Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [92,5,Mod(5,92)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(92, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("92.5");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.f (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.51003660371\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | 0 | −10.2373 | + | 11.8144i | 0 | −30.5407 | − | 4.39110i | 0 | −13.3522 | + | 6.09777i | 0 | −23.2517 | − | 161.719i | 0 | ||||||||||
5.2 | 0 | −6.76620 | + | 7.80861i | 0 | 32.0322 | + | 4.60554i | 0 | 17.3862 | − | 7.93999i | 0 | −3.66545 | − | 25.4937i | 0 | ||||||||||
5.3 | 0 | −4.95559 | + | 5.71906i | 0 | −3.34342 | − | 0.480711i | 0 | −14.6603 | + | 6.69511i | 0 | 3.37777 | + | 23.4929i | 0 | ||||||||||
5.4 | 0 | 0.325960 | − | 0.376178i | 0 | −35.7139 | − | 5.13488i | 0 | 57.8313 | − | 26.4107i | 0 | 11.4922 | + | 79.9303i | 0 | ||||||||||
5.5 | 0 | 3.01425 | − | 3.47863i | 0 | 7.38497 | + | 1.06180i | 0 | 35.2368 | − | 16.0921i | 0 | 8.51233 | + | 59.2046i | 0 | ||||||||||
5.6 | 0 | 3.34179 | − | 3.85663i | 0 | −4.69485 | − | 0.675018i | 0 | −82.0191 | + | 37.4569i | 0 | 7.82145 | + | 54.3994i | 0 | ||||||||||
5.7 | 0 | 7.42513 | − | 8.56905i | 0 | 47.6796 | + | 6.85529i | 0 | 11.7029 | − | 5.34454i | 0 | −6.76867 | − | 47.0771i | 0 | ||||||||||
5.8 | 0 | 10.5723 | − | 12.2011i | 0 | −24.5957 | − | 3.53633i | 0 | 14.8856 | − | 6.79802i | 0 | −25.5654 | − | 177.811i | 0 | ||||||||||
17.1 | 0 | −13.2407 | − | 3.88781i | 0 | 4.37705 | + | 6.81083i | 0 | −71.4769 | − | 10.2768i | 0 | 92.0587 | + | 59.1625i | 0 | ||||||||||
17.2 | 0 | −9.91432 | − | 2.91111i | 0 | −22.1926 | − | 34.5324i | 0 | 38.0772 | + | 5.47467i | 0 | 21.6776 | + | 13.9314i | 0 | ||||||||||
17.3 | 0 | −9.85031 | − | 2.89231i | 0 | 8.29543 | + | 12.9079i | 0 | 46.9607 | + | 6.75193i | 0 | 20.5215 | + | 13.1884i | 0 | ||||||||||
17.4 | 0 | 0.536308 | + | 0.157474i | 0 | 3.14686 | + | 4.89660i | 0 | −55.6751 | − | 8.00488i | 0 | −67.8787 | − | 43.6230i | 0 | ||||||||||
17.5 | 0 | 2.34060 | + | 0.687262i | 0 | 21.9968 | + | 34.2277i | 0 | 22.5786 | + | 3.24631i | 0 | −63.1355 | − | 40.5747i | 0 | ||||||||||
17.6 | 0 | 4.86802 | + | 1.42938i | 0 | −8.73770 | − | 13.5961i | 0 | 51.3576 | + | 7.38410i | 0 | −46.4871 | − | 29.8754i | 0 | ||||||||||
17.7 | 0 | 8.15848 | + | 2.39555i | 0 | −18.7036 | − | 29.1033i | 0 | −54.6689 | − | 7.86020i | 0 | −7.31931 | − | 4.70383i | 0 | ||||||||||
17.8 | 0 | 15.7364 | + | 4.62062i | 0 | 6.12535 | + | 9.53123i | 0 | 6.79278 | + | 0.976655i | 0 | 158.142 | + | 101.632i | 0 | ||||||||||
21.1 | 0 | −2.44568 | − | 17.0101i | 0 | −12.8263 | + | 43.6825i | 0 | 44.6142 | + | 38.6584i | 0 | −205.644 | + | 60.3824i | 0 | ||||||||||
21.2 | 0 | −1.70114 | − | 11.8317i | 0 | 6.41533 | − | 21.8486i | 0 | −35.1057 | − | 30.4192i | 0 | −59.3762 | + | 17.4344i | 0 | ||||||||||
21.3 | 0 | −0.996463 | − | 6.93055i | 0 | 5.74873 | − | 19.5784i | 0 | 56.9158 | + | 49.3178i | 0 | 30.6793 | − | 9.00825i | 0 | ||||||||||
21.4 | 0 | −0.369021 | − | 2.56660i | 0 | −3.51259 | + | 11.9628i | 0 | −6.50335 | − | 5.63519i | 0 | 71.2677 | − | 20.9261i | 0 | ||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.d | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 92.5.f.a | ✓ | 80 |
23.d | odd | 22 | 1 | inner | 92.5.f.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
92.5.f.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
92.5.f.a | ✓ | 80 | 23.d | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(92, [\chi])\).