Properties

Label 92.6.e.a.13.7
Level $92$
Weight $6$
Character 92.13
Analytic conductor $14.755$
Analytic rank $0$
Dimension $100$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,6,Mod(9,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.9");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 92.e (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7553114228\)
Analytic rank: \(0\)
Dimension: \(100\)
Relative dimension: \(10\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 13.7
Character \(\chi\) \(=\) 92.13
Dual form 92.6.e.a.85.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.41459 + 5.40773i) q^{3} +(36.4994 - 79.9225i) q^{5} +(-123.792 - 36.3487i) q^{7} +(-59.3840 - 130.033i) q^{9} +(-98.0288 + 113.131i) q^{11} +(-1019.12 + 299.240i) q^{13} +(739.326 - 475.136i) q^{15} +(-111.465 - 775.255i) q^{17} +(-167.632 + 1165.90i) q^{19} +(-845.098 - 975.295i) q^{21} +(1844.57 - 1741.81i) q^{23} +(-3008.96 - 3472.52i) q^{25} +(549.400 - 3821.16i) q^{27} +(-612.434 - 4259.58i) q^{29} +(-1625.42 + 1044.60i) q^{31} +(-1436.66 + 421.840i) q^{33} +(-7423.42 + 8567.08i) q^{35} +(3045.92 + 6669.63i) q^{37} +(-10193.7 - 2993.13i) q^{39} +(6641.80 - 14543.5i) q^{41} +(-10665.7 - 6854.40i) q^{43} -12560.0 q^{45} +20511.6 q^{47} +(-135.641 - 87.1712i) q^{49} +(3254.44 - 7126.23i) q^{51} +(15531.6 + 4560.49i) q^{53} +(5463.74 + 11963.9i) q^{55} +(-7715.45 + 8904.10i) q^{57} +(28387.3 - 8335.26i) q^{59} +(13570.4 - 8721.16i) q^{61} +(2624.76 + 18255.6i) q^{63} +(-13281.1 + 92372.4i) q^{65} +(-8306.54 - 9586.26i) q^{67} +(24940.5 - 4681.70i) q^{69} +(31765.8 + 36659.6i) q^{71} +(-8935.58 + 62148.3i) q^{73} +(-6540.69 - 45491.5i) q^{75} +(16247.4 - 10441.6i) q^{77} +(2693.96 - 791.017i) q^{79} +(2538.83 - 2929.96i) q^{81} +(-10240.8 - 22424.3i) q^{83} +(-66028.7 - 19387.8i) q^{85} +(17881.3 - 39154.5i) q^{87} +(-90334.1 - 58054.2i) q^{89} +137036. q^{91} -19326.2 q^{93} +(87063.5 + 55952.3i) q^{95} +(-54135.6 + 118540. i) q^{97} +(20532.1 + 6028.78i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100 q + 2 q^{3} - 86 q^{5} - 118 q^{7} - 368 q^{9} - 242 q^{11} + 322 q^{13} - 3717 q^{15} + 2953 q^{17} - 259 q^{19} - 12349 q^{21} - 6038 q^{23} - 1324 q^{25} + 23933 q^{27} + 12677 q^{29} - 4401 q^{31}+ \cdots + 26799 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{7}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.41459 + 5.40773i 0.539796 + 0.346906i 0.781959 0.623329i \(-0.214220\pi\)
−0.242163 + 0.970236i \(0.577857\pi\)
\(4\) 0 0
\(5\) 36.4994 79.9225i 0.652920 1.42970i −0.236054 0.971740i \(-0.575854\pi\)
0.888975 0.457956i \(-0.151418\pi\)
\(6\) 0 0
\(7\) −123.792 36.3487i −0.954879 0.280378i −0.233062 0.972462i \(-0.574875\pi\)
−0.721817 + 0.692084i \(0.756693\pi\)
\(8\) 0 0
\(9\) −59.3840 130.033i −0.244379 0.535115i
\(10\) 0 0
\(11\) −98.0288 + 113.131i −0.244271 + 0.281904i −0.864625 0.502418i \(-0.832444\pi\)
0.620353 + 0.784322i \(0.286989\pi\)
\(12\) 0 0
\(13\) −1019.12 + 299.240i −1.67250 + 0.491090i −0.974383 0.224896i \(-0.927796\pi\)
−0.698115 + 0.715986i \(0.745978\pi\)
\(14\) 0 0
\(15\) 739.326 475.136i 0.848415 0.545243i
\(16\) 0 0
\(17\) −111.465 775.255i −0.0935439 0.650612i −0.981610 0.190897i \(-0.938860\pi\)
0.888066 0.459716i \(-0.152049\pi\)
\(18\) 0 0
\(19\) −167.632 + 1165.90i −0.106530 + 0.740933i 0.864614 + 0.502437i \(0.167563\pi\)
−0.971144 + 0.238495i \(0.923346\pi\)
\(20\) 0 0
\(21\) −845.098 975.295i −0.418176 0.482601i
\(22\) 0 0
\(23\) 1844.57 1741.81i 0.727069 0.686565i
\(24\) 0 0
\(25\) −3008.96 3472.52i −0.962866 1.11121i
\(26\) 0 0
\(27\) 549.400 3821.16i 0.145037 1.00876i
\(28\) 0 0
\(29\) −612.434 4259.58i −0.135227 0.940527i −0.938589 0.345036i \(-0.887867\pi\)
0.803362 0.595491i \(-0.203042\pi\)
\(30\) 0 0
\(31\) −1625.42 + 1044.60i −0.303782 + 0.195229i −0.683646 0.729813i \(-0.739607\pi\)
0.379865 + 0.925042i \(0.375971\pi\)
\(32\) 0 0
\(33\) −1436.66 + 421.840i −0.229651 + 0.0674316i
\(34\) 0 0
\(35\) −7423.42 + 8567.08i −1.02432 + 1.18212i
\(36\) 0 0
\(37\) 3045.92 + 6669.63i 0.365775 + 0.800936i 0.999622 + 0.0274775i \(0.00874746\pi\)
−0.633847 + 0.773458i \(0.718525\pi\)
\(38\) 0 0
\(39\) −10193.7 2993.13i −1.07317 0.315111i
\(40\) 0 0
\(41\) 6641.80 14543.5i 0.617058 1.35117i −0.300581 0.953756i \(-0.597181\pi\)
0.917640 0.397413i \(-0.130092\pi\)
\(42\) 0 0
\(43\) −10665.7 6854.40i −0.879664 0.565325i 0.0210307 0.999779i \(-0.493305\pi\)
−0.900694 + 0.434453i \(0.856942\pi\)
\(44\) 0 0
\(45\) −12560.0 −0.924611
\(46\) 0 0
\(47\) 20511.6 1.35442 0.677212 0.735788i \(-0.263188\pi\)
0.677212 + 0.735788i \(0.263188\pi\)
\(48\) 0 0
\(49\) −135.641 87.1712i −0.00807051 0.00518660i
\(50\) 0 0
\(51\) 3254.44 7126.23i 0.175207 0.383649i
\(52\) 0 0
\(53\) 15531.6 + 4560.49i 0.759498 + 0.223009i 0.638477 0.769641i \(-0.279565\pi\)
0.121022 + 0.992650i \(0.461383\pi\)
\(54\) 0 0
\(55\) 5463.74 + 11963.9i 0.243547 + 0.533294i
\(56\) 0 0
\(57\) −7715.45 + 8904.10i −0.314539 + 0.362997i
\(58\) 0 0
\(59\) 28387.3 8335.26i 1.06168 0.311738i 0.296153 0.955140i \(-0.404296\pi\)
0.765528 + 0.643403i \(0.222478\pi\)
\(60\) 0 0
\(61\) 13570.4 8721.16i 0.466947 0.300089i −0.285929 0.958251i \(-0.592302\pi\)
0.752876 + 0.658162i \(0.228666\pi\)
\(62\) 0 0
\(63\) 2624.76 + 18255.6i 0.0833178 + 0.579488i
\(64\) 0 0
\(65\) −13281.1 + 92372.4i −0.389899 + 2.71181i
\(66\) 0 0
\(67\) −8306.54 9586.26i −0.226065 0.260893i 0.631374 0.775478i \(-0.282491\pi\)
−0.857439 + 0.514586i \(0.827946\pi\)
\(68\) 0 0
\(69\) 24940.5 4681.70i 0.630643 0.118381i
\(70\) 0 0
\(71\) 31765.8 + 36659.6i 0.747848 + 0.863063i 0.994358 0.106078i \(-0.0338292\pi\)
−0.246510 + 0.969140i \(0.579284\pi\)
\(72\) 0 0
\(73\) −8935.58 + 62148.3i −0.196253 + 1.36497i 0.618785 + 0.785560i \(0.287625\pi\)
−0.815038 + 0.579407i \(0.803284\pi\)
\(74\) 0 0
\(75\) −6540.69 45491.5i −0.134267 0.933849i
\(76\) 0 0
\(77\) 16247.4 10441.6i 0.312289 0.200696i
\(78\) 0 0
\(79\) 2693.96 791.017i 0.0485649 0.0142600i −0.257360 0.966316i \(-0.582853\pi\)
0.305925 + 0.952056i \(0.401034\pi\)
\(80\) 0 0
\(81\) 2538.83 2929.96i 0.0429952 0.0496191i
\(82\) 0 0
\(83\) −10240.8 22424.3i −0.163170 0.357292i 0.810332 0.585971i \(-0.199287\pi\)
−0.973502 + 0.228679i \(0.926559\pi\)
\(84\) 0 0
\(85\) −66028.7 19387.8i −0.991255 0.291059i
\(86\) 0 0
\(87\) 17881.3 39154.5i 0.253279 0.554604i
\(88\) 0 0
\(89\) −90334.1 58054.2i −1.20886 0.776888i −0.228394 0.973569i \(-0.573348\pi\)
−0.980468 + 0.196680i \(0.936984\pi\)
\(90\) 0 0
\(91\) 137036. 1.73472
\(92\) 0 0
\(93\) −19326.2 −0.231707
\(94\) 0 0
\(95\) 87063.5 + 55952.3i 0.989753 + 0.636076i
\(96\) 0 0
\(97\) −54135.6 + 118540.i −0.584189 + 1.27920i 0.354702 + 0.934980i \(0.384582\pi\)
−0.938891 + 0.344216i \(0.888145\pi\)
\(98\) 0 0
\(99\) 20532.1 + 6028.78i 0.210546 + 0.0618217i
\(100\) 0 0
\(101\) −14177.9 31045.2i −0.138295 0.302825i 0.827794 0.561032i \(-0.189596\pi\)
−0.966090 + 0.258207i \(0.916868\pi\)
\(102\) 0 0
\(103\) 125885. 145279.i 1.16918 1.34930i 0.243994 0.969777i \(-0.421542\pi\)
0.925182 0.379524i \(-0.123912\pi\)
\(104\) 0 0
\(105\) −108794. + 31944.7i −0.963008 + 0.282765i
\(106\) 0 0
\(107\) −173913. + 111767.i −1.46849 + 0.943743i −0.470372 + 0.882468i \(0.655880\pi\)
−0.998121 + 0.0612754i \(0.980483\pi\)
\(108\) 0 0
\(109\) −19488.5 135546.i −0.157113 1.09275i −0.903919 0.427704i \(-0.859323\pi\)
0.746806 0.665042i \(-0.231586\pi\)
\(110\) 0 0
\(111\) −10437.4 + 72593.8i −0.0804054 + 0.559232i
\(112\) 0 0
\(113\) −121367. 140065.i −0.894140 1.03189i −0.999299 0.0374373i \(-0.988081\pi\)
0.105159 0.994455i \(-0.466465\pi\)
\(114\) 0 0
\(115\) −71884.3 210998.i −0.506861 1.48776i
\(116\) 0 0
\(117\) 99430.2 + 114749.i 0.671512 + 0.774966i
\(118\) 0 0
\(119\) −14381.0 + 100022.i −0.0930941 + 0.647484i
\(120\) 0 0
\(121\) 19730.9 + 137231.i 0.122513 + 0.852100i
\(122\) 0 0
\(123\) 134535. 86460.7i 0.801815 0.515295i
\(124\) 0 0
\(125\) −123909. + 36383.0i −0.709298 + 0.208269i
\(126\) 0 0
\(127\) 158380. 182780.i 0.871348 1.00559i −0.128556 0.991702i \(-0.541034\pi\)
0.999904 0.0138864i \(-0.00442033\pi\)
\(128\) 0 0
\(129\) −52680.4 115354.i −0.278724 0.610321i
\(130\) 0 0
\(131\) −240469. 70608.0i −1.22428 0.359481i −0.395191 0.918599i \(-0.629322\pi\)
−0.829088 + 0.559118i \(0.811140\pi\)
\(132\) 0 0
\(133\) 63130.6 138237.i 0.309465 0.677633i
\(134\) 0 0
\(135\) −285344. 183379.i −1.34752 0.865996i
\(136\) 0 0
\(137\) 151539. 0.689800 0.344900 0.938639i \(-0.387913\pi\)
0.344900 + 0.938639i \(0.387913\pi\)
\(138\) 0 0
\(139\) 309472. 1.35858 0.679288 0.733872i \(-0.262289\pi\)
0.679288 + 0.733872i \(0.262289\pi\)
\(140\) 0 0
\(141\) 172597. + 110921.i 0.731114 + 0.469858i
\(142\) 0 0
\(143\) 66049.4 144628.i 0.270103 0.591443i
\(144\) 0 0
\(145\) −362789. 106525.i −1.43296 0.420755i
\(146\) 0 0
\(147\) −669.966 1467.02i −0.00255717 0.00559942i
\(148\) 0 0
\(149\) −73254.0 + 84539.6i −0.270312 + 0.311957i −0.874634 0.484783i \(-0.838898\pi\)
0.604322 + 0.796740i \(0.293444\pi\)
\(150\) 0 0
\(151\) −226329. + 66456.3i −0.807790 + 0.237189i −0.659451 0.751748i \(-0.729211\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(152\) 0 0
\(153\) −94189.4 + 60531.8i −0.325292 + 0.209052i
\(154\) 0 0
\(155\) 24159.8 + 168035.i 0.0807725 + 0.561785i
\(156\) 0 0
\(157\) −69988.2 + 486779.i −0.226608 + 1.57609i 0.485635 + 0.874162i \(0.338588\pi\)
−0.712243 + 0.701933i \(0.752321\pi\)
\(158\) 0 0
\(159\) 106030. + 122365.i 0.332611 + 0.383854i
\(160\) 0 0
\(161\) −291656. + 148575.i −0.886760 + 0.451733i
\(162\) 0 0
\(163\) 32323.7 + 37303.5i 0.0952910 + 0.109972i 0.801392 0.598139i \(-0.204093\pi\)
−0.706101 + 0.708111i \(0.749548\pi\)
\(164\) 0 0
\(165\) −18722.5 + 130218.i −0.0535371 + 0.372358i
\(166\) 0 0
\(167\) −20526.8 142767.i −0.0569547 0.396128i −0.998280 0.0586276i \(-0.981328\pi\)
0.941325 0.337501i \(-0.109582\pi\)
\(168\) 0 0
\(169\) 636703. 409184.i 1.71483 1.10205i
\(170\) 0 0
\(171\) 161560. 47438.4i 0.422518 0.124062i
\(172\) 0 0
\(173\) −69246.4 + 79914.6i −0.175907 + 0.203007i −0.836855 0.547424i \(-0.815609\pi\)
0.660949 + 0.750431i \(0.270154\pi\)
\(174\) 0 0
\(175\) 246264. + 539243.i 0.607863 + 1.33103i
\(176\) 0 0
\(177\) 283942. + 83373.0i 0.681235 + 0.200029i
\(178\) 0 0
\(179\) 36576.3 80091.0i 0.0853233 0.186832i −0.862161 0.506635i \(-0.830889\pi\)
0.947484 + 0.319803i \(0.103617\pi\)
\(180\) 0 0
\(181\) 72077.4 + 46321.3i 0.163532 + 0.105096i 0.619847 0.784723i \(-0.287195\pi\)
−0.456315 + 0.889818i \(0.650831\pi\)
\(182\) 0 0
\(183\) 161351. 0.356159
\(184\) 0 0
\(185\) 644228. 1.38392
\(186\) 0 0
\(187\) 98632.3 + 63387.2i 0.206260 + 0.132555i
\(188\) 0 0
\(189\) −206906. + 453060.i −0.421326 + 0.922575i
\(190\) 0 0
\(191\) 747298. + 219427.i 1.48221 + 0.435217i 0.920047 0.391808i \(-0.128150\pi\)
0.562166 + 0.827025i \(0.309968\pi\)
\(192\) 0 0
\(193\) −212772. 465907.i −0.411171 0.900338i −0.996014 0.0891920i \(-0.971572\pi\)
0.584844 0.811146i \(-0.301156\pi\)
\(194\) 0 0
\(195\) −611280. + 705455.i −1.15121 + 1.32857i
\(196\) 0 0
\(197\) 647860. 190229.i 1.18937 0.349229i 0.373588 0.927595i \(-0.378127\pi\)
0.815778 + 0.578365i \(0.196309\pi\)
\(198\) 0 0
\(199\) 210414. 135225.i 0.376654 0.242061i −0.338592 0.940933i \(-0.609951\pi\)
0.715247 + 0.698872i \(0.246314\pi\)
\(200\) 0 0
\(201\) −18056.2 125584.i −0.0315237 0.219252i
\(202\) 0 0
\(203\) −79015.4 + 549564.i −0.134577 + 0.936005i
\(204\) 0 0
\(205\) −919932. 1.06166e6i −1.52887 1.76441i
\(206\) 0 0
\(207\) −336031. 136419.i −0.545071 0.221283i
\(208\) 0 0
\(209\) −115467. 133257.i −0.182850 0.211020i
\(210\) 0 0
\(211\) 105194. 731643.i 0.162662 1.13134i −0.730927 0.682455i \(-0.760912\pi\)
0.893589 0.448885i \(-0.148179\pi\)
\(212\) 0 0
\(213\) 69050.5 + 480257.i 0.104284 + 0.725311i
\(214\) 0 0
\(215\) −937111. + 602244.i −1.38259 + 0.888539i
\(216\) 0 0
\(217\) 239184. 70230.9i 0.344813 0.101246i
\(218\) 0 0
\(219\) −411271. + 474632.i −0.579452 + 0.668723i
\(220\) 0 0
\(221\) 345583. + 756720.i 0.475961 + 1.04221i
\(222\) 0 0
\(223\) 438273. + 128689.i 0.590178 + 0.173292i 0.563167 0.826343i \(-0.309583\pi\)
0.0270109 + 0.999635i \(0.491401\pi\)
\(224\) 0 0
\(225\) −272858. + 597475.i −0.359319 + 0.786799i
\(226\) 0 0
\(227\) 123016. + 79057.4i 0.158451 + 0.101830i 0.617464 0.786599i \(-0.288160\pi\)
−0.459012 + 0.888430i \(0.651797\pi\)
\(228\) 0 0
\(229\) −550947. −0.694258 −0.347129 0.937817i \(-0.612843\pi\)
−0.347129 + 0.937817i \(0.612843\pi\)
\(230\) 0 0
\(231\) 193180. 0.238195
\(232\) 0 0
\(233\) −796049. 511590.i −0.960617 0.617351i −0.0364481 0.999336i \(-0.511604\pi\)
−0.924169 + 0.381985i \(0.875241\pi\)
\(234\) 0 0
\(235\) 748660. 1.63934e6i 0.884331 1.93642i
\(236\) 0 0
\(237\) 26946.2 + 7912.11i 0.0311621 + 0.00915000i
\(238\) 0 0
\(239\) 5361.70 + 11740.5i 0.00607167 + 0.0132951i 0.912644 0.408756i \(-0.134037\pi\)
−0.906572 + 0.422051i \(0.861310\pi\)
\(240\) 0 0
\(241\) 738573. 852358.i 0.819126 0.945322i −0.180140 0.983641i \(-0.557655\pi\)
0.999266 + 0.0383195i \(0.0122004\pi\)
\(242\) 0 0
\(243\) −862884. + 253366.i −0.937425 + 0.275253i
\(244\) 0 0
\(245\) −11917.7 + 7659.07i −0.0126847 + 0.00815194i
\(246\) 0 0
\(247\) −178048. 1.23835e6i −0.185693 1.29152i
\(248\) 0 0
\(249\) 35092.1 244071.i 0.0358683 0.249470i
\(250\) 0 0
\(251\) −340563. 393031.i −0.341204 0.393770i 0.559051 0.829133i \(-0.311165\pi\)
−0.900255 + 0.435363i \(0.856620\pi\)
\(252\) 0 0
\(253\) 16232.4 + 379426.i 0.0159435 + 0.372671i
\(254\) 0 0
\(255\) −450761. 520205.i −0.434106 0.500985i
\(256\) 0 0
\(257\) 76655.7 533152.i 0.0723955 0.503522i −0.921071 0.389395i \(-0.872684\pi\)
0.993466 0.114126i \(-0.0364069\pi\)
\(258\) 0 0
\(259\) −134629. 936364.i −0.124706 0.867352i
\(260\) 0 0
\(261\) −517516. + 332587.i −0.470243 + 0.302207i
\(262\) 0 0
\(263\) −583335. + 171283.i −0.520030 + 0.152695i −0.531206 0.847243i \(-0.678261\pi\)
0.0111755 + 0.999938i \(0.496443\pi\)
\(264\) 0 0
\(265\) 931380. 1.07487e6i 0.814727 0.940245i
\(266\) 0 0
\(267\) −446183. 977005.i −0.383032 0.838723i
\(268\) 0 0
\(269\) 505960. + 148563.i 0.426320 + 0.125179i 0.487852 0.872926i \(-0.337781\pi\)
−0.0615324 + 0.998105i \(0.519599\pi\)
\(270\) 0 0
\(271\) −797478. + 1.74623e6i −0.659623 + 1.44437i 0.223251 + 0.974761i \(0.428333\pi\)
−0.882873 + 0.469611i \(0.844394\pi\)
\(272\) 0 0
\(273\) 1.15310e6 + 741053.i 0.936398 + 0.601786i
\(274\) 0 0
\(275\) 687815. 0.548454
\(276\) 0 0
\(277\) −680305. −0.532727 −0.266363 0.963873i \(-0.585822\pi\)
−0.266363 + 0.963873i \(0.585822\pi\)
\(278\) 0 0
\(279\) 232356. + 149326.i 0.178708 + 0.114848i
\(280\) 0 0
\(281\) 229509. 502554.i 0.173394 0.379679i −0.802905 0.596107i \(-0.796713\pi\)
0.976299 + 0.216428i \(0.0694406\pi\)
\(282\) 0 0
\(283\) −465499. 136683.i −0.345504 0.101449i 0.104377 0.994538i \(-0.466715\pi\)
−0.449881 + 0.893089i \(0.648533\pi\)
\(284\) 0 0
\(285\) 430029. + 941632.i 0.313607 + 0.686703i
\(286\) 0 0
\(287\) −1.35084e6 + 1.55895e6i −0.968054 + 1.11719i
\(288\) 0 0
\(289\) 773747. 227193.i 0.544947 0.160011i
\(290\) 0 0
\(291\) −1.09656e6 + 704718.i −0.759104 + 0.487846i
\(292\) 0 0
\(293\) −102341. 711801.i −0.0696438 0.484384i −0.994556 0.104203i \(-0.966771\pi\)
0.924912 0.380181i \(-0.124138\pi\)
\(294\) 0 0
\(295\) 369944. 2.57301e6i 0.247503 1.72142i
\(296\) 0 0
\(297\) 378436. + 436738.i 0.248944 + 0.287296i
\(298\) 0 0
\(299\) −1.35861e6 + 2.32708e6i −0.878856 + 1.50533i
\(300\) 0 0
\(301\) 1.07118e6 + 1.23621e6i 0.681468 + 0.786456i
\(302\) 0 0
\(303\) 48583.1 337903.i 0.0304004 0.211439i
\(304\) 0 0
\(305\) −201706. 1.40290e6i −0.124156 0.863527i
\(306\) 0 0
\(307\) −2.13774e6 + 1.37384e6i −1.29452 + 0.831936i −0.992604 0.121399i \(-0.961262\pi\)
−0.301914 + 0.953335i \(0.597626\pi\)
\(308\) 0 0
\(309\) 1.84490e6 541710.i 1.09920 0.322754i
\(310\) 0 0
\(311\) −319828. + 369101.i −0.187506 + 0.216394i −0.841718 0.539918i \(-0.818455\pi\)
0.654211 + 0.756312i \(0.273001\pi\)
\(312\) 0 0
\(313\) −1.12563e6 2.46478e6i −0.649433 1.42206i −0.892050 0.451937i \(-0.850733\pi\)
0.242617 0.970122i \(-0.421994\pi\)
\(314\) 0 0
\(315\) 1.55483e6 + 456541.i 0.882892 + 0.259241i
\(316\) 0 0
\(317\) 194075. 424965.i 0.108473 0.237523i −0.847609 0.530621i \(-0.821959\pi\)
0.956082 + 0.293098i \(0.0946862\pi\)
\(318\) 0 0
\(319\) 541928. + 348276.i 0.298170 + 0.191622i
\(320\) 0 0
\(321\) −2.06781e6 −1.12008
\(322\) 0 0
\(323\) 922558. 0.492025
\(324\) 0 0
\(325\) 4.10559e6 + 2.63850e6i 2.15609 + 1.38564i
\(326\) 0 0
\(327\) 569006. 1.24595e6i 0.294271 0.644364i
\(328\) 0 0
\(329\) −2.53918e6 745570.i −1.29331 0.379751i
\(330\) 0 0
\(331\) 818444. + 1.79214e6i 0.410600 + 0.899089i 0.996085 + 0.0884052i \(0.0281770\pi\)
−0.585485 + 0.810684i \(0.699096\pi\)
\(332\) 0 0
\(333\) 686392. 792139.i 0.339205 0.391463i
\(334\) 0 0
\(335\) −1.06934e6 + 313987.i −0.520600 + 0.152862i
\(336\) 0 0
\(337\) 741642. 476624.i 0.355729 0.228613i −0.350554 0.936542i \(-0.614007\pi\)
0.706284 + 0.707929i \(0.250370\pi\)
\(338\) 0 0
\(339\) −263821. 1.83491e6i −0.124684 0.867195i
\(340\) 0 0
\(341\) 41161.8 286287.i 0.0191694 0.133326i
\(342\) 0 0
\(343\) 1.43363e6 + 1.65450e6i 0.657964 + 0.759331i
\(344\) 0 0
\(345\) 536141. 2.16419e6i 0.242511 0.978921i
\(346\) 0 0
\(347\) 2.03648e6 + 2.35022e6i 0.907938 + 1.04782i 0.998650 + 0.0519397i \(0.0165403\pi\)
−0.0907118 + 0.995877i \(0.528914\pi\)
\(348\) 0 0
\(349\) −87529.7 + 608783.i −0.0384673 + 0.267546i −0.999974 0.00723609i \(-0.997697\pi\)
0.961506 + 0.274782i \(0.0886058\pi\)
\(350\) 0 0
\(351\) 583540. + 4.05861e6i 0.252815 + 1.75837i
\(352\) 0 0
\(353\) −3.24429e6 + 2.08498e6i −1.38574 + 0.890563i −0.999493 0.0318319i \(-0.989866\pi\)
−0.386249 + 0.922394i \(0.626230\pi\)
\(354\) 0 0
\(355\) 4.08936e6 1.20074e6i 1.72220 0.505684i
\(356\) 0 0
\(357\) −661904. + 763877.i −0.274868 + 0.317215i
\(358\) 0 0
\(359\) 134868. + 295320.i 0.0552298 + 0.120936i 0.935235 0.354028i \(-0.115188\pi\)
−0.880005 + 0.474964i \(0.842461\pi\)
\(360\) 0 0
\(361\) 1.04457e6 + 306713.i 0.421860 + 0.123869i
\(362\) 0 0
\(363\) −576083. + 1.26145e6i −0.229466 + 0.502461i
\(364\) 0 0
\(365\) 4.64090e6 + 2.98253e6i 1.82335 + 1.17180i
\(366\) 0 0
\(367\) −2.04589e6 −0.792896 −0.396448 0.918057i \(-0.629757\pi\)
−0.396448 + 0.918057i \(0.629757\pi\)
\(368\) 0 0
\(369\) −2.28555e6 −0.873826
\(370\) 0 0
\(371\) −1.75693e6 1.12911e6i −0.662703 0.425893i
\(372\) 0 0
\(373\) −1.26934e6 + 2.77947e6i −0.472396 + 1.03440i 0.512088 + 0.858933i \(0.328872\pi\)
−0.984485 + 0.175471i \(0.943855\pi\)
\(374\) 0 0
\(375\) −1.23940e6 363920.i −0.455126 0.133637i
\(376\) 0 0
\(377\) 1.89878e6 + 4.15774e6i 0.688051 + 1.50662i
\(378\) 0 0
\(379\) 704046. 812513.i 0.251770 0.290558i −0.615770 0.787926i \(-0.711155\pi\)
0.867539 + 0.497369i \(0.165700\pi\)
\(380\) 0 0
\(381\) 2.32113e6 681546.i 0.819195 0.240537i
\(382\) 0 0
\(383\) 2.79355e6 1.79531e6i 0.973105 0.625377i 0.0455099 0.998964i \(-0.485509\pi\)
0.927595 + 0.373587i \(0.121872\pi\)
\(384\) 0 0
\(385\) −241496. 1.67964e6i −0.0830344 0.577517i
\(386\) 0 0
\(387\) −257928. + 1.79393e6i −0.0875429 + 0.608874i
\(388\) 0 0
\(389\) −2.59346e6 2.99301e6i −0.868972 1.00285i −0.999934 0.0114599i \(-0.996352\pi\)
0.130962 0.991387i \(-0.458193\pi\)
\(390\) 0 0
\(391\) −1.55595e6 1.23586e6i −0.514700 0.408816i
\(392\) 0 0
\(393\) −1.64162e6 1.89453e6i −0.536155 0.618756i
\(394\) 0 0
\(395\) 35107.7 244179.i 0.0113216 0.0787437i
\(396\) 0 0
\(397\) −743844. 5.17355e6i −0.236868 1.64745i −0.667271 0.744815i \(-0.732538\pi\)
0.430404 0.902637i \(-0.358371\pi\)
\(398\) 0 0
\(399\) 1.27877e6 821813.i 0.402123 0.258429i
\(400\) 0 0
\(401\) −3.63045e6 + 1.06600e6i −1.12746 + 0.331051i −0.791708 0.610900i \(-0.790808\pi\)
−0.335749 + 0.941951i \(0.608989\pi\)
\(402\) 0 0
\(403\) 1.34391e6 1.55096e6i 0.412200 0.475704i
\(404\) 0 0
\(405\) −141504. 309851.i −0.0428678 0.0938675i
\(406\) 0 0
\(407\) −1.05313e6 309227.i −0.315135 0.0925320i
\(408\) 0 0
\(409\) 2.39873e6 5.25249e6i 0.709044 1.55259i −0.119604 0.992822i \(-0.538163\pi\)
0.828649 0.559769i \(-0.189110\pi\)
\(410\) 0 0
\(411\) 1.27514e6 + 819483.i 0.372352 + 0.239296i
\(412\) 0 0
\(413\) −3.81711e6 −1.10118
\(414\) 0 0
\(415\) −2.16599e6 −0.617356
\(416\) 0 0
\(417\) 2.60408e6 + 1.67354e6i 0.733354 + 0.471298i
\(418\) 0 0
\(419\) 1.47501e6 3.22981e6i 0.410449 0.898757i −0.585655 0.810561i \(-0.699162\pi\)
0.996103 0.0881963i \(-0.0281103\pi\)
\(420\) 0 0
\(421\) 1.84126e6 + 540644.i 0.506303 + 0.148664i 0.524902 0.851163i \(-0.324102\pi\)
−0.0185982 + 0.999827i \(0.505920\pi\)
\(422\) 0 0
\(423\) −1.21806e6 2.66718e6i −0.330992 0.724772i
\(424\) 0 0
\(425\) −2.35670e6 + 2.71977e6i −0.632894 + 0.730399i
\(426\) 0 0
\(427\) −1.99691e6 + 586347.i −0.530017 + 0.155627i
\(428\) 0 0
\(429\) 1.33789e6 859809.i 0.350976 0.225558i
\(430\) 0 0
\(431\) −516342. 3.59124e6i −0.133889 0.931216i −0.940418 0.340022i \(-0.889566\pi\)
0.806529 0.591195i \(-0.201344\pi\)
\(432\) 0 0
\(433\) −988348. + 6.87411e6i −0.253332 + 1.76196i 0.324574 + 0.945860i \(0.394779\pi\)
−0.577906 + 0.816103i \(0.696130\pi\)
\(434\) 0 0
\(435\) −2.47667e6 2.85823e6i −0.627545 0.724225i
\(436\) 0 0
\(437\) 1.72158e6 + 2.44257e6i 0.431244 + 0.611849i
\(438\) 0 0
\(439\) −4.62592e6 5.33860e6i −1.14561 1.32210i −0.939094 0.343661i \(-0.888333\pi\)
−0.206516 0.978443i \(-0.566213\pi\)
\(440\) 0 0
\(441\) −3280.21 + 22814.4i −0.000803166 + 0.00558614i
\(442\) 0 0
\(443\) 735215. + 5.11353e6i 0.177994 + 1.23797i 0.861397 + 0.507933i \(0.169590\pi\)
−0.683403 + 0.730041i \(0.739501\pi\)
\(444\) 0 0
\(445\) −7.93697e6 + 5.10078e6i −1.90001 + 1.22106i
\(446\) 0 0
\(447\) −1.07357e6 + 315228.i −0.254133 + 0.0746202i
\(448\) 0 0
\(449\) 3.34331e6 3.85839e6i 0.782639 0.903213i −0.214658 0.976689i \(-0.568864\pi\)
0.997297 + 0.0734759i \(0.0234092\pi\)
\(450\) 0 0
\(451\) 994239. + 2.17708e6i 0.230170 + 0.504003i
\(452\) 0 0
\(453\) −2.26385e6 664726.i −0.518325 0.152194i
\(454\) 0 0
\(455\) 5.00172e6 1.09522e7i 1.13264 2.48013i
\(456\) 0 0
\(457\) −6.14564e6 3.94956e6i −1.37650 0.884624i −0.377360 0.926067i \(-0.623168\pi\)
−0.999141 + 0.0414429i \(0.986805\pi\)
\(458\) 0 0
\(459\) −3.02361e6 −0.669876
\(460\) 0 0
\(461\) 335873. 0.0736076 0.0368038 0.999323i \(-0.488282\pi\)
0.0368038 + 0.999323i \(0.488282\pi\)
\(462\) 0 0
\(463\) 4.07121e6 + 2.61641e6i 0.882615 + 0.567222i 0.901587 0.432598i \(-0.142403\pi\)
−0.0189721 + 0.999820i \(0.506039\pi\)
\(464\) 0 0
\(465\) −705393. + 1.54459e6i −0.151286 + 0.331270i
\(466\) 0 0
\(467\) 4.16794e6 + 1.22382e6i 0.884360 + 0.259671i 0.692212 0.721695i \(-0.256636\pi\)
0.192148 + 0.981366i \(0.438455\pi\)
\(468\) 0 0
\(469\) 679837. + 1.48864e6i 0.142716 + 0.312505i
\(470\) 0 0
\(471\) −3.22129e6 + 3.71757e6i −0.669079 + 0.772159i
\(472\) 0 0
\(473\) 1.82099e6 534691.i 0.374244 0.109888i
\(474\) 0 0
\(475\) 4.55302e6 2.92605e6i 0.925903 0.595042i
\(476\) 0 0
\(477\) −329316. 2.29044e6i −0.0662699 0.460917i
\(478\) 0 0
\(479\) 339460. 2.36099e6i 0.0676004 0.470171i −0.927699 0.373328i \(-0.878217\pi\)
0.995300 0.0968428i \(-0.0308744\pi\)
\(480\) 0 0
\(481\) −5.09997e6 5.88567e6i −1.00509 1.15993i
\(482\) 0 0
\(483\) −3.25762e6 326998.i −0.635379 0.0637789i
\(484\) 0 0
\(485\) 7.49812e6 + 8.65330e6i 1.44743 + 1.67043i
\(486\) 0 0
\(487\) −1.06807e6 + 7.42859e6i −0.204069 + 1.41933i 0.587980 + 0.808875i \(0.299923\pi\)
−0.792050 + 0.610457i \(0.790986\pi\)
\(488\) 0 0
\(489\) 70263.3 + 488692.i 0.0132879 + 0.0924194i
\(490\) 0 0
\(491\) 1.38292e6 888751.i 0.258878 0.166371i −0.404764 0.914421i \(-0.632646\pi\)
0.663642 + 0.748051i \(0.269010\pi\)
\(492\) 0 0
\(493\) −3.23399e6 + 949586.i −0.599269 + 0.175961i
\(494\) 0 0
\(495\) 1.23124e6 1.42093e6i 0.225856 0.260651i
\(496\) 0 0
\(497\) −2.59983e6 5.69282e6i −0.472121 1.03380i
\(498\) 0 0
\(499\) 4.19479e6 + 1.23170e6i 0.754153 + 0.221439i 0.636141 0.771573i \(-0.280530\pi\)
0.118012 + 0.993012i \(0.462348\pi\)
\(500\) 0 0
\(501\) 599320. 1.31233e6i 0.106675 0.233587i
\(502\) 0 0
\(503\) 5.25949e6 + 3.38007e6i 0.926880 + 0.595670i 0.914646 0.404256i \(-0.132469\pi\)
0.0122340 + 0.999925i \(0.496106\pi\)
\(504\) 0 0
\(505\) −2.99869e6 −0.523243
\(506\) 0 0
\(507\) 7.57035e6 1.30797
\(508\) 0 0
\(509\) 6.49937e6 + 4.17689e6i 1.11193 + 0.714593i 0.961712 0.274061i \(-0.0883669\pi\)
0.150216 + 0.988653i \(0.452003\pi\)
\(510\) 0 0
\(511\) 3.36517e6 7.36869e6i 0.570104 1.24835i
\(512\) 0 0
\(513\) 4.36301e6 + 1.28110e6i 0.731969 + 0.214926i
\(514\) 0 0
\(515\) −7.01632e6 1.53636e7i −1.16571 2.55255i
\(516\) 0 0
\(517\) −2.01073e6 + 2.32050e6i −0.330847 + 0.381818i
\(518\) 0 0
\(519\) −1.01484e6 + 297983.i −0.165378 + 0.0485594i
\(520\) 0 0
\(521\) −2.48448e6 + 1.59668e6i −0.400996 + 0.257705i −0.725560 0.688159i \(-0.758419\pi\)
0.324563 + 0.945864i \(0.394783\pi\)
\(522\) 0 0
\(523\) 1.05205e6 + 7.31718e6i 0.168183 + 1.16974i 0.882636 + 0.470057i \(0.155766\pi\)
−0.714453 + 0.699683i \(0.753324\pi\)
\(524\) 0 0
\(525\) −843869. + 5.86924e6i −0.133622 + 0.929359i
\(526\) 0 0
\(527\) 991005. + 1.14368e6i 0.155435 + 0.179382i
\(528\) 0 0
\(529\) 368528. 6.42578e6i 0.0572574 0.998359i
\(530\) 0 0
\(531\) −2.76961e6 3.19630e6i −0.426268 0.491939i
\(532\) 0 0
\(533\) −2.41677e6 + 1.68090e7i −0.368483 + 2.56286i
\(534\) 0 0
\(535\) 2.58498e6 + 1.79790e7i 0.390457 + 2.71569i
\(536\) 0 0
\(537\) 740886. 476138.i 0.110870 0.0712520i
\(538\) 0 0
\(539\) 23158.5 6799.95i 0.00343351 0.00100817i
\(540\) 0 0
\(541\) 2.49051e6 2.87421e6i 0.365844 0.422207i −0.542745 0.839897i \(-0.682615\pi\)
0.908589 + 0.417691i \(0.137161\pi\)
\(542\) 0 0
\(543\) 356009. + 779551.i 0.0518157 + 0.113461i
\(544\) 0 0
\(545\) −1.15445e7 3.38976e6i −1.66488 0.488852i
\(546\) 0 0
\(547\) −390501. + 855079.i −0.0558026 + 0.122191i −0.935479 0.353382i \(-0.885032\pi\)
0.879677 + 0.475572i \(0.157759\pi\)
\(548\) 0 0
\(549\) −1.93990e6 1.24670e6i −0.274694 0.176535i
\(550\) 0 0
\(551\) 5.06892e6 0.711273
\(552\) 0 0
\(553\) −362244. −0.0503718
\(554\) 0 0
\(555\) 5.42091e6 + 3.48381e6i 0.747033 + 0.480089i
\(556\) 0 0
\(557\) 136535. 298969.i 0.0186468 0.0408309i −0.900079 0.435726i \(-0.856492\pi\)
0.918726 + 0.394895i \(0.129219\pi\)
\(558\) 0 0
\(559\) 1.29207e7 + 3.79385e6i 1.74886 + 0.513512i
\(560\) 0 0
\(561\) 487170. + 1.06675e6i 0.0653542 + 0.143106i
\(562\) 0 0
\(563\) −4.97918e6 + 5.74628e6i −0.662044 + 0.764039i −0.983110 0.183018i \(-0.941413\pi\)
0.321066 + 0.947057i \(0.395959\pi\)
\(564\) 0 0
\(565\) −1.56242e7 + 4.58768e6i −2.05910 + 0.604605i
\(566\) 0 0
\(567\) −420787. + 270424.i −0.0549674 + 0.0353254i
\(568\) 0 0
\(569\) −2.09885e6 1.45978e7i −0.271769 1.89020i −0.430052 0.902804i \(-0.641505\pi\)
0.158283 0.987394i \(-0.449404\pi\)
\(570\) 0 0
\(571\) −789496. + 5.49106e6i −0.101335 + 0.704800i 0.874298 + 0.485390i \(0.161322\pi\)
−0.975633 + 0.219410i \(0.929587\pi\)
\(572\) 0 0
\(573\) 5.10161e6 + 5.88757e6i 0.649114 + 0.749117i
\(574\) 0 0
\(575\) −1.15987e7 1.16427e6i −1.46298 0.146853i
\(576\) 0 0
\(577\) 1.49683e6 + 1.72743e6i 0.187168 + 0.216004i 0.841577 0.540138i \(-0.181628\pi\)
−0.654409 + 0.756141i \(0.727082\pi\)
\(578\) 0 0
\(579\) 729104. 5.07103e6i 0.0903843 0.628637i
\(580\) 0 0
\(581\) 452642. + 3.14819e6i 0.0556307 + 0.386920i
\(582\) 0 0
\(583\) −2.03848e6 + 1.31005e6i −0.248391 + 0.159631i
\(584\) 0 0
\(585\) 1.28001e7 3.75846e6i 1.54641 0.454067i
\(586\) 0 0
\(587\) 8.34473e6 9.63033e6i 0.999578 1.15357i 0.0114514 0.999934i \(-0.496355\pi\)
0.988127 0.153640i \(-0.0490997\pi\)
\(588\) 0 0
\(589\) −945426. 2.07019e6i −0.112290 0.245880i
\(590\) 0 0
\(591\) 6.48019e6 + 1.90275e6i 0.763166 + 0.224086i
\(592\) 0 0
\(593\) 5.98347e6 1.31020e7i 0.698741 1.53003i −0.142750 0.989759i \(-0.545595\pi\)
0.841491 0.540271i \(-0.181678\pi\)
\(594\) 0 0
\(595\) 7.46912e6 + 4.80011e6i 0.864922 + 0.555852i
\(596\) 0 0
\(597\) 2.50181e6 0.287289
\(598\) 0 0
\(599\) 689542. 0.0785224 0.0392612 0.999229i \(-0.487500\pi\)
0.0392612 + 0.999229i \(0.487500\pi\)
\(600\) 0 0
\(601\) 1.25530e7 + 8.06732e6i 1.41762 + 0.911052i 0.999997 + 0.00243344i \(0.000774589\pi\)
0.417627 + 0.908618i \(0.362862\pi\)
\(602\) 0 0
\(603\) −753253. + 1.64939e6i −0.0843621 + 0.184727i
\(604\) 0 0
\(605\) 1.16880e7 + 3.43192e6i 1.29824 + 0.381196i
\(606\) 0 0
\(607\) 1.26521e6 + 2.77043e6i 0.139377 + 0.305194i 0.966430 0.256931i \(-0.0827113\pi\)
−0.827052 + 0.562125i \(0.809984\pi\)
\(608\) 0 0
\(609\) −3.63678e6 + 4.19706e6i −0.397350 + 0.458566i
\(610\) 0 0
\(611\) −2.09037e7 + 6.13788e6i −2.26527 + 0.665144i
\(612\) 0 0
\(613\) −3.25290e6 + 2.09051e6i −0.349639 + 0.224699i −0.703658 0.710539i \(-0.748451\pi\)
0.354019 + 0.935238i \(0.384815\pi\)
\(614\) 0 0
\(615\) −1.99969e6 1.39082e7i −0.213194 1.48280i
\(616\) 0 0
\(617\) 229098. 1.59341e6i 0.0242274 0.168506i −0.974115 0.226051i \(-0.927418\pi\)
0.998343 + 0.0575456i \(0.0183274\pi\)
\(618\) 0 0
\(619\) −6.61893e6 7.63865e6i −0.694322 0.801290i 0.293652 0.955913i \(-0.405129\pi\)
−0.987974 + 0.154622i \(0.950584\pi\)
\(620\) 0 0
\(621\) −5.64234e6 8.00535e6i −0.587124 0.833012i
\(622\) 0 0
\(623\) 9.07247e6 + 1.04702e7i 0.936495 + 1.08077i
\(624\) 0 0
\(625\) 428677. 2.98151e6i 0.0438965 0.305307i
\(626\) 0 0
\(627\) −250996. 1.74572e6i −0.0254975 0.177339i
\(628\) 0 0
\(629\) 4.83115e6 3.10479e6i 0.486882 0.312900i
\(630\) 0 0
\(631\) −1.10052e7 + 3.23141e6i −1.10033 + 0.323087i −0.780984 0.624551i \(-0.785282\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(632\) 0 0
\(633\) 4.84170e6 5.58762e6i 0.480273 0.554265i
\(634\) 0 0
\(635\) −8.82749e6 1.93295e7i −0.868766 1.90233i
\(636\) 0 0
\(637\) 164319. + 48248.4i 0.0160450 + 0.00471123i
\(638\) 0 0
\(639\) 2.88058e6 6.30759e6i 0.279079 0.611098i
\(640\) 0 0
\(641\) 5.11229e6 + 3.28547e6i 0.491440 + 0.315829i 0.762784 0.646653i \(-0.223832\pi\)
−0.271344 + 0.962482i \(0.587468\pi\)
\(642\) 0 0
\(643\) −1.29122e7 −1.23161 −0.615803 0.787900i \(-0.711168\pi\)
−0.615803 + 0.787900i \(0.711168\pi\)
\(644\) 0 0
\(645\) −1.11422e7 −1.05456
\(646\) 0 0
\(647\) −1.05383e7 6.77254e6i −0.989712 0.636049i −0.0576455 0.998337i \(-0.518359\pi\)
−0.932066 + 0.362288i \(0.881996\pi\)
\(648\) 0 0
\(649\) −1.83979e6 + 4.02859e6i −0.171458 + 0.375440i
\(650\) 0 0
\(651\) 2.39243e6 + 702481.i 0.221252 + 0.0649654i
\(652\) 0 0
\(653\) 1.68597e6 + 3.69176e6i 0.154728 + 0.338806i 0.971082 0.238745i \(-0.0767359\pi\)
−0.816355 + 0.577551i \(0.804009\pi\)
\(654\) 0 0
\(655\) −1.44201e7 + 1.66417e7i −1.31330 + 1.51563i
\(656\) 0 0
\(657\) 8.61196e6 2.52870e6i 0.778374 0.228551i
\(658\) 0 0
\(659\) −6.41709e6 + 4.12402e6i −0.575605 + 0.369919i −0.795821 0.605532i \(-0.792960\pi\)
0.220215 + 0.975451i \(0.429324\pi\)
\(660\) 0 0
\(661\) 19195.9 + 133510.i 0.00170885 + 0.0118853i 0.990658 0.136370i \(-0.0435435\pi\)
−0.988949 + 0.148255i \(0.952634\pi\)
\(662\) 0 0
\(663\) −1.18420e6 + 8.23631e6i −0.104627 + 0.727694i
\(664\) 0 0
\(665\) −8.74399e6 1.00911e7i −0.766753 0.884881i
\(666\) 0 0
\(667\) −8.54906e6 6.79034e6i −0.744052 0.590985i
\(668\) 0 0
\(669\) 2.99198e6 + 3.45293e6i 0.258460 + 0.298278i
\(670\) 0 0
\(671\) −343653. + 2.39016e6i −0.0294655 + 0.204937i
\(672\) 0 0
\(673\) 659431. + 4.58644e6i 0.0561218 + 0.390336i 0.998451 + 0.0556469i \(0.0177221\pi\)
−0.942329 + 0.334689i \(0.891369\pi\)
\(674\) 0 0
\(675\) −1.49222e7 + 9.58990e6i −1.26059 + 0.810130i
\(676\) 0 0
\(677\) 7.63852e6 2.24287e6i 0.640527 0.188076i 0.0546883 0.998503i \(-0.482583\pi\)
0.585838 + 0.810428i \(0.300765\pi\)
\(678\) 0 0
\(679\) 1.10104e7 1.27066e7i 0.916488 1.05768i
\(680\) 0 0
\(681\) 607606. + 1.33047e6i 0.0502059 + 0.109935i
\(682\) 0 0
\(683\) 1.27106e7 + 3.73216e6i 1.04259 + 0.306132i 0.757820 0.652464i \(-0.226265\pi\)
0.284770 + 0.958596i \(0.408083\pi\)
\(684\) 0 0
\(685\) 5.53108e6 1.21114e7i 0.450385 0.986205i
\(686\) 0 0
\(687\) −4.63599e6 2.97937e6i −0.374758 0.240842i
\(688\) 0 0
\(689\) −1.71932e7 −1.37978
\(690\) 0 0
\(691\) 1.61556e7 1.28715 0.643575 0.765383i \(-0.277450\pi\)
0.643575 + 0.765383i \(0.277450\pi\)
\(692\) 0 0
\(693\) −2.32258e6 1.49263e6i −0.183712 0.118065i
\(694\) 0 0
\(695\) 1.12955e7 2.47337e7i 0.887042 1.94235i
\(696\) 0 0
\(697\) −1.20153e7 3.52800e6i −0.936809 0.275072i
\(698\) 0 0
\(699\) −3.93189e6 8.60964e6i −0.304375 0.666488i
\(700\) 0 0
\(701\) 3.23992e6 3.73907e6i 0.249023 0.287388i −0.617452 0.786609i \(-0.711835\pi\)
0.866475 + 0.499221i \(0.166380\pi\)
\(702\) 0 0
\(703\) −8.28674e6 + 2.43321e6i −0.632405 + 0.185691i
\(704\) 0 0
\(705\) 1.51648e7 9.74580e6i 1.14911 0.738490i
\(706\) 0 0
\(707\) 626659. + 4.35851e6i 0.0471501 + 0.327936i
\(708\) 0 0
\(709\) 1.99900e6 1.39034e7i 0.149348 1.03874i −0.767943 0.640518i \(-0.778720\pi\)
0.917291 0.398218i \(-0.130371\pi\)
\(710\) 0 0
\(711\) −262836. 303329.i −0.0194989 0.0225030i
\(712\) 0 0
\(713\) −1.17872e6 + 4.75801e6i −0.0868331 + 0.350511i
\(714\) 0 0
\(715\) −9.14827e6 1.05577e7i −0.669228 0.772330i
\(716\) 0 0
\(717\) −18372.9 + 127786.i −0.00133469 + 0.00928295i
\(718\) 0 0
\(719\) −2.15081e6 1.49592e7i −0.155160 1.07916i −0.907399 0.420270i \(-0.861936\pi\)
0.752240 0.658890i \(-0.228974\pi\)
\(720\) 0 0
\(721\) −2.08642e7 + 1.34086e7i −1.49474 + 0.960608i
\(722\) 0 0
\(723\) 1.08241e7 3.17825e6i 0.770099 0.226121i
\(724\) 0 0
\(725\) −1.29487e7 + 1.49436e7i −0.914914 + 1.05587i
\(726\) 0 0
\(727\) 8.49542e6 + 1.86024e7i 0.596141 + 1.30537i 0.931659 + 0.363333i \(0.118361\pi\)
−0.335519 + 0.942034i \(0.608912\pi\)
\(728\) 0 0
\(729\) −9.53487e6 2.79969e6i −0.664502 0.195115i
\(730\) 0 0
\(731\) −4.12506e6 + 9.03263e6i −0.285520 + 0.625203i
\(732\) 0 0
\(733\) 1.08355e7 + 6.96357e6i 0.744886 + 0.478709i 0.857213 0.514962i \(-0.172194\pi\)
−0.112327 + 0.993671i \(0.535830\pi\)
\(734\) 0 0
\(735\) −141701. −0.00967509
\(736\) 0 0
\(737\) 1.89879e6 0.128768
\(738\) 0 0
\(739\) 1.87886e7 + 1.20747e7i 1.26556 + 0.813327i 0.989035 0.147679i \(-0.0471802\pi\)
0.276527 + 0.961006i \(0.410817\pi\)
\(740\) 0 0
\(741\) 5.19848e6 1.13831e7i 0.347801 0.761578i
\(742\) 0 0
\(743\) 6.13804e6 + 1.80229e6i 0.407904 + 0.119771i 0.479246 0.877681i \(-0.340910\pi\)
−0.0713425 + 0.997452i \(0.522728\pi\)
\(744\) 0 0
\(745\) 4.08289e6 + 8.94028e6i 0.269511 + 0.590147i
\(746\) 0 0
\(747\) −2.30775e6 + 2.66329e6i −0.151317 + 0.174629i
\(748\) 0 0
\(749\) 2.55916e7 7.51438e6i 1.66684 0.489428i
\(750\) 0 0
\(751\) 4.55374e6 2.92651e6i 0.294624 0.189343i −0.384975 0.922927i \(-0.625790\pi\)
0.679599 + 0.733584i \(0.262154\pi\)
\(752\) 0 0
\(753\) −740296. 5.14887e6i −0.0475793 0.330921i
\(754\) 0 0
\(755\) −2.94953e6 + 2.05144e7i −0.188315 + 1.30976i
\(756\) 0 0
\(757\) −1.20476e7 1.39037e7i −0.764118 0.881839i 0.231739 0.972778i \(-0.425559\pi\)
−0.995856 + 0.0909391i \(0.971013\pi\)
\(758\) 0 0
\(759\) −1.91525e6 + 3.28050e6i −0.120676 + 0.206698i
\(760\) 0 0
\(761\) 2.38502e6 + 2.75246e6i 0.149290 + 0.172290i 0.825469 0.564448i \(-0.190911\pi\)
−0.676179 + 0.736737i \(0.736365\pi\)
\(762\) 0 0
\(763\) −2.51438e6 + 1.74879e7i −0.156358 + 1.08749i
\(764\) 0 0
\(765\) 1.40000e6 + 9.73722e6i 0.0864917 + 0.601563i
\(766\) 0 0
\(767\) −2.64357e7 + 1.69892e7i −1.62257 + 1.04276i
\(768\) 0 0
\(769\) 9.04304e6 2.65528e6i 0.551440 0.161917i 0.00587032 0.999983i \(-0.498131\pi\)
0.545570 + 0.838065i \(0.316313\pi\)
\(770\) 0 0
\(771\) 3.52817e6 4.07172e6i 0.213754 0.246685i
\(772\) 0 0
\(773\) 794575. + 1.73988e6i 0.0478284 + 0.104730i 0.932038 0.362361i \(-0.118029\pi\)
−0.884209 + 0.467091i \(0.845302\pi\)
\(774\) 0 0
\(775\) 8.51820e6 + 2.50117e6i 0.509441 + 0.149585i
\(776\) 0 0
\(777\) 3.93076e6 8.60716e6i 0.233574 0.511455i
\(778\) 0 0
\(779\) 1.58430e7 + 1.01817e7i 0.935390 + 0.601139i
\(780\) 0 0
\(781\) −7.26131e6 −0.425978
\(782\) 0 0
\(783\) −1.66130e7 −0.968375
\(784\) 0 0
\(785\) 3.63500e7 + 2.33607e7i 2.10538 + 1.35305i
\(786\) 0 0
\(787\) −2.06010e6 + 4.51100e6i −0.118564 + 0.259619i −0.959604 0.281354i \(-0.909216\pi\)
0.841040 + 0.540973i \(0.181944\pi\)
\(788\) 0 0
\(789\) −5.83478e6 1.71324e6i −0.333681 0.0979776i
\(790\) 0 0
\(791\) 9.93315e6 + 2.17506e7i 0.564476 + 1.23603i
\(792\) 0 0
\(793\) −1.12201e7 + 1.29487e7i −0.633598 + 0.731211i
\(794\) 0 0
\(795\) 1.36498e7 4.00794e6i 0.765963 0.224907i
\(796\) 0 0
\(797\) 2.14810e7 1.38050e7i 1.19787 0.769824i 0.219283 0.975661i \(-0.429628\pi\)
0.978586 + 0.205838i \(0.0659918\pi\)
\(798\) 0 0
\(799\) −2.28632e6 1.59017e7i −0.126698 0.881205i
\(800\) 0 0
\(801\) −2.18455e6 + 1.51939e7i −0.120304 + 0.836735i
\(802\) 0 0
\(803\) −6.15498e6 7.10322e6i −0.336851 0.388747i
\(804\) 0 0
\(805\) 1.22923e6 + 2.87328e7i 0.0668566 + 1.56274i
\(806\) 0 0
\(807\) 3.45406e6 + 3.98619e6i 0.186701 + 0.215464i
\(808\) 0 0
\(809\) 3.39447e6 2.36091e7i 0.182348 1.26826i −0.668843 0.743403i \(-0.733210\pi\)
0.851191 0.524855i \(-0.175881\pi\)
\(810\) 0 0
\(811\) −1.67796e6 1.16705e7i −0.0895838 0.623069i −0.984309 0.176452i \(-0.943538\pi\)
0.894725 0.446617i \(-0.147371\pi\)
\(812\) 0 0
\(813\) −1.61536e7 + 1.03813e7i −0.857123 + 0.550840i
\(814\) 0 0
\(815\) 4.16118e6 1.22183e6i 0.219444 0.0644345i
\(816\) 0 0
\(817\) 9.77948e6 1.12861e7i 0.512579 0.591547i
\(818\) 0 0
\(819\) −8.13773e6 1.78192e7i −0.423930 0.928276i
\(820\) 0 0
\(821\) 2.28685e7 + 6.71479e6i 1.18408 + 0.347676i 0.813744 0.581223i \(-0.197426\pi\)
0.370332 + 0.928900i \(0.379244\pi\)
\(822\) 0 0
\(823\) −1.09426e7 + 2.39610e7i −0.563147 + 1.23312i 0.387220 + 0.921987i \(0.373435\pi\)
−0.950367 + 0.311132i \(0.899292\pi\)
\(824\) 0 0
\(825\) 5.78768e6 + 3.71952e6i 0.296053 + 0.190262i
\(826\) 0 0
\(827\) −2.75664e7 −1.40157 −0.700786 0.713371i \(-0.747167\pi\)
−0.700786 + 0.713371i \(0.747167\pi\)
\(828\) 0 0
\(829\) 4.57539e6 0.231229 0.115614 0.993294i \(-0.463116\pi\)
0.115614 + 0.993294i \(0.463116\pi\)
\(830\) 0 0
\(831\) −5.72449e6 3.67891e6i −0.287564 0.184806i
\(832\) 0 0
\(833\) −52460.7 + 114873.i −0.00261952 + 0.00573594i
\(834\) 0 0
\(835\) −1.21595e7 3.57035e6i −0.603530 0.177212i
\(836\) 0 0
\(837\) 3.09856e6 + 6.78490e6i 0.152878 + 0.334757i
\(838\) 0 0
\(839\) 1.18424e7 1.36669e7i 0.580812 0.670292i −0.386967 0.922093i \(-0.626477\pi\)
0.967779 + 0.251801i \(0.0810229\pi\)
\(840\) 0 0
\(841\) 1.91140e6 561236.i 0.0931881 0.0273625i
\(842\) 0 0
\(843\) 4.64890e6 2.98767e6i 0.225310 0.144798i
\(844\) 0 0
\(845\) −9.46375e6 6.58218e7i −0.455954 3.17123i
\(846\) 0 0
\(847\) 2.54565e6 1.77054e7i 0.121924 0.848002i
\(848\) 0 0
\(849\) −3.17784e6 3.66743e6i −0.151308 0.174619i
\(850\) 0 0
\(851\) 1.72357e7 + 6.99718e6i 0.815838 + 0.331207i
\(852\) 0 0
\(853\) −1.56634e7 1.80765e7i −0.737079 0.850634i 0.256171 0.966632i \(-0.417539\pi\)
−0.993250 + 0.115997i \(0.962994\pi\)
\(854\) 0 0
\(855\) 2.10546e6 1.46438e7i 0.0984989 0.685075i
\(856\) 0 0
\(857\) 4.15755e6 + 2.89164e7i 0.193369 + 1.34491i 0.823012 + 0.568024i \(0.192292\pi\)
−0.629644 + 0.776884i \(0.716799\pi\)
\(858\) 0 0
\(859\) −1.69699e7 + 1.09059e7i −0.784685 + 0.504286i −0.870585 0.492018i \(-0.836260\pi\)
0.0859007 + 0.996304i \(0.472623\pi\)
\(860\) 0 0
\(861\) −1.97972e7 + 5.81298e6i −0.910114 + 0.267234i
\(862\) 0 0
\(863\) −2.58523e7 + 2.98352e7i −1.18161 + 1.36365i −0.264805 + 0.964302i \(0.585308\pi\)
−0.916801 + 0.399344i \(0.869238\pi\)
\(864\) 0 0
\(865\) 3.85952e6 + 8.45118e6i 0.175385 + 0.384040i
\(866\) 0 0
\(867\) 7.73937e6 + 2.27248e6i 0.349669 + 0.102672i
\(868\) 0 0
\(869\) −174597. + 382313.i −0.00784308 + 0.0171739i
\(870\) 0 0
\(871\) 1.13339e7 + 7.28387e6i 0.506215 + 0.325324i
\(872\) 0 0
\(873\) 1.86289e7 0.827279
\(874\) 0 0
\(875\) 1.66615e7 0.735688
\(876\) 0 0
\(877\) 2.82224e7 + 1.81374e7i 1.23907 + 0.796300i 0.985278 0.170960i \(-0.0546868\pi\)
0.253789 + 0.967260i \(0.418323\pi\)
\(878\) 0 0
\(879\) 2.98806e6 6.54295e6i 0.130442 0.285628i
\(880\) 0 0
\(881\) −2.46523e7 7.23855e6i −1.07008 0.314204i −0.301177 0.953568i \(-0.597380\pi\)
−0.768904 + 0.639364i \(0.779198\pi\)
\(882\) 0 0
\(883\) 1.22452e7 + 2.68133e7i 0.528524 + 1.15731i 0.966110 + 0.258129i \(0.0831061\pi\)
−0.437587 + 0.899176i \(0.644167\pi\)
\(884\) 0 0
\(885\) 1.70271e7 1.96503e7i 0.730773 0.843357i
\(886\) 0 0
\(887\) 1.29826e6 381202.i 0.0554053 0.0162685i −0.253912 0.967227i \(-0.581718\pi\)
0.309318 + 0.950959i \(0.399899\pi\)
\(888\) 0 0
\(889\) −2.62501e7 + 1.68699e7i −1.11398 + 0.715909i
\(890\) 0 0
\(891\) 82592.2 + 574441.i 0.00348534 + 0.0242410i
\(892\) 0 0
\(893\) −3.43839e6 + 2.39146e7i −0.144287 + 1.00354i
\(894\) 0 0
\(895\) −5.06606e6 5.84654e6i −0.211404 0.243973i
\(896\) 0 0
\(897\) −2.40164e7 + 1.22344e7i −0.996613 + 0.507694i
\(898\) 0 0
\(899\) 5.44500e6 + 6.28386e6i 0.224698 + 0.259315i
\(900\) 0 0
\(901\) 1.80432e6 1.25493e7i 0.0740458 0.515000i
\(902\) 0 0
\(903\) 2.32846e6 + 1.61948e7i 0.0950276 + 0.660932i
\(904\) 0 0
\(905\) 6.33290e6 4.06991e6i 0.257028 0.165182i
\(906\) 0 0
\(907\) −2.45934e6 + 722127.i −0.0992659 + 0.0291471i −0.330988 0.943635i \(-0.607382\pi\)
0.231722 + 0.972782i \(0.425564\pi\)
\(908\) 0 0
\(909\) −3.19496e6 + 3.68718e6i −0.128249 + 0.148008i
\(910\) 0 0
\(911\) −1.74151e7 3.81337e7i −0.695232 1.52234i −0.845659 0.533724i \(-0.820792\pi\)
0.150427 0.988621i \(-0.451935\pi\)
\(912\) 0 0
\(913\) 3.54078e6 + 1.03967e6i 0.140580 + 0.0412779i
\(914\) 0 0
\(915\) 5.88921e6 1.28956e7i 0.232544 0.509200i
\(916\) 0 0
\(917\) 2.72017e7 + 1.74814e7i 1.06825 + 0.686521i
\(918\) 0 0
\(919\) −4.67691e6 −0.182671 −0.0913356 0.995820i \(-0.529114\pi\)
−0.0913356 + 0.995820i \(0.529114\pi\)
\(920\) 0 0
\(921\) −2.54175e7 −0.987380
\(922\) 0 0
\(923\) −4.33430e7 2.78549e7i −1.67461 1.07621i
\(924\) 0 0
\(925\) 1.39954e7 3.06456e7i 0.537813 1.17765i
\(926\) 0 0
\(927\) −2.63665e7 7.74191e6i −1.00775 0.295903i
\(928\) 0 0
\(929\) −1.31815e7 2.88634e7i −0.501100 1.09726i −0.976110 0.217275i \(-0.930283\pi\)
0.475011 0.879980i \(-0.342444\pi\)
\(930\) 0 0
\(931\) 124371. 143532.i 0.00470267 0.00542717i
\(932\) 0 0
\(933\) −4.68722e6 + 1.37629e6i −0.176283 + 0.0517615i
\(934\) 0 0
\(935\) 8.66608e6 5.56935e6i 0.324185 0.208341i
\(936\) 0 0
\(937\) 996070. + 6.92782e6i 0.0370630 + 0.257779i 0.999925 0.0122136i \(-0.00388780\pi\)
−0.962862 + 0.269993i \(0.912979\pi\)
\(938\) 0 0
\(939\) 3.85717e6 2.68272e7i 0.142760 0.992915i
\(940\) 0 0
\(941\) −1.17670e7 1.35799e7i −0.433204 0.499944i 0.496610 0.867974i \(-0.334578\pi\)
−0.929814 + 0.368030i \(0.880032\pi\)
\(942\) 0 0
\(943\) −1.30808e7 3.83953e7i −0.479022 1.40604i
\(944\) 0 0
\(945\) 2.86578e7 + 3.30728e7i 1.04391 + 1.20474i
\(946\) 0 0
\(947\) −4.70936e6 + 3.27543e7i −0.170642 + 1.18684i 0.706889 + 0.707325i \(0.250098\pi\)
−0.877531 + 0.479519i \(0.840811\pi\)
\(948\) 0 0
\(949\) −9.49085e6 6.60103e7i −0.342089 2.37928i
\(950\) 0 0
\(951\) 3.93116e6 2.52640e6i 0.140951 0.0905839i
\(952\) 0 0
\(953\) 2.39056e7 7.01931e6i 0.852642 0.250358i 0.173926 0.984759i \(-0.444355\pi\)
0.678716 + 0.734400i \(0.262537\pi\)
\(954\) 0 0
\(955\) 4.48130e7 5.17170e7i 1.59000 1.83495i
\(956\) 0 0
\(957\) 2.67672e6 + 5.86120e6i 0.0944763 + 0.206874i
\(958\) 0 0
\(959\) −1.87594e7 5.50825e6i −0.658676 0.193405i
\(960\) 0 0
\(961\) −1.03422e7 + 2.26462e7i −0.361246 + 0.791018i
\(962\) 0 0
\(963\) 2.48610e7 + 1.59772e7i 0.863879 + 0.555182i
\(964\) 0 0
\(965\) −4.50024e7 −1.55567
\(966\) 0 0
\(967\) 3.88647e7 1.33656 0.668282 0.743908i \(-0.267030\pi\)
0.668282 + 0.743908i \(0.267030\pi\)
\(968\) 0 0
\(969\) 7.76295e6 + 4.98894e6i 0.265593 + 0.170687i
\(970\) 0 0
\(971\) −1.82452e7 + 3.99515e7i −0.621014 + 1.35983i 0.293766 + 0.955877i \(0.405091\pi\)
−0.914780 + 0.403953i \(0.867636\pi\)
\(972\) 0 0
\(973\) −3.83102e7 1.12489e7i −1.29728 0.380915i
\(974\) 0 0
\(975\) 2.02786e7 + 4.44039e7i 0.683165 + 1.49592i
\(976\) 0 0
\(977\) −1.78652e7 + 2.06175e7i −0.598785 + 0.691035i −0.971535 0.236897i \(-0.923870\pi\)
0.372749 + 0.927932i \(0.378415\pi\)
\(978\) 0 0
\(979\) 1.54231e7 4.52863e6i 0.514298 0.151011i
\(980\) 0 0
\(981\) −1.64681e7 + 1.05834e7i −0.546349 + 0.351117i
\(982\) 0 0
\(983\) −6.67089e6 4.63971e7i −0.220191 1.53146i −0.737313 0.675551i \(-0.763906\pi\)
0.517122 0.855912i \(-0.327003\pi\)
\(984\) 0 0
\(985\) 8.44292e6 5.87218e7i 0.277270 1.92845i
\(986\) 0 0
\(987\) −1.73343e7 2.00049e7i −0.566387 0.653646i
\(988\) 0 0
\(989\) −3.16126e7 + 5.93415e6i −1.02771 + 0.192916i
\(990\) 0 0
\(991\) 1.38894e7 + 1.60292e7i 0.449261 + 0.518475i 0.934527 0.355892i \(-0.115823\pi\)
−0.485266 + 0.874366i \(0.661277\pi\)
\(992\) 0 0
\(993\) −2.80455e6 + 1.95061e7i −0.0902589 + 0.627765i
\(994\) 0 0
\(995\) −3.12753e6 2.17525e7i −0.100148 0.696548i
\(996\) 0 0
\(997\) 7.57856e6 4.87044e6i 0.241462 0.155178i −0.414313 0.910134i \(-0.635978\pi\)
0.655775 + 0.754956i \(0.272342\pi\)
\(998\) 0 0
\(999\) 2.71592e7 7.97465e6i 0.860999 0.252812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.6.e.a.13.7 100
23.16 even 11 inner 92.6.e.a.85.7 yes 100
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.6.e.a.13.7 100 1.1 even 1 trivial
92.6.e.a.85.7 yes 100 23.16 even 11 inner