 20 11.10 odd 2
9196.2.a.x.1.19 20 1.1 even 1 trivial