Properties

Label 9196.2.a.x.1.8
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9196,2,Mod(1,9196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9196.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{19} - 26 x^{18} + 208 x^{17} + 185 x^{16} - 2910 x^{15} + 687 x^{14} + 21067 x^{13} + \cdots - 3520 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.593598\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.593598 q^{3} -3.09847 q^{5} +1.91364 q^{7} -2.64764 q^{9} -3.47441 q^{13} +1.83925 q^{15} -4.59072 q^{17} -1.00000 q^{19} -1.13593 q^{21} -6.59650 q^{23} +4.60052 q^{25} +3.35243 q^{27} -2.21269 q^{29} -1.65053 q^{31} -5.92936 q^{35} -8.86862 q^{37} +2.06241 q^{39} +12.2832 q^{41} +0.943326 q^{43} +8.20364 q^{45} -5.03322 q^{47} -3.33798 q^{49} +2.72504 q^{51} -9.93586 q^{53} +0.593598 q^{57} +13.0150 q^{59} -14.4026 q^{61} -5.06664 q^{63} +10.7654 q^{65} -11.6489 q^{67} +3.91567 q^{69} -7.03788 q^{71} +5.63686 q^{73} -2.73086 q^{75} -1.35110 q^{79} +5.95293 q^{81} -16.6477 q^{83} +14.2242 q^{85} +1.31345 q^{87} +10.4695 q^{89} -6.64878 q^{91} +0.979750 q^{93} +3.09847 q^{95} -7.21671 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{3} + 2 q^{5} + 4 q^{7} + 28 q^{9} - 5 q^{13} + 14 q^{15} - 6 q^{17} - 20 q^{19} - q^{21} + 18 q^{23} + 44 q^{25} + 24 q^{27} + q^{29} + 23 q^{31} - 36 q^{35} + q^{37} + 21 q^{39} + 6 q^{41}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.593598 −0.342714 −0.171357 0.985209i \(-0.554815\pi\)
−0.171357 + 0.985209i \(0.554815\pi\)
\(4\) 0 0
\(5\) −3.09847 −1.38568 −0.692839 0.721092i \(-0.743640\pi\)
−0.692839 + 0.721092i \(0.743640\pi\)
\(6\) 0 0
\(7\) 1.91364 0.723288 0.361644 0.932316i \(-0.382216\pi\)
0.361644 + 0.932316i \(0.382216\pi\)
\(8\) 0 0
\(9\) −2.64764 −0.882547
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.47441 −0.963629 −0.481815 0.876273i \(-0.660022\pi\)
−0.481815 + 0.876273i \(0.660022\pi\)
\(14\) 0 0
\(15\) 1.83925 0.474891
\(16\) 0 0
\(17\) −4.59072 −1.11341 −0.556706 0.830709i \(-0.687935\pi\)
−0.556706 + 0.830709i \(0.687935\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.13593 −0.247881
\(22\) 0 0
\(23\) −6.59650 −1.37547 −0.687733 0.725964i \(-0.741394\pi\)
−0.687733 + 0.725964i \(0.741394\pi\)
\(24\) 0 0
\(25\) 4.60052 0.920104
\(26\) 0 0
\(27\) 3.35243 0.645175
\(28\) 0 0
\(29\) −2.21269 −0.410886 −0.205443 0.978669i \(-0.565863\pi\)
−0.205443 + 0.978669i \(0.565863\pi\)
\(30\) 0 0
\(31\) −1.65053 −0.296444 −0.148222 0.988954i \(-0.547355\pi\)
−0.148222 + 0.988954i \(0.547355\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.92936 −1.00225
\(36\) 0 0
\(37\) −8.86862 −1.45799 −0.728996 0.684518i \(-0.760013\pi\)
−0.728996 + 0.684518i \(0.760013\pi\)
\(38\) 0 0
\(39\) 2.06241 0.330249
\(40\) 0 0
\(41\) 12.2832 1.91831 0.959156 0.282878i \(-0.0912890\pi\)
0.959156 + 0.282878i \(0.0912890\pi\)
\(42\) 0 0
\(43\) 0.943326 0.143856 0.0719279 0.997410i \(-0.477085\pi\)
0.0719279 + 0.997410i \(0.477085\pi\)
\(44\) 0 0
\(45\) 8.20364 1.22293
\(46\) 0 0
\(47\) −5.03322 −0.734170 −0.367085 0.930187i \(-0.619644\pi\)
−0.367085 + 0.930187i \(0.619644\pi\)
\(48\) 0 0
\(49\) −3.33798 −0.476854
\(50\) 0 0
\(51\) 2.72504 0.381582
\(52\) 0 0
\(53\) −9.93586 −1.36480 −0.682398 0.730981i \(-0.739063\pi\)
−0.682398 + 0.730981i \(0.739063\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.593598 0.0786240
\(58\) 0 0
\(59\) 13.0150 1.69441 0.847206 0.531265i \(-0.178283\pi\)
0.847206 + 0.531265i \(0.178283\pi\)
\(60\) 0 0
\(61\) −14.4026 −1.84406 −0.922029 0.387120i \(-0.873470\pi\)
−0.922029 + 0.387120i \(0.873470\pi\)
\(62\) 0 0
\(63\) −5.06664 −0.638336
\(64\) 0 0
\(65\) 10.7654 1.33528
\(66\) 0 0
\(67\) −11.6489 −1.42313 −0.711567 0.702618i \(-0.752014\pi\)
−0.711567 + 0.702618i \(0.752014\pi\)
\(68\) 0 0
\(69\) 3.91567 0.471391
\(70\) 0 0
\(71\) −7.03788 −0.835242 −0.417621 0.908621i \(-0.637136\pi\)
−0.417621 + 0.908621i \(0.637136\pi\)
\(72\) 0 0
\(73\) 5.63686 0.659745 0.329872 0.944026i \(-0.392994\pi\)
0.329872 + 0.944026i \(0.392994\pi\)
\(74\) 0 0
\(75\) −2.73086 −0.315333
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.35110 −0.152011 −0.0760054 0.997107i \(-0.524217\pi\)
−0.0760054 + 0.997107i \(0.524217\pi\)
\(80\) 0 0
\(81\) 5.95293 0.661436
\(82\) 0 0
\(83\) −16.6477 −1.82732 −0.913662 0.406476i \(-0.866758\pi\)
−0.913662 + 0.406476i \(0.866758\pi\)
\(84\) 0 0
\(85\) 14.2242 1.54283
\(86\) 0 0
\(87\) 1.31345 0.140816
\(88\) 0 0
\(89\) 10.4695 1.10977 0.554883 0.831929i \(-0.312763\pi\)
0.554883 + 0.831929i \(0.312763\pi\)
\(90\) 0 0
\(91\) −6.64878 −0.696982
\(92\) 0 0
\(93\) 0.979750 0.101595
\(94\) 0 0
\(95\) 3.09847 0.317896
\(96\) 0 0
\(97\) −7.21671 −0.732746 −0.366373 0.930468i \(-0.619401\pi\)
−0.366373 + 0.930468i \(0.619401\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.5740 1.45016 0.725082 0.688663i \(-0.241802\pi\)
0.725082 + 0.688663i \(0.241802\pi\)
\(102\) 0 0
\(103\) −18.1505 −1.78842 −0.894210 0.447647i \(-0.852262\pi\)
−0.894210 + 0.447647i \(0.852262\pi\)
\(104\) 0 0
\(105\) 3.51966 0.343484
\(106\) 0 0
\(107\) 12.2256 1.18189 0.590945 0.806712i \(-0.298755\pi\)
0.590945 + 0.806712i \(0.298755\pi\)
\(108\) 0 0
\(109\) 12.2814 1.17634 0.588171 0.808737i \(-0.299848\pi\)
0.588171 + 0.808737i \(0.299848\pi\)
\(110\) 0 0
\(111\) 5.26439 0.499674
\(112\) 0 0
\(113\) −11.5448 −1.08604 −0.543020 0.839720i \(-0.682719\pi\)
−0.543020 + 0.839720i \(0.682719\pi\)
\(114\) 0 0
\(115\) 20.4391 1.90595
\(116\) 0 0
\(117\) 9.19900 0.850448
\(118\) 0 0
\(119\) −8.78499 −0.805318
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −7.29128 −0.657433
\(124\) 0 0
\(125\) 1.23777 0.110710
\(126\) 0 0
\(127\) −6.83917 −0.606878 −0.303439 0.952851i \(-0.598135\pi\)
−0.303439 + 0.952851i \(0.598135\pi\)
\(128\) 0 0
\(129\) −0.559957 −0.0493014
\(130\) 0 0
\(131\) −16.7548 −1.46388 −0.731938 0.681372i \(-0.761384\pi\)
−0.731938 + 0.681372i \(0.761384\pi\)
\(132\) 0 0
\(133\) −1.91364 −0.165934
\(134\) 0 0
\(135\) −10.3874 −0.894006
\(136\) 0 0
\(137\) 18.4928 1.57995 0.789975 0.613139i \(-0.210093\pi\)
0.789975 + 0.613139i \(0.210093\pi\)
\(138\) 0 0
\(139\) 16.1878 1.37303 0.686515 0.727116i \(-0.259140\pi\)
0.686515 + 0.727116i \(0.259140\pi\)
\(140\) 0 0
\(141\) 2.98771 0.251610
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.85595 0.569355
\(146\) 0 0
\(147\) 1.98142 0.163425
\(148\) 0 0
\(149\) 9.60160 0.786593 0.393297 0.919412i \(-0.371335\pi\)
0.393297 + 0.919412i \(0.371335\pi\)
\(150\) 0 0
\(151\) 4.24817 0.345711 0.172856 0.984947i \(-0.444701\pi\)
0.172856 + 0.984947i \(0.444701\pi\)
\(152\) 0 0
\(153\) 12.1546 0.982639
\(154\) 0 0
\(155\) 5.11411 0.410775
\(156\) 0 0
\(157\) −5.42626 −0.433063 −0.216532 0.976276i \(-0.569474\pi\)
−0.216532 + 0.976276i \(0.569474\pi\)
\(158\) 0 0
\(159\) 5.89791 0.467735
\(160\) 0 0
\(161\) −12.6233 −0.994858
\(162\) 0 0
\(163\) −8.61379 −0.674684 −0.337342 0.941382i \(-0.609528\pi\)
−0.337342 + 0.941382i \(0.609528\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.68308 −0.439770 −0.219885 0.975526i \(-0.570568\pi\)
−0.219885 + 0.975526i \(0.570568\pi\)
\(168\) 0 0
\(169\) −0.928446 −0.0714189
\(170\) 0 0
\(171\) 2.64764 0.202470
\(172\) 0 0
\(173\) −24.5113 −1.86356 −0.931779 0.363025i \(-0.881744\pi\)
−0.931779 + 0.363025i \(0.881744\pi\)
\(174\) 0 0
\(175\) 8.80375 0.665501
\(176\) 0 0
\(177\) −7.72569 −0.580699
\(178\) 0 0
\(179\) 7.80787 0.583588 0.291794 0.956481i \(-0.405748\pi\)
0.291794 + 0.956481i \(0.405748\pi\)
\(180\) 0 0
\(181\) −3.65014 −0.271313 −0.135656 0.990756i \(-0.543314\pi\)
−0.135656 + 0.990756i \(0.543314\pi\)
\(182\) 0 0
\(183\) 8.54933 0.631985
\(184\) 0 0
\(185\) 27.4791 2.02031
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.41535 0.466648
\(190\) 0 0
\(191\) 12.1463 0.878876 0.439438 0.898273i \(-0.355178\pi\)
0.439438 + 0.898273i \(0.355178\pi\)
\(192\) 0 0
\(193\) −4.14553 −0.298402 −0.149201 0.988807i \(-0.547670\pi\)
−0.149201 + 0.988807i \(0.547670\pi\)
\(194\) 0 0
\(195\) −6.39031 −0.457619
\(196\) 0 0
\(197\) −12.3484 −0.879786 −0.439893 0.898050i \(-0.644984\pi\)
−0.439893 + 0.898050i \(0.644984\pi\)
\(198\) 0 0
\(199\) 8.39863 0.595363 0.297682 0.954665i \(-0.403787\pi\)
0.297682 + 0.954665i \(0.403787\pi\)
\(200\) 0 0
\(201\) 6.91474 0.487728
\(202\) 0 0
\(203\) −4.23429 −0.297189
\(204\) 0 0
\(205\) −38.0591 −2.65816
\(206\) 0 0
\(207\) 17.4652 1.21391
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −14.6112 −1.00587 −0.502937 0.864323i \(-0.667747\pi\)
−0.502937 + 0.864323i \(0.667747\pi\)
\(212\) 0 0
\(213\) 4.17767 0.286249
\(214\) 0 0
\(215\) −2.92287 −0.199338
\(216\) 0 0
\(217\) −3.15852 −0.214414
\(218\) 0 0
\(219\) −3.34603 −0.226104
\(220\) 0 0
\(221\) 15.9501 1.07292
\(222\) 0 0
\(223\) −1.29147 −0.0864831 −0.0432416 0.999065i \(-0.513769\pi\)
−0.0432416 + 0.999065i \(0.513769\pi\)
\(224\) 0 0
\(225\) −12.1805 −0.812035
\(226\) 0 0
\(227\) −2.42053 −0.160656 −0.0803280 0.996768i \(-0.525597\pi\)
−0.0803280 + 0.996768i \(0.525597\pi\)
\(228\) 0 0
\(229\) −10.1848 −0.673028 −0.336514 0.941678i \(-0.609248\pi\)
−0.336514 + 0.941678i \(0.609248\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.3079 1.46144 0.730719 0.682678i \(-0.239185\pi\)
0.730719 + 0.682678i \(0.239185\pi\)
\(234\) 0 0
\(235\) 15.5953 1.01732
\(236\) 0 0
\(237\) 0.802011 0.0520962
\(238\) 0 0
\(239\) −2.32949 −0.150682 −0.0753412 0.997158i \(-0.524005\pi\)
−0.0753412 + 0.997158i \(0.524005\pi\)
\(240\) 0 0
\(241\) −5.96521 −0.384253 −0.192126 0.981370i \(-0.561538\pi\)
−0.192126 + 0.981370i \(0.561538\pi\)
\(242\) 0 0
\(243\) −13.5909 −0.871859
\(244\) 0 0
\(245\) 10.3426 0.660766
\(246\) 0 0
\(247\) 3.47441 0.221072
\(248\) 0 0
\(249\) 9.88205 0.626249
\(250\) 0 0
\(251\) 19.1521 1.20887 0.604435 0.796655i \(-0.293399\pi\)
0.604435 + 0.796655i \(0.293399\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.44346 −0.528750
\(256\) 0 0
\(257\) 4.50418 0.280963 0.140482 0.990083i \(-0.455135\pi\)
0.140482 + 0.990083i \(0.455135\pi\)
\(258\) 0 0
\(259\) −16.9713 −1.05455
\(260\) 0 0
\(261\) 5.85840 0.362626
\(262\) 0 0
\(263\) 3.77447 0.232744 0.116372 0.993206i \(-0.462874\pi\)
0.116372 + 0.993206i \(0.462874\pi\)
\(264\) 0 0
\(265\) 30.7860 1.89117
\(266\) 0 0
\(267\) −6.21468 −0.380332
\(268\) 0 0
\(269\) 8.56383 0.522146 0.261073 0.965319i \(-0.415924\pi\)
0.261073 + 0.965319i \(0.415924\pi\)
\(270\) 0 0
\(271\) −6.72572 −0.408559 −0.204279 0.978913i \(-0.565485\pi\)
−0.204279 + 0.978913i \(0.565485\pi\)
\(272\) 0 0
\(273\) 3.94671 0.238866
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −17.0925 −1.02699 −0.513495 0.858093i \(-0.671649\pi\)
−0.513495 + 0.858093i \(0.671649\pi\)
\(278\) 0 0
\(279\) 4.37001 0.261625
\(280\) 0 0
\(281\) 10.7687 0.642407 0.321204 0.947010i \(-0.395913\pi\)
0.321204 + 0.947010i \(0.395913\pi\)
\(282\) 0 0
\(283\) 6.60204 0.392450 0.196225 0.980559i \(-0.437132\pi\)
0.196225 + 0.980559i \(0.437132\pi\)
\(284\) 0 0
\(285\) −1.83925 −0.108948
\(286\) 0 0
\(287\) 23.5056 1.38749
\(288\) 0 0
\(289\) 4.07468 0.239687
\(290\) 0 0
\(291\) 4.28383 0.251122
\(292\) 0 0
\(293\) 7.36721 0.430397 0.215199 0.976570i \(-0.430960\pi\)
0.215199 + 0.976570i \(0.430960\pi\)
\(294\) 0 0
\(295\) −40.3267 −2.34791
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.9190 1.32544
\(300\) 0 0
\(301\) 1.80519 0.104049
\(302\) 0 0
\(303\) −8.65108 −0.496992
\(304\) 0 0
\(305\) 44.6259 2.55527
\(306\) 0 0
\(307\) −29.7569 −1.69831 −0.849157 0.528141i \(-0.822889\pi\)
−0.849157 + 0.528141i \(0.822889\pi\)
\(308\) 0 0
\(309\) 10.7741 0.612917
\(310\) 0 0
\(311\) −21.9138 −1.24262 −0.621309 0.783566i \(-0.713399\pi\)
−0.621309 + 0.783566i \(0.713399\pi\)
\(312\) 0 0
\(313\) 28.5668 1.61469 0.807347 0.590078i \(-0.200903\pi\)
0.807347 + 0.590078i \(0.200903\pi\)
\(314\) 0 0
\(315\) 15.6988 0.884528
\(316\) 0 0
\(317\) −20.9633 −1.17742 −0.588709 0.808345i \(-0.700364\pi\)
−0.588709 + 0.808345i \(0.700364\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −7.25707 −0.405050
\(322\) 0 0
\(323\) 4.59072 0.255434
\(324\) 0 0
\(325\) −15.9841 −0.886639
\(326\) 0 0
\(327\) −7.29020 −0.403149
\(328\) 0 0
\(329\) −9.63177 −0.531017
\(330\) 0 0
\(331\) 24.6717 1.35608 0.678040 0.735025i \(-0.262829\pi\)
0.678040 + 0.735025i \(0.262829\pi\)
\(332\) 0 0
\(333\) 23.4809 1.28675
\(334\) 0 0
\(335\) 36.0936 1.97201
\(336\) 0 0
\(337\) 7.25510 0.395210 0.197605 0.980282i \(-0.436684\pi\)
0.197605 + 0.980282i \(0.436684\pi\)
\(338\) 0 0
\(339\) 6.85295 0.372201
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −19.7832 −1.06819
\(344\) 0 0
\(345\) −12.1326 −0.653197
\(346\) 0 0
\(347\) −6.38462 −0.342745 −0.171372 0.985206i \(-0.554820\pi\)
−0.171372 + 0.985206i \(0.554820\pi\)
\(348\) 0 0
\(349\) −4.36965 −0.233902 −0.116951 0.993138i \(-0.537312\pi\)
−0.116951 + 0.993138i \(0.537312\pi\)
\(350\) 0 0
\(351\) −11.6477 −0.621710
\(352\) 0 0
\(353\) 29.1492 1.55145 0.775727 0.631069i \(-0.217383\pi\)
0.775727 + 0.631069i \(0.217383\pi\)
\(354\) 0 0
\(355\) 21.8067 1.15738
\(356\) 0 0
\(357\) 5.21475 0.275994
\(358\) 0 0
\(359\) 8.96245 0.473020 0.236510 0.971629i \(-0.423996\pi\)
0.236510 + 0.971629i \(0.423996\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.4657 −0.914194
\(366\) 0 0
\(367\) −12.7720 −0.666693 −0.333346 0.942804i \(-0.608178\pi\)
−0.333346 + 0.942804i \(0.608178\pi\)
\(368\) 0 0
\(369\) −32.5215 −1.69300
\(370\) 0 0
\(371\) −19.0137 −0.987141
\(372\) 0 0
\(373\) 2.58911 0.134059 0.0670296 0.997751i \(-0.478648\pi\)
0.0670296 + 0.997751i \(0.478648\pi\)
\(374\) 0 0
\(375\) −0.734740 −0.0379418
\(376\) 0 0
\(377\) 7.68779 0.395941
\(378\) 0 0
\(379\) −28.2889 −1.45310 −0.726552 0.687111i \(-0.758879\pi\)
−0.726552 + 0.687111i \(0.758879\pi\)
\(380\) 0 0
\(381\) 4.05972 0.207986
\(382\) 0 0
\(383\) 35.5264 1.81532 0.907658 0.419710i \(-0.137868\pi\)
0.907658 + 0.419710i \(0.137868\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.49759 −0.126960
\(388\) 0 0
\(389\) 22.0319 1.11706 0.558530 0.829485i \(-0.311366\pi\)
0.558530 + 0.829485i \(0.311366\pi\)
\(390\) 0 0
\(391\) 30.2827 1.53146
\(392\) 0 0
\(393\) 9.94563 0.501691
\(394\) 0 0
\(395\) 4.18635 0.210638
\(396\) 0 0
\(397\) −14.2831 −0.716847 −0.358424 0.933559i \(-0.616686\pi\)
−0.358424 + 0.933559i \(0.616686\pi\)
\(398\) 0 0
\(399\) 1.13593 0.0568678
\(400\) 0 0
\(401\) 6.17835 0.308532 0.154266 0.988029i \(-0.450699\pi\)
0.154266 + 0.988029i \(0.450699\pi\)
\(402\) 0 0
\(403\) 5.73462 0.285662
\(404\) 0 0
\(405\) −18.4450 −0.916538
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −9.16144 −0.453004 −0.226502 0.974011i \(-0.572729\pi\)
−0.226502 + 0.974011i \(0.572729\pi\)
\(410\) 0 0
\(411\) −10.9773 −0.541471
\(412\) 0 0
\(413\) 24.9061 1.22555
\(414\) 0 0
\(415\) 51.5824 2.53208
\(416\) 0 0
\(417\) −9.60904 −0.470557
\(418\) 0 0
\(419\) −10.7931 −0.527277 −0.263639 0.964622i \(-0.584923\pi\)
−0.263639 + 0.964622i \(0.584923\pi\)
\(420\) 0 0
\(421\) 34.1194 1.66288 0.831440 0.555615i \(-0.187517\pi\)
0.831440 + 0.555615i \(0.187517\pi\)
\(422\) 0 0
\(423\) 13.3262 0.647940
\(424\) 0 0
\(425\) −21.1197 −1.02446
\(426\) 0 0
\(427\) −27.5613 −1.33379
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.3169 −1.07497 −0.537485 0.843274i \(-0.680625\pi\)
−0.537485 + 0.843274i \(0.680625\pi\)
\(432\) 0 0
\(433\) 9.76468 0.469261 0.234630 0.972085i \(-0.424612\pi\)
0.234630 + 0.972085i \(0.424612\pi\)
\(434\) 0 0
\(435\) −4.06968 −0.195126
\(436\) 0 0
\(437\) 6.59650 0.315553
\(438\) 0 0
\(439\) 23.0676 1.10096 0.550479 0.834849i \(-0.314445\pi\)
0.550479 + 0.834849i \(0.314445\pi\)
\(440\) 0 0
\(441\) 8.83776 0.420846
\(442\) 0 0
\(443\) −9.60340 −0.456271 −0.228136 0.973629i \(-0.573263\pi\)
−0.228136 + 0.973629i \(0.573263\pi\)
\(444\) 0 0
\(445\) −32.4395 −1.53778
\(446\) 0 0
\(447\) −5.69949 −0.269577
\(448\) 0 0
\(449\) 13.2045 0.623161 0.311580 0.950220i \(-0.399142\pi\)
0.311580 + 0.950220i \(0.399142\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −2.52171 −0.118480
\(454\) 0 0
\(455\) 20.6011 0.965793
\(456\) 0 0
\(457\) −3.94606 −0.184589 −0.0922944 0.995732i \(-0.529420\pi\)
−0.0922944 + 0.995732i \(0.529420\pi\)
\(458\) 0 0
\(459\) −15.3901 −0.718346
\(460\) 0 0
\(461\) −15.1580 −0.705981 −0.352990 0.935627i \(-0.614835\pi\)
−0.352990 + 0.935627i \(0.614835\pi\)
\(462\) 0 0
\(463\) −5.39984 −0.250952 −0.125476 0.992097i \(-0.540046\pi\)
−0.125476 + 0.992097i \(0.540046\pi\)
\(464\) 0 0
\(465\) −3.03573 −0.140779
\(466\) 0 0
\(467\) 34.8648 1.61335 0.806675 0.590995i \(-0.201265\pi\)
0.806675 + 0.590995i \(0.201265\pi\)
\(468\) 0 0
\(469\) −22.2917 −1.02934
\(470\) 0 0
\(471\) 3.22102 0.148417
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.60052 −0.211086
\(476\) 0 0
\(477\) 26.3066 1.20450
\(478\) 0 0
\(479\) −10.0115 −0.457437 −0.228718 0.973493i \(-0.573453\pi\)
−0.228718 + 0.973493i \(0.573453\pi\)
\(480\) 0 0
\(481\) 30.8132 1.40496
\(482\) 0 0
\(483\) 7.49319 0.340952
\(484\) 0 0
\(485\) 22.3608 1.01535
\(486\) 0 0
\(487\) 19.3567 0.877135 0.438568 0.898698i \(-0.355486\pi\)
0.438568 + 0.898698i \(0.355486\pi\)
\(488\) 0 0
\(489\) 5.11313 0.231224
\(490\) 0 0
\(491\) 17.3728 0.784021 0.392011 0.919961i \(-0.371780\pi\)
0.392011 + 0.919961i \(0.371780\pi\)
\(492\) 0 0
\(493\) 10.1578 0.457485
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.4680 −0.604121
\(498\) 0 0
\(499\) −0.802258 −0.0359140 −0.0179570 0.999839i \(-0.505716\pi\)
−0.0179570 + 0.999839i \(0.505716\pi\)
\(500\) 0 0
\(501\) 3.37346 0.150715
\(502\) 0 0
\(503\) 32.9322 1.46838 0.734188 0.678946i \(-0.237563\pi\)
0.734188 + 0.678946i \(0.237563\pi\)
\(504\) 0 0
\(505\) −45.1570 −2.00946
\(506\) 0 0
\(507\) 0.551124 0.0244763
\(508\) 0 0
\(509\) 7.41274 0.328564 0.164282 0.986413i \(-0.447469\pi\)
0.164282 + 0.986413i \(0.447469\pi\)
\(510\) 0 0
\(511\) 10.7869 0.477186
\(512\) 0 0
\(513\) −3.35243 −0.148013
\(514\) 0 0
\(515\) 56.2387 2.47818
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.5499 0.638668
\(520\) 0 0
\(521\) −0.622146 −0.0272567 −0.0136284 0.999907i \(-0.504338\pi\)
−0.0136284 + 0.999907i \(0.504338\pi\)
\(522\) 0 0
\(523\) −6.71374 −0.293571 −0.146786 0.989168i \(-0.546893\pi\)
−0.146786 + 0.989168i \(0.546893\pi\)
\(524\) 0 0
\(525\) −5.22589 −0.228077
\(526\) 0 0
\(527\) 7.57711 0.330064
\(528\) 0 0
\(529\) 20.5138 0.891906
\(530\) 0 0
\(531\) −34.4591 −1.49540
\(532\) 0 0
\(533\) −42.6769 −1.84854
\(534\) 0 0
\(535\) −37.8805 −1.63772
\(536\) 0 0
\(537\) −4.63474 −0.200004
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 42.7772 1.83914 0.919568 0.392932i \(-0.128539\pi\)
0.919568 + 0.392932i \(0.128539\pi\)
\(542\) 0 0
\(543\) 2.16672 0.0929827
\(544\) 0 0
\(545\) −38.0534 −1.63003
\(546\) 0 0
\(547\) 30.8980 1.32110 0.660552 0.750780i \(-0.270322\pi\)
0.660552 + 0.750780i \(0.270322\pi\)
\(548\) 0 0
\(549\) 38.1328 1.62747
\(550\) 0 0
\(551\) 2.21269 0.0942636
\(552\) 0 0
\(553\) −2.58552 −0.109948
\(554\) 0 0
\(555\) −16.3116 −0.692388
\(556\) 0 0
\(557\) 10.4039 0.440828 0.220414 0.975406i \(-0.429259\pi\)
0.220414 + 0.975406i \(0.429259\pi\)
\(558\) 0 0
\(559\) −3.27750 −0.138624
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.2829 −0.896966 −0.448483 0.893791i \(-0.648036\pi\)
−0.448483 + 0.893791i \(0.648036\pi\)
\(564\) 0 0
\(565\) 35.7711 1.50490
\(566\) 0 0
\(567\) 11.3918 0.478409
\(568\) 0 0
\(569\) 1.61347 0.0676401 0.0338200 0.999428i \(-0.489233\pi\)
0.0338200 + 0.999428i \(0.489233\pi\)
\(570\) 0 0
\(571\) 6.17441 0.258391 0.129195 0.991619i \(-0.458761\pi\)
0.129195 + 0.991619i \(0.458761\pi\)
\(572\) 0 0
\(573\) −7.21003 −0.301203
\(574\) 0 0
\(575\) −30.3473 −1.26557
\(576\) 0 0
\(577\) 29.0783 1.21055 0.605273 0.796018i \(-0.293064\pi\)
0.605273 + 0.796018i \(0.293064\pi\)
\(578\) 0 0
\(579\) 2.46078 0.102266
\(580\) 0 0
\(581\) −31.8577 −1.32168
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −28.5028 −1.17845
\(586\) 0 0
\(587\) −27.0388 −1.11601 −0.558005 0.829838i \(-0.688433\pi\)
−0.558005 + 0.829838i \(0.688433\pi\)
\(588\) 0 0
\(589\) 1.65053 0.0680088
\(590\) 0 0
\(591\) 7.32998 0.301515
\(592\) 0 0
\(593\) −0.943627 −0.0387501 −0.0193751 0.999812i \(-0.506168\pi\)
−0.0193751 + 0.999812i \(0.506168\pi\)
\(594\) 0 0
\(595\) 27.2200 1.11591
\(596\) 0 0
\(597\) −4.98541 −0.204039
\(598\) 0 0
\(599\) 43.6389 1.78304 0.891519 0.452983i \(-0.149640\pi\)
0.891519 + 0.452983i \(0.149640\pi\)
\(600\) 0 0
\(601\) 19.6645 0.802132 0.401066 0.916049i \(-0.368640\pi\)
0.401066 + 0.916049i \(0.368640\pi\)
\(602\) 0 0
\(603\) 30.8420 1.25598
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.717308 −0.0291146 −0.0145573 0.999894i \(-0.504634\pi\)
−0.0145573 + 0.999894i \(0.504634\pi\)
\(608\) 0 0
\(609\) 2.51347 0.101851
\(610\) 0 0
\(611\) 17.4875 0.707468
\(612\) 0 0
\(613\) −9.68406 −0.391135 −0.195568 0.980690i \(-0.562655\pi\)
−0.195568 + 0.980690i \(0.562655\pi\)
\(614\) 0 0
\(615\) 22.5918 0.910990
\(616\) 0 0
\(617\) −16.2192 −0.652959 −0.326479 0.945204i \(-0.605862\pi\)
−0.326479 + 0.945204i \(0.605862\pi\)
\(618\) 0 0
\(619\) 30.4807 1.22512 0.612561 0.790423i \(-0.290139\pi\)
0.612561 + 0.790423i \(0.290139\pi\)
\(620\) 0 0
\(621\) −22.1143 −0.887417
\(622\) 0 0
\(623\) 20.0349 0.802681
\(624\) 0 0
\(625\) −26.8378 −1.07351
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.7133 1.62335
\(630\) 0 0
\(631\) −25.8438 −1.02882 −0.514412 0.857543i \(-0.671990\pi\)
−0.514412 + 0.857543i \(0.671990\pi\)
\(632\) 0 0
\(633\) 8.67315 0.344727
\(634\) 0 0
\(635\) 21.1910 0.840938
\(636\) 0 0
\(637\) 11.5975 0.459510
\(638\) 0 0
\(639\) 18.6338 0.737141
\(640\) 0 0
\(641\) −34.7158 −1.37119 −0.685595 0.727983i \(-0.740458\pi\)
−0.685595 + 0.727983i \(0.740458\pi\)
\(642\) 0 0
\(643\) 32.9515 1.29948 0.649741 0.760156i \(-0.274877\pi\)
0.649741 + 0.760156i \(0.274877\pi\)
\(644\) 0 0
\(645\) 1.73501 0.0683159
\(646\) 0 0
\(647\) 17.7250 0.696844 0.348422 0.937338i \(-0.386718\pi\)
0.348422 + 0.937338i \(0.386718\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.87489 0.0734828
\(652\) 0 0
\(653\) 3.71122 0.145231 0.0726156 0.997360i \(-0.476865\pi\)
0.0726156 + 0.997360i \(0.476865\pi\)
\(654\) 0 0
\(655\) 51.9143 2.02846
\(656\) 0 0
\(657\) −14.9244 −0.582256
\(658\) 0 0
\(659\) 21.9688 0.855782 0.427891 0.903830i \(-0.359257\pi\)
0.427891 + 0.903830i \(0.359257\pi\)
\(660\) 0 0
\(661\) −36.3409 −1.41350 −0.706749 0.707465i \(-0.749839\pi\)
−0.706749 + 0.707465i \(0.749839\pi\)
\(662\) 0 0
\(663\) −9.46792 −0.367704
\(664\) 0 0
\(665\) 5.92936 0.229931
\(666\) 0 0
\(667\) 14.5960 0.565159
\(668\) 0 0
\(669\) 0.766614 0.0296390
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.77095 0.338095 0.169048 0.985608i \(-0.445931\pi\)
0.169048 + 0.985608i \(0.445931\pi\)
\(674\) 0 0
\(675\) 15.4229 0.593629
\(676\) 0 0
\(677\) 20.5001 0.787882 0.393941 0.919136i \(-0.371112\pi\)
0.393941 + 0.919136i \(0.371112\pi\)
\(678\) 0 0
\(679\) −13.8102 −0.529987
\(680\) 0 0
\(681\) 1.43682 0.0550591
\(682\) 0 0
\(683\) −21.8781 −0.837143 −0.418572 0.908184i \(-0.637469\pi\)
−0.418572 + 0.908184i \(0.637469\pi\)
\(684\) 0 0
\(685\) −57.2995 −2.18930
\(686\) 0 0
\(687\) 6.04566 0.230656
\(688\) 0 0
\(689\) 34.5213 1.31516
\(690\) 0 0
\(691\) 15.2685 0.580841 0.290421 0.956899i \(-0.406205\pi\)
0.290421 + 0.956899i \(0.406205\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −50.1574 −1.90258
\(696\) 0 0
\(697\) −56.3886 −2.13587
\(698\) 0 0
\(699\) −13.2419 −0.500855
\(700\) 0 0
\(701\) 35.3916 1.33672 0.668362 0.743836i \(-0.266996\pi\)
0.668362 + 0.743836i \(0.266996\pi\)
\(702\) 0 0
\(703\) 8.86862 0.334486
\(704\) 0 0
\(705\) −9.25733 −0.348651
\(706\) 0 0
\(707\) 27.8893 1.04889
\(708\) 0 0
\(709\) −6.88137 −0.258435 −0.129218 0.991616i \(-0.541247\pi\)
−0.129218 + 0.991616i \(0.541247\pi\)
\(710\) 0 0
\(711\) 3.57723 0.134157
\(712\) 0 0
\(713\) 10.8877 0.407748
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.38278 0.0516410
\(718\) 0 0
\(719\) 24.2631 0.904860 0.452430 0.891800i \(-0.350557\pi\)
0.452430 + 0.891800i \(0.350557\pi\)
\(720\) 0 0
\(721\) −34.7335 −1.29354
\(722\) 0 0
\(723\) 3.54094 0.131689
\(724\) 0 0
\(725\) −10.1795 −0.378058
\(726\) 0 0
\(727\) 23.2648 0.862844 0.431422 0.902150i \(-0.358012\pi\)
0.431422 + 0.902150i \(0.358012\pi\)
\(728\) 0 0
\(729\) −9.79122 −0.362638
\(730\) 0 0
\(731\) −4.33054 −0.160171
\(732\) 0 0
\(733\) −28.6621 −1.05866 −0.529330 0.848416i \(-0.677557\pi\)
−0.529330 + 0.848416i \(0.677557\pi\)
\(734\) 0 0
\(735\) −6.13936 −0.226454
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.4806 0.532676 0.266338 0.963880i \(-0.414186\pi\)
0.266338 + 0.963880i \(0.414186\pi\)
\(740\) 0 0
\(741\) −2.06241 −0.0757644
\(742\) 0 0
\(743\) 6.38805 0.234355 0.117177 0.993111i \(-0.462615\pi\)
0.117177 + 0.993111i \(0.462615\pi\)
\(744\) 0 0
\(745\) −29.7503 −1.08997
\(746\) 0 0
\(747\) 44.0772 1.61270
\(748\) 0 0
\(749\) 23.3953 0.854847
\(750\) 0 0
\(751\) −8.26604 −0.301632 −0.150816 0.988562i \(-0.548190\pi\)
−0.150816 + 0.988562i \(0.548190\pi\)
\(752\) 0 0
\(753\) −11.3686 −0.414297
\(754\) 0 0
\(755\) −13.1628 −0.479045
\(756\) 0 0
\(757\) −5.93299 −0.215638 −0.107819 0.994171i \(-0.534387\pi\)
−0.107819 + 0.994171i \(0.534387\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −52.1838 −1.89166 −0.945831 0.324660i \(-0.894750\pi\)
−0.945831 + 0.324660i \(0.894750\pi\)
\(762\) 0 0
\(763\) 23.5021 0.850834
\(764\) 0 0
\(765\) −37.6606 −1.36162
\(766\) 0 0
\(767\) −45.2196 −1.63278
\(768\) 0 0
\(769\) −42.4687 −1.53146 −0.765731 0.643161i \(-0.777622\pi\)
−0.765731 + 0.643161i \(0.777622\pi\)
\(770\) 0 0
\(771\) −2.67368 −0.0962901
\(772\) 0 0
\(773\) 21.6781 0.779707 0.389853 0.920877i \(-0.372526\pi\)
0.389853 + 0.920877i \(0.372526\pi\)
\(774\) 0 0
\(775\) −7.59329 −0.272759
\(776\) 0 0
\(777\) 10.0742 0.361409
\(778\) 0 0
\(779\) −12.2832 −0.440091
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −7.41788 −0.265093
\(784\) 0 0
\(785\) 16.8131 0.600086
\(786\) 0 0
\(787\) −53.3591 −1.90205 −0.951023 0.309121i \(-0.899965\pi\)
−0.951023 + 0.309121i \(0.899965\pi\)
\(788\) 0 0
\(789\) −2.24052 −0.0797647
\(790\) 0 0
\(791\) −22.0925 −0.785520
\(792\) 0 0
\(793\) 50.0405 1.77699
\(794\) 0 0
\(795\) −18.2745 −0.648130
\(796\) 0 0
\(797\) −36.6435 −1.29798 −0.648990 0.760797i \(-0.724808\pi\)
−0.648990 + 0.760797i \(0.724808\pi\)
\(798\) 0 0
\(799\) 23.1061 0.817434
\(800\) 0 0
\(801\) −27.7195 −0.979420
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 39.1130 1.37855
\(806\) 0 0
\(807\) −5.08348 −0.178947
\(808\) 0 0
\(809\) −44.3884 −1.56061 −0.780307 0.625397i \(-0.784937\pi\)
−0.780307 + 0.625397i \(0.784937\pi\)
\(810\) 0 0
\(811\) −36.4827 −1.28108 −0.640541 0.767924i \(-0.721290\pi\)
−0.640541 + 0.767924i \(0.721290\pi\)
\(812\) 0 0
\(813\) 3.99238 0.140019
\(814\) 0 0
\(815\) 26.6896 0.934895
\(816\) 0 0
\(817\) −0.943326 −0.0330028
\(818\) 0 0
\(819\) 17.6036 0.615119
\(820\) 0 0
\(821\) −28.5131 −0.995114 −0.497557 0.867431i \(-0.665769\pi\)
−0.497557 + 0.867431i \(0.665769\pi\)
\(822\) 0 0
\(823\) 23.9024 0.833185 0.416592 0.909093i \(-0.363224\pi\)
0.416592 + 0.909093i \(0.363224\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.52622 −0.122619 −0.0613094 0.998119i \(-0.519528\pi\)
−0.0613094 + 0.998119i \(0.519528\pi\)
\(828\) 0 0
\(829\) −11.0538 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(830\) 0 0
\(831\) 10.1461 0.351964
\(832\) 0 0
\(833\) 15.3237 0.530935
\(834\) 0 0
\(835\) 17.6088 0.609379
\(836\) 0 0
\(837\) −5.53328 −0.191258
\(838\) 0 0
\(839\) −8.73338 −0.301510 −0.150755 0.988571i \(-0.548170\pi\)
−0.150755 + 0.988571i \(0.548170\pi\)
\(840\) 0 0
\(841\) −24.1040 −0.831173
\(842\) 0 0
\(843\) −6.39229 −0.220162
\(844\) 0 0
\(845\) 2.87676 0.0989636
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.91896 −0.134498
\(850\) 0 0
\(851\) 58.5018 2.00542
\(852\) 0 0
\(853\) −12.2466 −0.419316 −0.209658 0.977775i \(-0.567235\pi\)
−0.209658 + 0.977775i \(0.567235\pi\)
\(854\) 0 0
\(855\) −8.20364 −0.280559
\(856\) 0 0
\(857\) 21.1665 0.723033 0.361517 0.932366i \(-0.382259\pi\)
0.361517 + 0.932366i \(0.382259\pi\)
\(858\) 0 0
\(859\) 24.0678 0.821184 0.410592 0.911819i \(-0.365322\pi\)
0.410592 + 0.911819i \(0.365322\pi\)
\(860\) 0 0
\(861\) −13.9529 −0.475513
\(862\) 0 0
\(863\) −7.20834 −0.245375 −0.122687 0.992445i \(-0.539151\pi\)
−0.122687 + 0.992445i \(0.539151\pi\)
\(864\) 0 0
\(865\) 75.9475 2.58229
\(866\) 0 0
\(867\) −2.41872 −0.0821441
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 40.4729 1.37137
\(872\) 0 0
\(873\) 19.1073 0.646683
\(874\) 0 0
\(875\) 2.36865 0.0800751
\(876\) 0 0
\(877\) 51.9275 1.75347 0.876734 0.480975i \(-0.159717\pi\)
0.876734 + 0.480975i \(0.159717\pi\)
\(878\) 0 0
\(879\) −4.37317 −0.147503
\(880\) 0 0
\(881\) −43.4951 −1.46539 −0.732693 0.680559i \(-0.761737\pi\)
−0.732693 + 0.680559i \(0.761737\pi\)
\(882\) 0 0
\(883\) −17.3622 −0.584285 −0.292142 0.956375i \(-0.594368\pi\)
−0.292142 + 0.956375i \(0.594368\pi\)
\(884\) 0 0
\(885\) 23.9378 0.804662
\(886\) 0 0
\(887\) −1.37020 −0.0460068 −0.0230034 0.999735i \(-0.507323\pi\)
−0.0230034 + 0.999735i \(0.507323\pi\)
\(888\) 0 0
\(889\) −13.0877 −0.438948
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.03322 0.168430
\(894\) 0 0
\(895\) −24.1925 −0.808665
\(896\) 0 0
\(897\) −13.6047 −0.454247
\(898\) 0 0
\(899\) 3.65210 0.121804
\(900\) 0 0
\(901\) 45.6127 1.51958
\(902\) 0 0
\(903\) −1.07156 −0.0356592
\(904\) 0 0
\(905\) 11.3099 0.375952
\(906\) 0 0
\(907\) 6.17010 0.204875 0.102437 0.994739i \(-0.467336\pi\)
0.102437 + 0.994739i \(0.467336\pi\)
\(908\) 0 0
\(909\) −38.5866 −1.27984
\(910\) 0 0
\(911\) 31.1950 1.03354 0.516769 0.856125i \(-0.327135\pi\)
0.516769 + 0.856125i \(0.327135\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −26.4899 −0.875728
\(916\) 0 0
\(917\) −32.0627 −1.05880
\(918\) 0 0
\(919\) −12.2119 −0.402833 −0.201416 0.979506i \(-0.564554\pi\)
−0.201416 + 0.979506i \(0.564554\pi\)
\(920\) 0 0
\(921\) 17.6636 0.582036
\(922\) 0 0
\(923\) 24.4525 0.804864
\(924\) 0 0
\(925\) −40.8003 −1.34150
\(926\) 0 0
\(927\) 48.0560 1.57836
\(928\) 0 0
\(929\) 21.3907 0.701807 0.350904 0.936412i \(-0.385874\pi\)
0.350904 + 0.936412i \(0.385874\pi\)
\(930\) 0 0
\(931\) 3.33798 0.109398
\(932\) 0 0
\(933\) 13.0080 0.425863
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −18.4790 −0.603683 −0.301841 0.953358i \(-0.597601\pi\)
−0.301841 + 0.953358i \(0.597601\pi\)
\(938\) 0 0
\(939\) −16.9572 −0.553378
\(940\) 0 0
\(941\) −16.1725 −0.527208 −0.263604 0.964631i \(-0.584911\pi\)
−0.263604 + 0.964631i \(0.584911\pi\)
\(942\) 0 0
\(943\) −81.0261 −2.63857
\(944\) 0 0
\(945\) −19.8778 −0.646624
\(946\) 0 0
\(947\) −22.0138 −0.715353 −0.357677 0.933846i \(-0.616431\pi\)
−0.357677 + 0.933846i \(0.616431\pi\)
\(948\) 0 0
\(949\) −19.5848 −0.635749
\(950\) 0 0
\(951\) 12.4438 0.403518
\(952\) 0 0
\(953\) 0.628681 0.0203650 0.0101825 0.999948i \(-0.496759\pi\)
0.0101825 + 0.999948i \(0.496759\pi\)
\(954\) 0 0
\(955\) −37.6350 −1.21784
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 35.3887 1.14276
\(960\) 0 0
\(961\) −28.2758 −0.912121
\(962\) 0 0
\(963\) −32.3689 −1.04307
\(964\) 0 0
\(965\) 12.8448 0.413489
\(966\) 0 0
\(967\) 14.7814 0.475336 0.237668 0.971346i \(-0.423617\pi\)
0.237668 + 0.971346i \(0.423617\pi\)
\(968\) 0 0
\(969\) −2.72504 −0.0875409
\(970\) 0 0
\(971\) −28.4506 −0.913023 −0.456511 0.889718i \(-0.650901\pi\)
−0.456511 + 0.889718i \(0.650901\pi\)
\(972\) 0 0
\(973\) 30.9776 0.993096
\(974\) 0 0
\(975\) 9.48814 0.303864
\(976\) 0 0
\(977\) −25.5690 −0.818024 −0.409012 0.912529i \(-0.634127\pi\)
−0.409012 + 0.912529i \(0.634127\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −32.5166 −1.03818
\(982\) 0 0
\(983\) 60.1871 1.91967 0.959835 0.280565i \(-0.0905218\pi\)
0.959835 + 0.280565i \(0.0905218\pi\)
\(984\) 0 0
\(985\) 38.2611 1.21910
\(986\) 0 0
\(987\) 5.71740 0.181987
\(988\) 0 0
\(989\) −6.22265 −0.197869
\(990\) 0 0
\(991\) 14.5621 0.462581 0.231290 0.972885i \(-0.425705\pi\)
0.231290 + 0.972885i \(0.425705\pi\)
\(992\) 0 0
\(993\) −14.6451 −0.464748
\(994\) 0 0
\(995\) −26.0229 −0.824982
\(996\) 0 0
\(997\) 5.28710 0.167444 0.0837221 0.996489i \(-0.473319\pi\)
0.0837221 + 0.996489i \(0.473319\pi\)
\(998\) 0 0
\(999\) −29.7314 −0.940660
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.x.1.8 20
11.3 even 5 836.2.j.c.229.7 40
11.4 even 5 836.2.j.c.533.7 yes 40
11.10 odd 2 9196.2.a.w.1.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.c.229.7 40 11.3 even 5
836.2.j.c.533.7 yes 40 11.4 even 5
9196.2.a.w.1.8 20 11.10 odd 2
9196.2.a.x.1.8 20 1.1 even 1 trivial