Properties

Label 9196.2.a.x.1.4
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} - 26 x^{18} + 208 x^{17} + 185 x^{16} - 2910 x^{15} + 687 x^{14} + 21067 x^{13} + \cdots - 3520 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.33451\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.33451 q^{3} -3.18058 q^{5} -2.36116 q^{7} +2.44994 q^{9} +1.55121 q^{13} +7.42511 q^{15} -6.41700 q^{17} -1.00000 q^{19} +5.51215 q^{21} +6.02916 q^{23} +5.11612 q^{25} +1.28411 q^{27} +2.89575 q^{29} -7.92142 q^{31} +7.50986 q^{35} +10.8063 q^{37} -3.62131 q^{39} -7.48426 q^{41} -11.4166 q^{43} -7.79225 q^{45} +5.57862 q^{47} -1.42493 q^{49} +14.9806 q^{51} -11.2927 q^{53} +2.33451 q^{57} -15.1137 q^{59} -6.31845 q^{61} -5.78470 q^{63} -4.93375 q^{65} -4.35479 q^{67} -14.0751 q^{69} +4.78575 q^{71} -14.3122 q^{73} -11.9436 q^{75} +1.49793 q^{79} -10.3476 q^{81} -4.13113 q^{83} +20.4098 q^{85} -6.76016 q^{87} +3.05209 q^{89} -3.66265 q^{91} +18.4926 q^{93} +3.18058 q^{95} -9.16951 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 2 q^{5} + 4 q^{7} + 28 q^{9} - 5 q^{13} + 14 q^{15} - 6 q^{17} - 20 q^{19} - q^{21} + 18 q^{23} + 44 q^{25} + 24 q^{27} + q^{29} + 23 q^{31} - 36 q^{35} + q^{37} + 21 q^{39} + 6 q^{41}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.33451 −1.34783 −0.673915 0.738809i \(-0.735389\pi\)
−0.673915 + 0.738809i \(0.735389\pi\)
\(4\) 0 0
\(5\) −3.18058 −1.42240 −0.711200 0.702989i \(-0.751848\pi\)
−0.711200 + 0.702989i \(0.751848\pi\)
\(6\) 0 0
\(7\) −2.36116 −0.892434 −0.446217 0.894925i \(-0.647229\pi\)
−0.446217 + 0.894925i \(0.647229\pi\)
\(8\) 0 0
\(9\) 2.44994 0.816648
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.55121 0.430228 0.215114 0.976589i \(-0.430988\pi\)
0.215114 + 0.976589i \(0.430988\pi\)
\(14\) 0 0
\(15\) 7.42511 1.91716
\(16\) 0 0
\(17\) −6.41700 −1.55635 −0.778176 0.628047i \(-0.783855\pi\)
−0.778176 + 0.628047i \(0.783855\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 5.51215 1.20285
\(22\) 0 0
\(23\) 6.02916 1.25717 0.628583 0.777742i \(-0.283635\pi\)
0.628583 + 0.777742i \(0.283635\pi\)
\(24\) 0 0
\(25\) 5.11612 1.02322
\(26\) 0 0
\(27\) 1.28411 0.247128
\(28\) 0 0
\(29\) 2.89575 0.537727 0.268863 0.963178i \(-0.413352\pi\)
0.268863 + 0.963178i \(0.413352\pi\)
\(30\) 0 0
\(31\) −7.92142 −1.42273 −0.711364 0.702823i \(-0.751922\pi\)
−0.711364 + 0.702823i \(0.751922\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.50986 1.26940
\(36\) 0 0
\(37\) 10.8063 1.77654 0.888271 0.459320i \(-0.151907\pi\)
0.888271 + 0.459320i \(0.151907\pi\)
\(38\) 0 0
\(39\) −3.62131 −0.579874
\(40\) 0 0
\(41\) −7.48426 −1.16885 −0.584423 0.811449i \(-0.698679\pi\)
−0.584423 + 0.811449i \(0.698679\pi\)
\(42\) 0 0
\(43\) −11.4166 −1.74102 −0.870508 0.492154i \(-0.836210\pi\)
−0.870508 + 0.492154i \(0.836210\pi\)
\(44\) 0 0
\(45\) −7.79225 −1.16160
\(46\) 0 0
\(47\) 5.57862 0.813726 0.406863 0.913489i \(-0.366623\pi\)
0.406863 + 0.913489i \(0.366623\pi\)
\(48\) 0 0
\(49\) −1.42493 −0.203562
\(50\) 0 0
\(51\) 14.9806 2.09770
\(52\) 0 0
\(53\) −11.2927 −1.55118 −0.775589 0.631238i \(-0.782547\pi\)
−0.775589 + 0.631238i \(0.782547\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.33451 0.309214
\(58\) 0 0
\(59\) −15.1137 −1.96764 −0.983819 0.179165i \(-0.942660\pi\)
−0.983819 + 0.179165i \(0.942660\pi\)
\(60\) 0 0
\(61\) −6.31845 −0.808995 −0.404497 0.914539i \(-0.632554\pi\)
−0.404497 + 0.914539i \(0.632554\pi\)
\(62\) 0 0
\(63\) −5.78470 −0.728804
\(64\) 0 0
\(65\) −4.93375 −0.611956
\(66\) 0 0
\(67\) −4.35479 −0.532022 −0.266011 0.963970i \(-0.585706\pi\)
−0.266011 + 0.963970i \(0.585706\pi\)
\(68\) 0 0
\(69\) −14.0751 −1.69445
\(70\) 0 0
\(71\) 4.78575 0.567965 0.283982 0.958830i \(-0.408344\pi\)
0.283982 + 0.958830i \(0.408344\pi\)
\(72\) 0 0
\(73\) −14.3122 −1.67511 −0.837555 0.546352i \(-0.816016\pi\)
−0.837555 + 0.546352i \(0.816016\pi\)
\(74\) 0 0
\(75\) −11.9436 −1.37913
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.49793 0.168530 0.0842652 0.996443i \(-0.473146\pi\)
0.0842652 + 0.996443i \(0.473146\pi\)
\(80\) 0 0
\(81\) −10.3476 −1.14973
\(82\) 0 0
\(83\) −4.13113 −0.453450 −0.226725 0.973959i \(-0.572802\pi\)
−0.226725 + 0.973959i \(0.572802\pi\)
\(84\) 0 0
\(85\) 20.4098 2.21376
\(86\) 0 0
\(87\) −6.76016 −0.724765
\(88\) 0 0
\(89\) 3.05209 0.323521 0.161760 0.986830i \(-0.448283\pi\)
0.161760 + 0.986830i \(0.448283\pi\)
\(90\) 0 0
\(91\) −3.66265 −0.383950
\(92\) 0 0
\(93\) 18.4926 1.91760
\(94\) 0 0
\(95\) 3.18058 0.326321
\(96\) 0 0
\(97\) −9.16951 −0.931023 −0.465511 0.885042i \(-0.654130\pi\)
−0.465511 + 0.885042i \(0.654130\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.80029 −0.179136 −0.0895679 0.995981i \(-0.528549\pi\)
−0.0895679 + 0.995981i \(0.528549\pi\)
\(102\) 0 0
\(103\) −10.9187 −1.07585 −0.537927 0.842991i \(-0.680793\pi\)
−0.537927 + 0.842991i \(0.680793\pi\)
\(104\) 0 0
\(105\) −17.5319 −1.71093
\(106\) 0 0
\(107\) −19.8174 −1.91582 −0.957911 0.287064i \(-0.907321\pi\)
−0.957911 + 0.287064i \(0.907321\pi\)
\(108\) 0 0
\(109\) 10.2603 0.982759 0.491380 0.870945i \(-0.336493\pi\)
0.491380 + 0.870945i \(0.336493\pi\)
\(110\) 0 0
\(111\) −25.2274 −2.39448
\(112\) 0 0
\(113\) −2.27935 −0.214423 −0.107211 0.994236i \(-0.534192\pi\)
−0.107211 + 0.994236i \(0.534192\pi\)
\(114\) 0 0
\(115\) −19.1763 −1.78819
\(116\) 0 0
\(117\) 3.80037 0.351345
\(118\) 0 0
\(119\) 15.1516 1.38894
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 17.4721 1.57541
\(124\) 0 0
\(125\) −0.369323 −0.0330333
\(126\) 0 0
\(127\) 10.0852 0.894913 0.447457 0.894306i \(-0.352330\pi\)
0.447457 + 0.894306i \(0.352330\pi\)
\(128\) 0 0
\(129\) 26.6522 2.34660
\(130\) 0 0
\(131\) 14.8159 1.29447 0.647234 0.762291i \(-0.275925\pi\)
0.647234 + 0.762291i \(0.275925\pi\)
\(132\) 0 0
\(133\) 2.36116 0.204738
\(134\) 0 0
\(135\) −4.08423 −0.351515
\(136\) 0 0
\(137\) 3.19282 0.272781 0.136390 0.990655i \(-0.456450\pi\)
0.136390 + 0.990655i \(0.456450\pi\)
\(138\) 0 0
\(139\) −1.95005 −0.165401 −0.0827007 0.996574i \(-0.526355\pi\)
−0.0827007 + 0.996574i \(0.526355\pi\)
\(140\) 0 0
\(141\) −13.0234 −1.09677
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.21017 −0.764863
\(146\) 0 0
\(147\) 3.32652 0.274367
\(148\) 0 0
\(149\) −15.1828 −1.24383 −0.621913 0.783087i \(-0.713644\pi\)
−0.621913 + 0.783087i \(0.713644\pi\)
\(150\) 0 0
\(151\) 6.34819 0.516608 0.258304 0.966064i \(-0.416836\pi\)
0.258304 + 0.966064i \(0.416836\pi\)
\(152\) 0 0
\(153\) −15.7213 −1.27099
\(154\) 0 0
\(155\) 25.1947 2.02369
\(156\) 0 0
\(157\) −5.90156 −0.470996 −0.235498 0.971875i \(-0.575672\pi\)
−0.235498 + 0.971875i \(0.575672\pi\)
\(158\) 0 0
\(159\) 26.3630 2.09073
\(160\) 0 0
\(161\) −14.2358 −1.12194
\(162\) 0 0
\(163\) −13.7879 −1.07995 −0.539974 0.841681i \(-0.681566\pi\)
−0.539974 + 0.841681i \(0.681566\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.5017 −0.890028 −0.445014 0.895524i \(-0.646801\pi\)
−0.445014 + 0.895524i \(0.646801\pi\)
\(168\) 0 0
\(169\) −10.5938 −0.814904
\(170\) 0 0
\(171\) −2.44994 −0.187352
\(172\) 0 0
\(173\) 15.5256 1.18039 0.590195 0.807261i \(-0.299051\pi\)
0.590195 + 0.807261i \(0.299051\pi\)
\(174\) 0 0
\(175\) −12.0800 −0.913160
\(176\) 0 0
\(177\) 35.2831 2.65204
\(178\) 0 0
\(179\) −1.95564 −0.146171 −0.0730857 0.997326i \(-0.523285\pi\)
−0.0730857 + 0.997326i \(0.523285\pi\)
\(180\) 0 0
\(181\) −13.2011 −0.981233 −0.490616 0.871376i \(-0.663228\pi\)
−0.490616 + 0.871376i \(0.663228\pi\)
\(182\) 0 0
\(183\) 14.7505 1.09039
\(184\) 0 0
\(185\) −34.3703 −2.52695
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.03200 −0.220545
\(190\) 0 0
\(191\) 20.1308 1.45661 0.728305 0.685253i \(-0.240308\pi\)
0.728305 + 0.685253i \(0.240308\pi\)
\(192\) 0 0
\(193\) −15.9501 −1.14812 −0.574058 0.818815i \(-0.694631\pi\)
−0.574058 + 0.818815i \(0.694631\pi\)
\(194\) 0 0
\(195\) 11.5179 0.824814
\(196\) 0 0
\(197\) −2.74250 −0.195395 −0.0976976 0.995216i \(-0.531148\pi\)
−0.0976976 + 0.995216i \(0.531148\pi\)
\(198\) 0 0
\(199\) −14.6253 −1.03676 −0.518379 0.855151i \(-0.673464\pi\)
−0.518379 + 0.855151i \(0.673464\pi\)
\(200\) 0 0
\(201\) 10.1663 0.717075
\(202\) 0 0
\(203\) −6.83732 −0.479886
\(204\) 0 0
\(205\) 23.8043 1.66257
\(206\) 0 0
\(207\) 14.7711 1.02666
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5.51901 0.379945 0.189972 0.981789i \(-0.439160\pi\)
0.189972 + 0.981789i \(0.439160\pi\)
\(212\) 0 0
\(213\) −11.1724 −0.765520
\(214\) 0 0
\(215\) 36.3115 2.47642
\(216\) 0 0
\(217\) 18.7037 1.26969
\(218\) 0 0
\(219\) 33.4119 2.25777
\(220\) 0 0
\(221\) −9.95411 −0.669586
\(222\) 0 0
\(223\) 9.59470 0.642508 0.321254 0.946993i \(-0.395896\pi\)
0.321254 + 0.946993i \(0.395896\pi\)
\(224\) 0 0
\(225\) 12.5342 0.835613
\(226\) 0 0
\(227\) −4.91969 −0.326531 −0.163266 0.986582i \(-0.552203\pi\)
−0.163266 + 0.986582i \(0.552203\pi\)
\(228\) 0 0
\(229\) −6.02114 −0.397888 −0.198944 0.980011i \(-0.563751\pi\)
−0.198944 + 0.980011i \(0.563751\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.8685 −1.23612 −0.618059 0.786131i \(-0.712081\pi\)
−0.618059 + 0.786131i \(0.712081\pi\)
\(234\) 0 0
\(235\) −17.7433 −1.15744
\(236\) 0 0
\(237\) −3.49694 −0.227150
\(238\) 0 0
\(239\) −0.222128 −0.0143683 −0.00718413 0.999974i \(-0.502287\pi\)
−0.00718413 + 0.999974i \(0.502287\pi\)
\(240\) 0 0
\(241\) −8.24782 −0.531289 −0.265644 0.964071i \(-0.585585\pi\)
−0.265644 + 0.964071i \(0.585585\pi\)
\(242\) 0 0
\(243\) 20.3043 1.30252
\(244\) 0 0
\(245\) 4.53211 0.289546
\(246\) 0 0
\(247\) −1.55121 −0.0987010
\(248\) 0 0
\(249\) 9.64417 0.611174
\(250\) 0 0
\(251\) −8.22262 −0.519007 −0.259504 0.965742i \(-0.583559\pi\)
−0.259504 + 0.965742i \(0.583559\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −47.6469 −2.98377
\(256\) 0 0
\(257\) 2.52235 0.157340 0.0786700 0.996901i \(-0.474933\pi\)
0.0786700 + 0.996901i \(0.474933\pi\)
\(258\) 0 0
\(259\) −25.5153 −1.58545
\(260\) 0 0
\(261\) 7.09442 0.439133
\(262\) 0 0
\(263\) 3.80875 0.234857 0.117429 0.993081i \(-0.462535\pi\)
0.117429 + 0.993081i \(0.462535\pi\)
\(264\) 0 0
\(265\) 35.9175 2.20640
\(266\) 0 0
\(267\) −7.12514 −0.436051
\(268\) 0 0
\(269\) −20.0510 −1.22253 −0.611267 0.791425i \(-0.709340\pi\)
−0.611267 + 0.791425i \(0.709340\pi\)
\(270\) 0 0
\(271\) −18.3780 −1.11638 −0.558191 0.829712i \(-0.688505\pi\)
−0.558191 + 0.829712i \(0.688505\pi\)
\(272\) 0 0
\(273\) 8.55050 0.517500
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −13.6835 −0.822162 −0.411081 0.911599i \(-0.634849\pi\)
−0.411081 + 0.911599i \(0.634849\pi\)
\(278\) 0 0
\(279\) −19.4070 −1.16187
\(280\) 0 0
\(281\) 1.77827 0.106083 0.0530414 0.998592i \(-0.483108\pi\)
0.0530414 + 0.998592i \(0.483108\pi\)
\(282\) 0 0
\(283\) 22.2154 1.32057 0.660284 0.751016i \(-0.270436\pi\)
0.660284 + 0.751016i \(0.270436\pi\)
\(284\) 0 0
\(285\) −7.42511 −0.439826
\(286\) 0 0
\(287\) 17.6715 1.04312
\(288\) 0 0
\(289\) 24.1779 1.42223
\(290\) 0 0
\(291\) 21.4063 1.25486
\(292\) 0 0
\(293\) −21.0125 −1.22756 −0.613781 0.789476i \(-0.710352\pi\)
−0.613781 + 0.789476i \(0.710352\pi\)
\(294\) 0 0
\(295\) 48.0704 2.79877
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.35248 0.540868
\(300\) 0 0
\(301\) 26.9564 1.55374
\(302\) 0 0
\(303\) 4.20280 0.241445
\(304\) 0 0
\(305\) 20.0964 1.15071
\(306\) 0 0
\(307\) −21.2809 −1.21457 −0.607283 0.794485i \(-0.707741\pi\)
−0.607283 + 0.794485i \(0.707741\pi\)
\(308\) 0 0
\(309\) 25.4899 1.45007
\(310\) 0 0
\(311\) −3.04208 −0.172501 −0.0862503 0.996273i \(-0.527488\pi\)
−0.0862503 + 0.996273i \(0.527488\pi\)
\(312\) 0 0
\(313\) 0.635065 0.0358960 0.0179480 0.999839i \(-0.494287\pi\)
0.0179480 + 0.999839i \(0.494287\pi\)
\(314\) 0 0
\(315\) 18.3987 1.03665
\(316\) 0 0
\(317\) −11.7310 −0.658881 −0.329440 0.944176i \(-0.606860\pi\)
−0.329440 + 0.944176i \(0.606860\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 46.2640 2.58220
\(322\) 0 0
\(323\) 6.41700 0.357051
\(324\) 0 0
\(325\) 7.93617 0.440219
\(326\) 0 0
\(327\) −23.9528 −1.32459
\(328\) 0 0
\(329\) −13.1720 −0.726197
\(330\) 0 0
\(331\) −0.468473 −0.0257496 −0.0128748 0.999917i \(-0.504098\pi\)
−0.0128748 + 0.999917i \(0.504098\pi\)
\(332\) 0 0
\(333\) 26.4748 1.45081
\(334\) 0 0
\(335\) 13.8508 0.756748
\(336\) 0 0
\(337\) −5.66986 −0.308857 −0.154428 0.988004i \(-0.549354\pi\)
−0.154428 + 0.988004i \(0.549354\pi\)
\(338\) 0 0
\(339\) 5.32116 0.289006
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.8926 1.07410
\(344\) 0 0
\(345\) 44.7672 2.41018
\(346\) 0 0
\(347\) −23.4994 −1.26151 −0.630757 0.775981i \(-0.717255\pi\)
−0.630757 + 0.775981i \(0.717255\pi\)
\(348\) 0 0
\(349\) 7.03599 0.376628 0.188314 0.982109i \(-0.439698\pi\)
0.188314 + 0.982109i \(0.439698\pi\)
\(350\) 0 0
\(351\) 1.99193 0.106321
\(352\) 0 0
\(353\) 7.30547 0.388831 0.194415 0.980919i \(-0.437719\pi\)
0.194415 + 0.980919i \(0.437719\pi\)
\(354\) 0 0
\(355\) −15.2215 −0.807873
\(356\) 0 0
\(357\) −35.3715 −1.87206
\(358\) 0 0
\(359\) 14.9887 0.791071 0.395535 0.918451i \(-0.370559\pi\)
0.395535 + 0.918451i \(0.370559\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 45.5210 2.38268
\(366\) 0 0
\(367\) 29.5862 1.54439 0.772194 0.635387i \(-0.219160\pi\)
0.772194 + 0.635387i \(0.219160\pi\)
\(368\) 0 0
\(369\) −18.3360 −0.954535
\(370\) 0 0
\(371\) 26.6640 1.38432
\(372\) 0 0
\(373\) −18.9139 −0.979325 −0.489663 0.871912i \(-0.662880\pi\)
−0.489663 + 0.871912i \(0.662880\pi\)
\(374\) 0 0
\(375\) 0.862189 0.0445233
\(376\) 0 0
\(377\) 4.49191 0.231345
\(378\) 0 0
\(379\) −2.25390 −0.115775 −0.0578876 0.998323i \(-0.518436\pi\)
−0.0578876 + 0.998323i \(0.518436\pi\)
\(380\) 0 0
\(381\) −23.5439 −1.20619
\(382\) 0 0
\(383\) 5.37133 0.274462 0.137231 0.990539i \(-0.456180\pi\)
0.137231 + 0.990539i \(0.456180\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −27.9700 −1.42180
\(388\) 0 0
\(389\) 2.30019 0.116624 0.0583121 0.998298i \(-0.481428\pi\)
0.0583121 + 0.998298i \(0.481428\pi\)
\(390\) 0 0
\(391\) −38.6891 −1.95659
\(392\) 0 0
\(393\) −34.5878 −1.74472
\(394\) 0 0
\(395\) −4.76430 −0.239718
\(396\) 0 0
\(397\) −26.1429 −1.31207 −0.656037 0.754729i \(-0.727768\pi\)
−0.656037 + 0.754729i \(0.727768\pi\)
\(398\) 0 0
\(399\) −5.51215 −0.275953
\(400\) 0 0
\(401\) 10.7720 0.537927 0.268963 0.963150i \(-0.413319\pi\)
0.268963 + 0.963150i \(0.413319\pi\)
\(402\) 0 0
\(403\) −12.2878 −0.612098
\(404\) 0 0
\(405\) 32.9114 1.63538
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 26.4549 1.30811 0.654055 0.756447i \(-0.273066\pi\)
0.654055 + 0.756447i \(0.273066\pi\)
\(410\) 0 0
\(411\) −7.45367 −0.367662
\(412\) 0 0
\(413\) 35.6859 1.75599
\(414\) 0 0
\(415\) 13.1394 0.644988
\(416\) 0 0
\(417\) 4.55242 0.222933
\(418\) 0 0
\(419\) 31.5810 1.54283 0.771416 0.636332i \(-0.219549\pi\)
0.771416 + 0.636332i \(0.219549\pi\)
\(420\) 0 0
\(421\) −21.5369 −1.04964 −0.524822 0.851212i \(-0.675868\pi\)
−0.524822 + 0.851212i \(0.675868\pi\)
\(422\) 0 0
\(423\) 13.6673 0.664528
\(424\) 0 0
\(425\) −32.8301 −1.59250
\(426\) 0 0
\(427\) 14.9189 0.721974
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.4419 −0.936481 −0.468241 0.883601i \(-0.655112\pi\)
−0.468241 + 0.883601i \(0.655112\pi\)
\(432\) 0 0
\(433\) −8.23518 −0.395758 −0.197879 0.980226i \(-0.563405\pi\)
−0.197879 + 0.980226i \(0.563405\pi\)
\(434\) 0 0
\(435\) 21.5012 1.03091
\(436\) 0 0
\(437\) −6.02916 −0.288414
\(438\) 0 0
\(439\) −16.4188 −0.783628 −0.391814 0.920044i \(-0.628152\pi\)
−0.391814 + 0.920044i \(0.628152\pi\)
\(440\) 0 0
\(441\) −3.49100 −0.166238
\(442\) 0 0
\(443\) 36.1348 1.71682 0.858408 0.512968i \(-0.171454\pi\)
0.858408 + 0.512968i \(0.171454\pi\)
\(444\) 0 0
\(445\) −9.70743 −0.460176
\(446\) 0 0
\(447\) 35.4445 1.67647
\(448\) 0 0
\(449\) 40.5156 1.91205 0.956024 0.293288i \(-0.0947494\pi\)
0.956024 + 0.293288i \(0.0947494\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −14.8199 −0.696301
\(454\) 0 0
\(455\) 11.6494 0.546131
\(456\) 0 0
\(457\) −15.0631 −0.704623 −0.352312 0.935883i \(-0.614604\pi\)
−0.352312 + 0.935883i \(0.614604\pi\)
\(458\) 0 0
\(459\) −8.24016 −0.384618
\(460\) 0 0
\(461\) 28.7591 1.33945 0.669723 0.742611i \(-0.266413\pi\)
0.669723 + 0.742611i \(0.266413\pi\)
\(462\) 0 0
\(463\) 25.1929 1.17081 0.585407 0.810740i \(-0.300935\pi\)
0.585407 + 0.810740i \(0.300935\pi\)
\(464\) 0 0
\(465\) −58.8174 −2.72759
\(466\) 0 0
\(467\) 7.70903 0.356731 0.178366 0.983964i \(-0.442919\pi\)
0.178366 + 0.983964i \(0.442919\pi\)
\(468\) 0 0
\(469\) 10.2823 0.474794
\(470\) 0 0
\(471\) 13.7773 0.634822
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −5.11612 −0.234744
\(476\) 0 0
\(477\) −27.6666 −1.26677
\(478\) 0 0
\(479\) −8.97151 −0.409919 −0.204959 0.978770i \(-0.565706\pi\)
−0.204959 + 0.978770i \(0.565706\pi\)
\(480\) 0 0
\(481\) 16.7628 0.764318
\(482\) 0 0
\(483\) 33.2336 1.51218
\(484\) 0 0
\(485\) 29.1644 1.32429
\(486\) 0 0
\(487\) 8.27098 0.374794 0.187397 0.982284i \(-0.439995\pi\)
0.187397 + 0.982284i \(0.439995\pi\)
\(488\) 0 0
\(489\) 32.1879 1.45559
\(490\) 0 0
\(491\) 18.2579 0.823966 0.411983 0.911192i \(-0.364836\pi\)
0.411983 + 0.911192i \(0.364836\pi\)
\(492\) 0 0
\(493\) −18.5820 −0.836892
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.2999 −0.506871
\(498\) 0 0
\(499\) 18.9410 0.847914 0.423957 0.905682i \(-0.360641\pi\)
0.423957 + 0.905682i \(0.360641\pi\)
\(500\) 0 0
\(501\) 26.8508 1.19961
\(502\) 0 0
\(503\) 31.0787 1.38573 0.692865 0.721067i \(-0.256348\pi\)
0.692865 + 0.721067i \(0.256348\pi\)
\(504\) 0 0
\(505\) 5.72598 0.254803
\(506\) 0 0
\(507\) 24.7312 1.09835
\(508\) 0 0
\(509\) −12.4184 −0.550434 −0.275217 0.961382i \(-0.588750\pi\)
−0.275217 + 0.961382i \(0.588750\pi\)
\(510\) 0 0
\(511\) 33.7933 1.49493
\(512\) 0 0
\(513\) −1.28411 −0.0566950
\(514\) 0 0
\(515\) 34.7280 1.53030
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −36.2447 −1.59096
\(520\) 0 0
\(521\) −21.6227 −0.947306 −0.473653 0.880712i \(-0.657065\pi\)
−0.473653 + 0.880712i \(0.657065\pi\)
\(522\) 0 0
\(523\) 12.8448 0.561666 0.280833 0.959757i \(-0.409389\pi\)
0.280833 + 0.959757i \(0.409389\pi\)
\(524\) 0 0
\(525\) 28.2008 1.23078
\(526\) 0 0
\(527\) 50.8318 2.21427
\(528\) 0 0
\(529\) 13.3508 0.580468
\(530\) 0 0
\(531\) −37.0277 −1.60687
\(532\) 0 0
\(533\) −11.6097 −0.502870
\(534\) 0 0
\(535\) 63.0310 2.72507
\(536\) 0 0
\(537\) 4.56546 0.197014
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 27.8385 1.19687 0.598435 0.801171i \(-0.295790\pi\)
0.598435 + 0.801171i \(0.295790\pi\)
\(542\) 0 0
\(543\) 30.8182 1.32254
\(544\) 0 0
\(545\) −32.6338 −1.39788
\(546\) 0 0
\(547\) −34.8419 −1.48973 −0.744867 0.667213i \(-0.767487\pi\)
−0.744867 + 0.667213i \(0.767487\pi\)
\(548\) 0 0
\(549\) −15.4798 −0.660664
\(550\) 0 0
\(551\) −2.89575 −0.123363
\(552\) 0 0
\(553\) −3.53685 −0.150402
\(554\) 0 0
\(555\) 80.2378 3.40591
\(556\) 0 0
\(557\) 26.1540 1.10818 0.554090 0.832457i \(-0.313067\pi\)
0.554090 + 0.832457i \(0.313067\pi\)
\(558\) 0 0
\(559\) −17.7095 −0.749034
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.3166 −0.603372 −0.301686 0.953407i \(-0.597549\pi\)
−0.301686 + 0.953407i \(0.597549\pi\)
\(564\) 0 0
\(565\) 7.24966 0.304995
\(566\) 0 0
\(567\) 24.4323 1.02606
\(568\) 0 0
\(569\) −7.50946 −0.314813 −0.157406 0.987534i \(-0.550313\pi\)
−0.157406 + 0.987534i \(0.550313\pi\)
\(570\) 0 0
\(571\) −10.8984 −0.456085 −0.228042 0.973651i \(-0.573232\pi\)
−0.228042 + 0.973651i \(0.573232\pi\)
\(572\) 0 0
\(573\) −46.9955 −1.96326
\(574\) 0 0
\(575\) 30.8459 1.28636
\(576\) 0 0
\(577\) 24.9640 1.03927 0.519633 0.854390i \(-0.326069\pi\)
0.519633 + 0.854390i \(0.326069\pi\)
\(578\) 0 0
\(579\) 37.2357 1.54746
\(580\) 0 0
\(581\) 9.75425 0.404675
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −12.0874 −0.499753
\(586\) 0 0
\(587\) 28.5644 1.17898 0.589489 0.807777i \(-0.299329\pi\)
0.589489 + 0.807777i \(0.299329\pi\)
\(588\) 0 0
\(589\) 7.92142 0.326396
\(590\) 0 0
\(591\) 6.40240 0.263360
\(592\) 0 0
\(593\) 33.9740 1.39514 0.697572 0.716515i \(-0.254264\pi\)
0.697572 + 0.716515i \(0.254264\pi\)
\(594\) 0 0
\(595\) −48.1908 −1.97563
\(596\) 0 0
\(597\) 34.1429 1.39737
\(598\) 0 0
\(599\) 25.2316 1.03093 0.515467 0.856910i \(-0.327619\pi\)
0.515467 + 0.856910i \(0.327619\pi\)
\(600\) 0 0
\(601\) −18.1024 −0.738410 −0.369205 0.929348i \(-0.620370\pi\)
−0.369205 + 0.929348i \(0.620370\pi\)
\(602\) 0 0
\(603\) −10.6690 −0.434474
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −24.1342 −0.979578 −0.489789 0.871841i \(-0.662926\pi\)
−0.489789 + 0.871841i \(0.662926\pi\)
\(608\) 0 0
\(609\) 15.9618 0.646805
\(610\) 0 0
\(611\) 8.65361 0.350088
\(612\) 0 0
\(613\) −19.5388 −0.789165 −0.394582 0.918861i \(-0.629111\pi\)
−0.394582 + 0.918861i \(0.629111\pi\)
\(614\) 0 0
\(615\) −55.5715 −2.24086
\(616\) 0 0
\(617\) −29.8390 −1.20127 −0.600637 0.799522i \(-0.705086\pi\)
−0.600637 + 0.799522i \(0.705086\pi\)
\(618\) 0 0
\(619\) 31.3616 1.26053 0.630264 0.776381i \(-0.282947\pi\)
0.630264 + 0.776381i \(0.282947\pi\)
\(620\) 0 0
\(621\) 7.74213 0.310681
\(622\) 0 0
\(623\) −7.20647 −0.288721
\(624\) 0 0
\(625\) −24.4059 −0.976237
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −69.3439 −2.76492
\(630\) 0 0
\(631\) −8.32475 −0.331403 −0.165702 0.986176i \(-0.552989\pi\)
−0.165702 + 0.986176i \(0.552989\pi\)
\(632\) 0 0
\(633\) −12.8842 −0.512101
\(634\) 0 0
\(635\) −32.0767 −1.27293
\(636\) 0 0
\(637\) −2.21037 −0.0875779
\(638\) 0 0
\(639\) 11.7248 0.463827
\(640\) 0 0
\(641\) −15.8607 −0.626459 −0.313230 0.949677i \(-0.601411\pi\)
−0.313230 + 0.949677i \(0.601411\pi\)
\(642\) 0 0
\(643\) −38.4857 −1.51773 −0.758864 0.651249i \(-0.774245\pi\)
−0.758864 + 0.651249i \(0.774245\pi\)
\(644\) 0 0
\(645\) −84.7696 −3.33780
\(646\) 0 0
\(647\) 49.6332 1.95128 0.975640 0.219376i \(-0.0704021\pi\)
0.975640 + 0.219376i \(0.0704021\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −43.6641 −1.71133
\(652\) 0 0
\(653\) 13.6918 0.535801 0.267900 0.963447i \(-0.413670\pi\)
0.267900 + 0.963447i \(0.413670\pi\)
\(654\) 0 0
\(655\) −47.1231 −1.84125
\(656\) 0 0
\(657\) −35.0640 −1.36798
\(658\) 0 0
\(659\) −12.0345 −0.468797 −0.234398 0.972141i \(-0.575312\pi\)
−0.234398 + 0.972141i \(0.575312\pi\)
\(660\) 0 0
\(661\) 7.95293 0.309333 0.154667 0.987967i \(-0.450570\pi\)
0.154667 + 0.987967i \(0.450570\pi\)
\(662\) 0 0
\(663\) 23.2380 0.902488
\(664\) 0 0
\(665\) −7.50986 −0.291220
\(666\) 0 0
\(667\) 17.4589 0.676012
\(668\) 0 0
\(669\) −22.3989 −0.865993
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 16.4781 0.635184 0.317592 0.948228i \(-0.397126\pi\)
0.317592 + 0.948228i \(0.397126\pi\)
\(674\) 0 0
\(675\) 6.56968 0.252867
\(676\) 0 0
\(677\) −49.3868 −1.89809 −0.949045 0.315141i \(-0.897948\pi\)
−0.949045 + 0.315141i \(0.897948\pi\)
\(678\) 0 0
\(679\) 21.6507 0.830876
\(680\) 0 0
\(681\) 11.4851 0.440109
\(682\) 0 0
\(683\) 14.1002 0.539528 0.269764 0.962927i \(-0.413054\pi\)
0.269764 + 0.962927i \(0.413054\pi\)
\(684\) 0 0
\(685\) −10.1550 −0.388004
\(686\) 0 0
\(687\) 14.0564 0.536286
\(688\) 0 0
\(689\) −17.5174 −0.667360
\(690\) 0 0
\(691\) 5.78097 0.219919 0.109959 0.993936i \(-0.464928\pi\)
0.109959 + 0.993936i \(0.464928\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.20231 0.235267
\(696\) 0 0
\(697\) 48.0265 1.81913
\(698\) 0 0
\(699\) 44.0488 1.66608
\(700\) 0 0
\(701\) −41.0485 −1.55038 −0.775191 0.631727i \(-0.782346\pi\)
−0.775191 + 0.631727i \(0.782346\pi\)
\(702\) 0 0
\(703\) −10.8063 −0.407567
\(704\) 0 0
\(705\) 41.4219 1.56004
\(706\) 0 0
\(707\) 4.25077 0.159867
\(708\) 0 0
\(709\) 3.34601 0.125662 0.0628310 0.998024i \(-0.479987\pi\)
0.0628310 + 0.998024i \(0.479987\pi\)
\(710\) 0 0
\(711\) 3.66985 0.137630
\(712\) 0 0
\(713\) −47.7595 −1.78861
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.518560 0.0193660
\(718\) 0 0
\(719\) 11.0179 0.410898 0.205449 0.978668i \(-0.434135\pi\)
0.205449 + 0.978668i \(0.434135\pi\)
\(720\) 0 0
\(721\) 25.7809 0.960129
\(722\) 0 0
\(723\) 19.2546 0.716087
\(724\) 0 0
\(725\) 14.8150 0.550215
\(726\) 0 0
\(727\) −42.0402 −1.55918 −0.779592 0.626287i \(-0.784574\pi\)
−0.779592 + 0.626287i \(0.784574\pi\)
\(728\) 0 0
\(729\) −16.3577 −0.605841
\(730\) 0 0
\(731\) 73.2604 2.70963
\(732\) 0 0
\(733\) −0.188990 −0.00698051 −0.00349026 0.999994i \(-0.501111\pi\)
−0.00349026 + 0.999994i \(0.501111\pi\)
\(734\) 0 0
\(735\) −10.5803 −0.390259
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −27.1249 −0.997804 −0.498902 0.866658i \(-0.666263\pi\)
−0.498902 + 0.866658i \(0.666263\pi\)
\(740\) 0 0
\(741\) 3.62131 0.133032
\(742\) 0 0
\(743\) 21.6111 0.792833 0.396416 0.918071i \(-0.370254\pi\)
0.396416 + 0.918071i \(0.370254\pi\)
\(744\) 0 0
\(745\) 48.2902 1.76922
\(746\) 0 0
\(747\) −10.1210 −0.370309
\(748\) 0 0
\(749\) 46.7921 1.70975
\(750\) 0 0
\(751\) 50.5538 1.84473 0.922367 0.386314i \(-0.126252\pi\)
0.922367 + 0.386314i \(0.126252\pi\)
\(752\) 0 0
\(753\) 19.1958 0.699534
\(754\) 0 0
\(755\) −20.1910 −0.734824
\(756\) 0 0
\(757\) −32.0972 −1.16659 −0.583297 0.812259i \(-0.698238\pi\)
−0.583297 + 0.812259i \(0.698238\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.59422 −0.0940402 −0.0470201 0.998894i \(-0.514972\pi\)
−0.0470201 + 0.998894i \(0.514972\pi\)
\(762\) 0 0
\(763\) −24.2262 −0.877048
\(764\) 0 0
\(765\) 50.0029 1.80786
\(766\) 0 0
\(767\) −23.4445 −0.846533
\(768\) 0 0
\(769\) 23.8468 0.859937 0.429968 0.902844i \(-0.358525\pi\)
0.429968 + 0.902844i \(0.358525\pi\)
\(770\) 0 0
\(771\) −5.88846 −0.212068
\(772\) 0 0
\(773\) −22.3893 −0.805285 −0.402643 0.915357i \(-0.631908\pi\)
−0.402643 + 0.915357i \(0.631908\pi\)
\(774\) 0 0
\(775\) −40.5269 −1.45577
\(776\) 0 0
\(777\) 59.5658 2.13691
\(778\) 0 0
\(779\) 7.48426 0.268152
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 3.71847 0.132887
\(784\) 0 0
\(785\) 18.7704 0.669944
\(786\) 0 0
\(787\) −27.7732 −0.990007 −0.495003 0.868891i \(-0.664833\pi\)
−0.495003 + 0.868891i \(0.664833\pi\)
\(788\) 0 0
\(789\) −8.89156 −0.316548
\(790\) 0 0
\(791\) 5.38190 0.191358
\(792\) 0 0
\(793\) −9.80124 −0.348052
\(794\) 0 0
\(795\) −83.8499 −2.97385
\(796\) 0 0
\(797\) 10.2456 0.362918 0.181459 0.983398i \(-0.441918\pi\)
0.181459 + 0.983398i \(0.441918\pi\)
\(798\) 0 0
\(799\) −35.7980 −1.26644
\(800\) 0 0
\(801\) 7.47745 0.264203
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 45.2782 1.59585
\(806\) 0 0
\(807\) 46.8094 1.64777
\(808\) 0 0
\(809\) −49.4163 −1.73739 −0.868693 0.495351i \(-0.835039\pi\)
−0.868693 + 0.495351i \(0.835039\pi\)
\(810\) 0 0
\(811\) −18.7685 −0.659053 −0.329526 0.944146i \(-0.606889\pi\)
−0.329526 + 0.944146i \(0.606889\pi\)
\(812\) 0 0
\(813\) 42.9036 1.50470
\(814\) 0 0
\(815\) 43.8535 1.53612
\(816\) 0 0
\(817\) 11.4166 0.399417
\(818\) 0 0
\(819\) −8.97328 −0.313552
\(820\) 0 0
\(821\) 36.0259 1.25731 0.628657 0.777683i \(-0.283605\pi\)
0.628657 + 0.777683i \(0.283605\pi\)
\(822\) 0 0
\(823\) −31.7653 −1.10727 −0.553634 0.832760i \(-0.686759\pi\)
−0.553634 + 0.832760i \(0.686759\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.65678 0.301026 0.150513 0.988608i \(-0.451908\pi\)
0.150513 + 0.988608i \(0.451908\pi\)
\(828\) 0 0
\(829\) −36.2894 −1.26038 −0.630192 0.776440i \(-0.717024\pi\)
−0.630192 + 0.776440i \(0.717024\pi\)
\(830\) 0 0
\(831\) 31.9443 1.10813
\(832\) 0 0
\(833\) 9.14378 0.316813
\(834\) 0 0
\(835\) 36.5821 1.26598
\(836\) 0 0
\(837\) −10.1720 −0.351596
\(838\) 0 0
\(839\) 12.4457 0.429673 0.214836 0.976650i \(-0.431078\pi\)
0.214836 + 0.976650i \(0.431078\pi\)
\(840\) 0 0
\(841\) −20.6146 −0.710850
\(842\) 0 0
\(843\) −4.15139 −0.142982
\(844\) 0 0
\(845\) 33.6943 1.15912
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −51.8621 −1.77990
\(850\) 0 0
\(851\) 65.1528 2.23341
\(852\) 0 0
\(853\) −21.4135 −0.733185 −0.366593 0.930382i \(-0.619476\pi\)
−0.366593 + 0.930382i \(0.619476\pi\)
\(854\) 0 0
\(855\) 7.79225 0.266489
\(856\) 0 0
\(857\) −54.7988 −1.87189 −0.935945 0.352146i \(-0.885452\pi\)
−0.935945 + 0.352146i \(0.885452\pi\)
\(858\) 0 0
\(859\) −2.23130 −0.0761310 −0.0380655 0.999275i \(-0.512120\pi\)
−0.0380655 + 0.999275i \(0.512120\pi\)
\(860\) 0 0
\(861\) −41.2544 −1.40595
\(862\) 0 0
\(863\) −11.6857 −0.397786 −0.198893 0.980021i \(-0.563735\pi\)
−0.198893 + 0.980021i \(0.563735\pi\)
\(864\) 0 0
\(865\) −49.3805 −1.67899
\(866\) 0 0
\(867\) −56.4436 −1.91692
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −6.75518 −0.228891
\(872\) 0 0
\(873\) −22.4648 −0.760318
\(874\) 0 0
\(875\) 0.872031 0.0294800
\(876\) 0 0
\(877\) −5.24146 −0.176992 −0.0884958 0.996077i \(-0.528206\pi\)
−0.0884958 + 0.996077i \(0.528206\pi\)
\(878\) 0 0
\(879\) 49.0539 1.65455
\(880\) 0 0
\(881\) 4.47861 0.150888 0.0754441 0.997150i \(-0.475963\pi\)
0.0754441 + 0.997150i \(0.475963\pi\)
\(882\) 0 0
\(883\) −47.6539 −1.60368 −0.801841 0.597538i \(-0.796146\pi\)
−0.801841 + 0.597538i \(0.796146\pi\)
\(884\) 0 0
\(885\) −112.221 −3.77227
\(886\) 0 0
\(887\) −41.0165 −1.37720 −0.688599 0.725142i \(-0.741774\pi\)
−0.688599 + 0.725142i \(0.741774\pi\)
\(888\) 0 0
\(889\) −23.8127 −0.798651
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.57862 −0.186682
\(894\) 0 0
\(895\) 6.22008 0.207914
\(896\) 0 0
\(897\) −21.8335 −0.728999
\(898\) 0 0
\(899\) −22.9384 −0.765040
\(900\) 0 0
\(901\) 72.4656 2.41418
\(902\) 0 0
\(903\) −62.9301 −2.09418
\(904\) 0 0
\(905\) 41.9873 1.39571
\(906\) 0 0
\(907\) 26.6430 0.884666 0.442333 0.896851i \(-0.354151\pi\)
0.442333 + 0.896851i \(0.354151\pi\)
\(908\) 0 0
\(909\) −4.41061 −0.146291
\(910\) 0 0
\(911\) 11.8236 0.391733 0.195866 0.980631i \(-0.437248\pi\)
0.195866 + 0.980631i \(0.437248\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −46.9152 −1.55097
\(916\) 0 0
\(917\) −34.9826 −1.15523
\(918\) 0 0
\(919\) −11.9843 −0.395326 −0.197663 0.980270i \(-0.563335\pi\)
−0.197663 + 0.980270i \(0.563335\pi\)
\(920\) 0 0
\(921\) 49.6806 1.63703
\(922\) 0 0
\(923\) 7.42370 0.244354
\(924\) 0 0
\(925\) 55.2862 1.81780
\(926\) 0 0
\(927\) −26.7503 −0.878594
\(928\) 0 0
\(929\) −43.8181 −1.43763 −0.718813 0.695203i \(-0.755314\pi\)
−0.718813 + 0.695203i \(0.755314\pi\)
\(930\) 0 0
\(931\) 1.42493 0.0467002
\(932\) 0 0
\(933\) 7.10177 0.232502
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 42.9413 1.40283 0.701415 0.712753i \(-0.252552\pi\)
0.701415 + 0.712753i \(0.252552\pi\)
\(938\) 0 0
\(939\) −1.48257 −0.0483817
\(940\) 0 0
\(941\) 29.1174 0.949200 0.474600 0.880202i \(-0.342593\pi\)
0.474600 + 0.880202i \(0.342593\pi\)
\(942\) 0 0
\(943\) −45.1238 −1.46943
\(944\) 0 0
\(945\) 9.64352 0.313704
\(946\) 0 0
\(947\) −52.0067 −1.68999 −0.844996 0.534773i \(-0.820397\pi\)
−0.844996 + 0.534773i \(0.820397\pi\)
\(948\) 0 0
\(949\) −22.2011 −0.720679
\(950\) 0 0
\(951\) 27.3862 0.888060
\(952\) 0 0
\(953\) 18.9109 0.612583 0.306292 0.951938i \(-0.400912\pi\)
0.306292 + 0.951938i \(0.400912\pi\)
\(954\) 0 0
\(955\) −64.0276 −2.07188
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.53875 −0.243439
\(960\) 0 0
\(961\) 31.7489 1.02416
\(962\) 0 0
\(963\) −48.5516 −1.56455
\(964\) 0 0
\(965\) 50.7307 1.63308
\(966\) 0 0
\(967\) 34.5614 1.11142 0.555710 0.831376i \(-0.312446\pi\)
0.555710 + 0.831376i \(0.312446\pi\)
\(968\) 0 0
\(969\) −14.9806 −0.481245
\(970\) 0 0
\(971\) 34.3839 1.10343 0.551716 0.834032i \(-0.313973\pi\)
0.551716 + 0.834032i \(0.313973\pi\)
\(972\) 0 0
\(973\) 4.60439 0.147610
\(974\) 0 0
\(975\) −18.5271 −0.593341
\(976\) 0 0
\(977\) 32.9207 1.05323 0.526614 0.850105i \(-0.323461\pi\)
0.526614 + 0.850105i \(0.323461\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 25.1372 0.802568
\(982\) 0 0
\(983\) −18.6801 −0.595804 −0.297902 0.954596i \(-0.596287\pi\)
−0.297902 + 0.954596i \(0.596287\pi\)
\(984\) 0 0
\(985\) 8.72276 0.277930
\(986\) 0 0
\(987\) 30.7502 0.978790
\(988\) 0 0
\(989\) −68.8325 −2.18875
\(990\) 0 0
\(991\) 40.6048 1.28985 0.644927 0.764244i \(-0.276888\pi\)
0.644927 + 0.764244i \(0.276888\pi\)
\(992\) 0 0
\(993\) 1.09366 0.0347061
\(994\) 0 0
\(995\) 46.5169 1.47469
\(996\) 0 0
\(997\) −22.4881 −0.712204 −0.356102 0.934447i \(-0.615894\pi\)
−0.356102 + 0.934447i \(0.615894\pi\)
\(998\) 0 0
\(999\) 13.8765 0.439033
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.x.1.4 20
11.3 even 5 836.2.j.c.229.9 40
11.4 even 5 836.2.j.c.533.9 yes 40
11.10 odd 2 9196.2.a.w.1.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.c.229.9 40 11.3 even 5
836.2.j.c.533.9 yes 40 11.4 even 5
9196.2.a.w.1.4 20 11.10 odd 2
9196.2.a.x.1.4 20 1.1 even 1 trivial