Properties

Label 92.6.e.a.85.10
Level $92$
Weight $6$
Character 92.85
Analytic conductor $14.755$
Analytic rank $0$
Dimension $100$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,6,Mod(9,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.9");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 92.e (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7553114228\)
Analytic rank: \(0\)
Dimension: \(100\)
Relative dimension: \(10\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 85.10
Character \(\chi\) \(=\) 92.85
Dual form 92.6.e.a.13.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(24.2364 - 15.5758i) q^{3} +(-11.6103 - 25.4230i) q^{5} +(-177.640 + 52.1597i) q^{7} +(243.851 - 533.960i) q^{9} +(-474.348 - 547.427i) q^{11} +(166.261 + 48.8187i) q^{13} +(-677.373 - 435.321i) q^{15} +(156.535 - 1088.73i) q^{17} +(395.489 + 2750.69i) q^{19} +(-3492.91 + 4031.04i) q^{21} +(1405.67 - 2111.98i) q^{23} +(1534.91 - 1771.38i) q^{25} +(-1410.45 - 9809.89i) q^{27} +(-467.977 + 3254.85i) q^{29} +(2285.71 + 1468.94i) q^{31} +(-20023.1 - 5879.31i) q^{33} +(3388.50 + 3910.54i) q^{35} +(1856.40 - 4064.95i) q^{37} +(4789.95 - 1406.46i) q^{39} +(-5717.01 - 12518.5i) q^{41} +(7705.63 - 4952.11i) q^{43} -16406.0 q^{45} +8138.79 q^{47} +(14696.3 - 9444.74i) q^{49} +(-13163.9 - 28824.9i) q^{51} +(-18601.5 + 5461.88i) q^{53} +(-8409.90 + 18415.1i) q^{55} +(52429.3 + 60506.6i) q^{57} +(19241.0 + 5649.66i) q^{59} +(46618.8 + 29960.1i) q^{61} +(-15466.5 + 107572. i) q^{63} +(-689.223 - 4793.65i) q^{65} +(-29227.3 + 33730.1i) q^{67} +(1172.66 - 73081.0i) q^{69} +(-7781.03 + 8979.79i) q^{71} +(-5804.95 - 40374.3i) q^{73} +(9610.04 - 66839.3i) q^{75} +(112817. + 72503.0i) q^{77} +(4415.96 + 1296.64i) q^{79} +(-93569.7 - 107985. i) q^{81} +(4630.02 - 10138.3i) q^{83} +(-29496.1 + 8660.83i) q^{85} +(39354.8 + 86174.9i) q^{87} +(60433.9 - 38838.5i) q^{89} -32081.0 q^{91} +78277.2 q^{93} +(65338.9 - 41990.7i) q^{95} +(-3642.12 - 7975.12i) q^{97} +(-407975. + 119792. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100 q + 2 q^{3} - 86 q^{5} - 118 q^{7} - 368 q^{9} - 242 q^{11} + 322 q^{13} - 3717 q^{15} + 2953 q^{17} - 259 q^{19} - 12349 q^{21} - 6038 q^{23} - 1324 q^{25} + 23933 q^{27} + 12677 q^{29} - 4401 q^{31}+ \cdots + 26799 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{4}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 24.2364 15.5758i 1.55476 0.999186i 0.570744 0.821128i \(-0.306655\pi\)
0.984020 0.178058i \(-0.0569815\pi\)
\(4\) 0 0
\(5\) −11.6103 25.4230i −0.207691 0.454780i 0.776907 0.629616i \(-0.216788\pi\)
−0.984598 + 0.174836i \(0.944060\pi\)
\(6\) 0 0
\(7\) −177.640 + 52.1597i −1.37024 + 0.402337i −0.882360 0.470576i \(-0.844046\pi\)
−0.487876 + 0.872913i \(0.662228\pi\)
\(8\) 0 0
\(9\) 243.851 533.960i 1.00350 2.19737i
\(10\) 0 0
\(11\) −474.348 547.427i −1.18200 1.36410i −0.916526 0.399976i \(-0.869018\pi\)
−0.265470 0.964119i \(-0.585527\pi\)
\(12\) 0 0
\(13\) 166.261 + 48.8187i 0.272855 + 0.0801175i 0.415298 0.909686i \(-0.363677\pi\)
−0.142442 + 0.989803i \(0.545496\pi\)
\(14\) 0 0
\(15\) −677.373 435.321i −0.777320 0.499553i
\(16\) 0 0
\(17\) 156.535 1088.73i 0.131368 0.913685i −0.812405 0.583093i \(-0.801842\pi\)
0.943774 0.330592i \(-0.107249\pi\)
\(18\) 0 0
\(19\) 395.489 + 2750.69i 0.251334 + 1.74806i 0.590226 + 0.807238i \(0.299039\pi\)
−0.338892 + 0.940825i \(0.610052\pi\)
\(20\) 0 0
\(21\) −3492.91 + 4031.04i −1.72838 + 1.99466i
\(22\) 0 0
\(23\) 1405.67 2111.98i 0.554068 0.832471i
\(24\) 0 0
\(25\) 1534.91 1771.38i 0.491172 0.566842i
\(26\) 0 0
\(27\) −1410.45 9809.89i −0.372347 2.58973i
\(28\) 0 0
\(29\) −467.977 + 3254.85i −0.103331 + 0.718681i 0.870626 + 0.491946i \(0.163714\pi\)
−0.973956 + 0.226735i \(0.927195\pi\)
\(30\) 0 0
\(31\) 2285.71 + 1468.94i 0.427186 + 0.274536i 0.736518 0.676418i \(-0.236469\pi\)
−0.309331 + 0.950954i \(0.600105\pi\)
\(32\) 0 0
\(33\) −20023.1 5879.31i −3.20071 0.939813i
\(34\) 0 0
\(35\) 3388.50 + 3910.54i 0.467560 + 0.539593i
\(36\) 0 0
\(37\) 1856.40 4064.95i 0.222930 0.488148i −0.764810 0.644255i \(-0.777167\pi\)
0.987740 + 0.156108i \(0.0498947\pi\)
\(38\) 0 0
\(39\) 4789.95 1406.46i 0.504278 0.148069i
\(40\) 0 0
\(41\) −5717.01 12518.5i −0.531140 1.16303i −0.965047 0.262077i \(-0.915593\pi\)
0.433907 0.900958i \(-0.357135\pi\)
\(42\) 0 0
\(43\) 7705.63 4952.11i 0.635532 0.408431i −0.182822 0.983146i \(-0.558523\pi\)
0.818354 + 0.574715i \(0.194887\pi\)
\(44\) 0 0
\(45\) −16406.0 −1.20774
\(46\) 0 0
\(47\) 8138.79 0.537422 0.268711 0.963221i \(-0.413402\pi\)
0.268711 + 0.963221i \(0.413402\pi\)
\(48\) 0 0
\(49\) 14696.3 9444.74i 0.874415 0.561953i
\(50\) 0 0
\(51\) −13163.9 28824.9i −0.708695 1.55183i
\(52\) 0 0
\(53\) −18601.5 + 5461.88i −0.909614 + 0.267087i −0.702879 0.711310i \(-0.748102\pi\)
−0.206736 + 0.978397i \(0.566284\pi\)
\(54\) 0 0
\(55\) −8409.90 + 18415.1i −0.374873 + 0.820858i
\(56\) 0 0
\(57\) 52429.3 + 60506.6i 2.13741 + 2.46670i
\(58\) 0 0
\(59\) 19241.0 + 5649.66i 0.719609 + 0.211296i 0.620978 0.783828i \(-0.286735\pi\)
0.0986310 + 0.995124i \(0.468554\pi\)
\(60\) 0 0
\(61\) 46618.8 + 29960.1i 1.60412 + 1.03090i 0.965159 + 0.261666i \(0.0842718\pi\)
0.638961 + 0.769239i \(0.279365\pi\)
\(62\) 0 0
\(63\) −15466.5 + 107572.i −0.490953 + 3.41465i
\(64\) 0 0
\(65\) −689.223 4793.65i −0.0202337 0.140729i
\(66\) 0 0
\(67\) −29227.3 + 33730.1i −0.795430 + 0.917975i −0.998121 0.0612673i \(-0.980486\pi\)
0.202691 + 0.979243i \(0.435031\pi\)
\(68\) 0 0
\(69\) 1172.66 73081.0i 0.0296517 1.84791i
\(70\) 0 0
\(71\) −7781.03 + 8979.79i −0.183186 + 0.211407i −0.839914 0.542720i \(-0.817394\pi\)
0.656728 + 0.754127i \(0.271940\pi\)
\(72\) 0 0
\(73\) −5804.95 40374.3i −0.127495 0.886744i −0.948715 0.316133i \(-0.897615\pi\)
0.821220 0.570611i \(-0.193294\pi\)
\(74\) 0 0
\(75\) 9610.04 66839.3i 0.197275 1.37208i
\(76\) 0 0
\(77\) 112817. + 72503.0i 2.16844 + 1.39357i
\(78\) 0 0
\(79\) 4415.96 + 1296.64i 0.0796081 + 0.0233750i 0.321294 0.946979i \(-0.395882\pi\)
−0.241686 + 0.970355i \(0.577700\pi\)
\(80\) 0 0
\(81\) −93569.7 107985.i −1.58461 1.82874i
\(82\) 0 0
\(83\) 4630.02 10138.3i 0.0737714 0.161537i −0.869153 0.494543i \(-0.835336\pi\)
0.942925 + 0.333006i \(0.108063\pi\)
\(84\) 0 0
\(85\) −29496.1 + 8660.83i −0.442810 + 0.130021i
\(86\) 0 0
\(87\) 39354.8 + 86174.9i 0.557441 + 1.22063i
\(88\) 0 0
\(89\) 60433.9 38838.5i 0.808734 0.519742i −0.0697214 0.997567i \(-0.522211\pi\)
0.878455 + 0.477825i \(0.158575\pi\)
\(90\) 0 0
\(91\) −32081.0 −0.406110
\(92\) 0 0
\(93\) 78277.2 0.938486
\(94\) 0 0
\(95\) 65338.9 41990.7i 0.742784 0.477358i
\(96\) 0 0
\(97\) −3642.12 7975.12i −0.0393029 0.0860613i 0.888962 0.457981i \(-0.151427\pi\)
−0.928265 + 0.371919i \(0.878700\pi\)
\(98\) 0 0
\(99\) −407975. + 119792.i −4.18355 + 1.22840i
\(100\) 0 0
\(101\) 63774.9 139647.i 0.622080 1.36216i −0.291917 0.956444i \(-0.594293\pi\)
0.913997 0.405721i \(-0.132980\pi\)
\(102\) 0 0
\(103\) −2016.62 2327.30i −0.0187297 0.0216152i 0.746307 0.665601i \(-0.231825\pi\)
−0.765037 + 0.643986i \(0.777279\pi\)
\(104\) 0 0
\(105\) 143035. + 41998.8i 1.26610 + 0.371760i
\(106\) 0 0
\(107\) 8073.25 + 5188.37i 0.0681694 + 0.0438098i 0.574282 0.818658i \(-0.305281\pi\)
−0.506112 + 0.862468i \(0.668918\pi\)
\(108\) 0 0
\(109\) 6058.50 42137.8i 0.0488426 0.339708i −0.950718 0.310058i \(-0.899652\pi\)
0.999560 0.0296500i \(-0.00943926\pi\)
\(110\) 0 0
\(111\) −18322.3 127435.i −0.141148 0.981703i
\(112\) 0 0
\(113\) −66953.2 + 77268.1i −0.493259 + 0.569252i −0.946734 0.322018i \(-0.895639\pi\)
0.453474 + 0.891269i \(0.350184\pi\)
\(114\) 0 0
\(115\) −70012.9 11215.6i −0.493666 0.0790823i
\(116\) 0 0
\(117\) 66610.2 76872.2i 0.449859 0.519164i
\(118\) 0 0
\(119\) 28980.8 + 201566.i 0.187604 + 1.30482i
\(120\) 0 0
\(121\) −51750.2 + 359931.i −0.321328 + 2.23489i
\(122\) 0 0
\(123\) −333545. 214356.i −1.98788 1.27754i
\(124\) 0 0
\(125\) −146656. 43062.1i −0.839509 0.246502i
\(126\) 0 0
\(127\) 165712. + 191242.i 0.911684 + 1.05214i 0.998436 + 0.0559094i \(0.0178058\pi\)
−0.0867519 + 0.996230i \(0.527649\pi\)
\(128\) 0 0
\(129\) 109624. 240042.i 0.580003 1.27003i
\(130\) 0 0
\(131\) 152852. 44881.3i 0.778202 0.228501i 0.131574 0.991306i \(-0.457997\pi\)
0.646628 + 0.762806i \(0.276179\pi\)
\(132\) 0 0
\(133\) −213730. 468003.i −1.04770 2.29414i
\(134\) 0 0
\(135\) −233021. + 149753.i −1.10042 + 0.707199i
\(136\) 0 0
\(137\) 15102.9 0.0687478 0.0343739 0.999409i \(-0.489056\pi\)
0.0343739 + 0.999409i \(0.489056\pi\)
\(138\) 0 0
\(139\) 168919. 0.741553 0.370777 0.928722i \(-0.379092\pi\)
0.370777 + 0.928722i \(0.379092\pi\)
\(140\) 0 0
\(141\) 197255. 126768.i 0.835564 0.536984i
\(142\) 0 0
\(143\) −52141.0 114173.i −0.213226 0.466899i
\(144\) 0 0
\(145\) 88181.3 25892.4i 0.348303 0.102271i
\(146\) 0 0
\(147\) 209076. 457812.i 0.798014 1.74741i
\(148\) 0 0
\(149\) 89826.5 + 103665.i 0.331466 + 0.382532i 0.896879 0.442276i \(-0.145829\pi\)
−0.565413 + 0.824808i \(0.691283\pi\)
\(150\) 0 0
\(151\) 87420.1 + 25668.9i 0.312010 + 0.0916145i 0.433989 0.900918i \(-0.357106\pi\)
−0.121979 + 0.992533i \(0.538924\pi\)
\(152\) 0 0
\(153\) −543165. 349071.i −1.87587 1.20555i
\(154\) 0 0
\(155\) 10807.0 75164.3i 0.0361307 0.251294i
\(156\) 0 0
\(157\) −50855.7 353709.i −0.164661 1.14524i −0.889704 0.456539i \(-0.849089\pi\)
0.725043 0.688704i \(-0.241820\pi\)
\(158\) 0 0
\(159\) −365759. + 422108.i −1.14737 + 1.32413i
\(160\) 0 0
\(161\) −139543. + 448490.i −0.424270 + 1.36360i
\(162\) 0 0
\(163\) −96651.7 + 111542.i −0.284931 + 0.328828i −0.880114 0.474762i \(-0.842534\pi\)
0.595183 + 0.803590i \(0.297080\pi\)
\(164\) 0 0
\(165\) 83004.1 + 577306.i 0.237350 + 1.65081i
\(166\) 0 0
\(167\) −61130.7 + 425174.i −0.169617 + 1.17971i 0.710061 + 0.704140i \(0.248667\pi\)
−0.879678 + 0.475570i \(0.842242\pi\)
\(168\) 0 0
\(169\) −287092. 184503.i −0.773222 0.496920i
\(170\) 0 0
\(171\) 1.56520e6 + 459583.i 4.09335 + 1.20192i
\(172\) 0 0
\(173\) −88165.9 101749.i −0.223968 0.258472i 0.632634 0.774451i \(-0.281974\pi\)
−0.856601 + 0.515979i \(0.827428\pi\)
\(174\) 0 0
\(175\) −180266. + 394728.i −0.444959 + 0.974324i
\(176\) 0 0
\(177\) 554329. 162766.i 1.32995 0.390508i
\(178\) 0 0
\(179\) −248107. 543278.i −0.578769 1.26733i −0.941995 0.335627i \(-0.891052\pi\)
0.363225 0.931701i \(-0.381675\pi\)
\(180\) 0 0
\(181\) −228088. + 146583.i −0.517494 + 0.332573i −0.773180 0.634187i \(-0.781335\pi\)
0.255686 + 0.966760i \(0.417699\pi\)
\(182\) 0 0
\(183\) 1.59652e6 3.52409
\(184\) 0 0
\(185\) −124897. −0.268300
\(186\) 0 0
\(187\) −670251. + 430744.i −1.40163 + 0.900773i
\(188\) 0 0
\(189\) 762233. + 1.66906e6i 1.55215 + 3.39873i
\(190\) 0 0
\(191\) −33698.3 + 9894.71i −0.0668381 + 0.0196254i −0.314981 0.949098i \(-0.601998\pi\)
0.248143 + 0.968724i \(0.420180\pi\)
\(192\) 0 0
\(193\) 20589.2 45084.0i 0.0397874 0.0871222i −0.888695 0.458500i \(-0.848387\pi\)
0.928482 + 0.371377i \(0.121114\pi\)
\(194\) 0 0
\(195\) −91369.0 105445.i −0.172073 0.198583i
\(196\) 0 0
\(197\) 200888. + 58986.1i 0.368798 + 0.108289i 0.460880 0.887463i \(-0.347534\pi\)
−0.0920817 + 0.995751i \(0.529352\pi\)
\(198\) 0 0
\(199\) −607862. 390649.i −1.08811 0.699285i −0.131692 0.991291i \(-0.542041\pi\)
−0.956416 + 0.292006i \(0.905677\pi\)
\(200\) 0 0
\(201\) −182992. + 1.27273e6i −0.319478 + 2.22202i
\(202\) 0 0
\(203\) −86640.9 602601.i −0.147565 1.02634i
\(204\) 0 0
\(205\) −251881. + 290686.i −0.418611 + 0.483103i
\(206\) 0 0
\(207\) −784936. 1.26558e6i −1.27323 2.05288i
\(208\) 0 0
\(209\) 1.31820e6 1.52129e6i 2.08745 2.40905i
\(210\) 0 0
\(211\) 120877. + 840718.i 0.186912 + 1.30000i 0.839944 + 0.542673i \(0.182588\pi\)
−0.653032 + 0.757330i \(0.726503\pi\)
\(212\) 0 0
\(213\) −48716.8 + 338833.i −0.0735750 + 0.511725i
\(214\) 0 0
\(215\) −215362. 138405.i −0.317740 0.204199i
\(216\) 0 0
\(217\) −482653. 141720.i −0.695802 0.204306i
\(218\) 0 0
\(219\) −769553. 888111.i −1.08425 1.25129i
\(220\) 0 0
\(221\) 79175.9 173371.i 0.109047 0.238779i
\(222\) 0 0
\(223\) −1.00421e6 + 294862.i −1.35226 + 0.397060i −0.876029 0.482258i \(-0.839817\pi\)
−0.476234 + 0.879318i \(0.657999\pi\)
\(224\) 0 0
\(225\) −571557. 1.25153e6i −0.752667 1.64811i
\(226\) 0 0
\(227\) 456612. 293447.i 0.588143 0.377977i −0.212462 0.977169i \(-0.568148\pi\)
0.800605 + 0.599193i \(0.204512\pi\)
\(228\) 0 0
\(229\) −308741. −0.389050 −0.194525 0.980898i \(-0.562317\pi\)
−0.194525 + 0.980898i \(0.562317\pi\)
\(230\) 0 0
\(231\) 3.86356e6 4.76385
\(232\) 0 0
\(233\) 450898. 289775.i 0.544113 0.349680i −0.239533 0.970888i \(-0.576994\pi\)
0.783645 + 0.621208i \(0.213358\pi\)
\(234\) 0 0
\(235\) −94493.6 206912.i −0.111618 0.244409i
\(236\) 0 0
\(237\) 127223. 37356.0i 0.147128 0.0432006i
\(238\) 0 0
\(239\) −659967. + 1.44513e6i −0.747355 + 1.63648i 0.0237058 + 0.999719i \(0.492454\pi\)
−0.771061 + 0.636761i \(0.780274\pi\)
\(240\) 0 0
\(241\) −1.03227e6 1.19130e6i −1.14485 1.32123i −0.939502 0.342543i \(-0.888712\pi\)
−0.205351 0.978688i \(-0.565834\pi\)
\(242\) 0 0
\(243\) −1.63898e6 481248.i −1.78057 0.522821i
\(244\) 0 0
\(245\) −410741. 263967.i −0.437173 0.280954i
\(246\) 0 0
\(247\) −68530.4 + 476640.i −0.0714729 + 0.497105i
\(248\) 0 0
\(249\) −45697.4 317833.i −0.0467082 0.324863i
\(250\) 0 0
\(251\) −90689.0 + 104661.i −0.0908594 + 0.104857i −0.799359 0.600854i \(-0.794827\pi\)
0.708499 + 0.705712i \(0.249373\pi\)
\(252\) 0 0
\(253\) −1.82293e6 + 232311.i −1.79048 + 0.228175i
\(254\) 0 0
\(255\) −579979. + 669331.i −0.558549 + 0.644600i
\(256\) 0 0
\(257\) 109810. + 763743.i 0.103707 + 0.721298i 0.973634 + 0.228117i \(0.0732569\pi\)
−0.869927 + 0.493181i \(0.835834\pi\)
\(258\) 0 0
\(259\) −117744. + 818927.i −0.109066 + 0.758570i
\(260\) 0 0
\(261\) 1.62384e6 + 1.04358e6i 1.47551 + 0.948254i
\(262\) 0 0
\(263\) −1.01354e6 297603.i −0.903550 0.265306i −0.203227 0.979132i \(-0.565143\pi\)
−0.700324 + 0.713825i \(0.746961\pi\)
\(264\) 0 0
\(265\) 354825. + 409490.i 0.310384 + 0.358203i
\(266\) 0 0
\(267\) 859759. 1.88261e6i 0.738071 1.61615i
\(268\) 0 0
\(269\) 2.12971e6 625341.i 1.79449 0.526909i 0.797420 0.603425i \(-0.206198\pi\)
0.997068 + 0.0765152i \(0.0243794\pi\)
\(270\) 0 0
\(271\) −521724. 1.14242e6i −0.431537 0.944934i −0.993075 0.117483i \(-0.962518\pi\)
0.561538 0.827451i \(-0.310210\pi\)
\(272\) 0 0
\(273\) −777526. + 499686.i −0.631405 + 0.405780i
\(274\) 0 0
\(275\) −1.69779e6 −1.35379
\(276\) 0 0
\(277\) 96290.1 0.0754019 0.0377009 0.999289i \(-0.487997\pi\)
0.0377009 + 0.999289i \(0.487997\pi\)
\(278\) 0 0
\(279\) 1.34173e6 862276.i 1.03194 0.663186i
\(280\) 0 0
\(281\) −61521.2 134713.i −0.0464793 0.101775i 0.884968 0.465652i \(-0.154180\pi\)
−0.931447 + 0.363877i \(0.881453\pi\)
\(282\) 0 0
\(283\) −930443. + 273203.i −0.690596 + 0.202777i −0.608154 0.793819i \(-0.708090\pi\)
−0.0824412 + 0.996596i \(0.526272\pi\)
\(284\) 0 0
\(285\) 929539. 2.03541e6i 0.677884 1.48436i
\(286\) 0 0
\(287\) 1.66853e6 + 1.92558e6i 1.19572 + 1.37993i
\(288\) 0 0
\(289\) 201520. + 59171.6i 0.141930 + 0.0416743i
\(290\) 0 0
\(291\) −212490. 136559.i −0.147098 0.0945341i
\(292\) 0 0
\(293\) −261090. + 1.81592e6i −0.177673 + 1.23574i 0.684457 + 0.729054i \(0.260039\pi\)
−0.862130 + 0.506688i \(0.830870\pi\)
\(294\) 0 0
\(295\) −79761.9 554756.i −0.0533630 0.371148i
\(296\) 0 0
\(297\) −4.70115e6 + 5.42542e6i −3.09253 + 3.56897i
\(298\) 0 0
\(299\) 336812. 282517.i 0.217876 0.182754i
\(300\) 0 0
\(301\) −1.11053e6 + 1.28162e6i −0.706501 + 0.815345i
\(302\) 0 0
\(303\) −629446. 4.37789e6i −0.393869 2.73942i
\(304\) 0 0
\(305\) 220417. 1.53303e6i 0.135674 0.943631i
\(306\) 0 0
\(307\) 538186. + 345871.i 0.325901 + 0.209444i 0.693352 0.720599i \(-0.256133\pi\)
−0.367451 + 0.930043i \(0.619769\pi\)
\(308\) 0 0
\(309\) −85125.0 24995.0i −0.0507179 0.0148921i
\(310\) 0 0
\(311\) 22719.2 + 26219.3i 0.0133196 + 0.0153716i 0.762370 0.647141i \(-0.224036\pi\)
−0.749051 + 0.662513i \(0.769490\pi\)
\(312\) 0 0
\(313\) 976201. 2.13758e6i 0.563221 1.23328i −0.387109 0.922034i \(-0.626526\pi\)
0.950329 0.311247i \(-0.100747\pi\)
\(314\) 0 0
\(315\) 2.91436e6 855733.i 1.65488 0.485917i
\(316\) 0 0
\(317\) −284547. 623070.i −0.159040 0.348248i 0.813291 0.581857i \(-0.197674\pi\)
−0.972331 + 0.233609i \(0.924946\pi\)
\(318\) 0 0
\(319\) 2.00378e6 1.28775e6i 1.10249 0.708525i
\(320\) 0 0
\(321\) 276479. 0.149761
\(322\) 0 0
\(323\) 3.05666e6 1.63020
\(324\) 0 0
\(325\) 341673. 219580.i 0.179433 0.115314i
\(326\) 0 0
\(327\) −509492. 1.11563e6i −0.263492 0.576968i
\(328\) 0 0
\(329\) −1.44577e6 + 424517.i −0.736394 + 0.216225i
\(330\) 0 0
\(331\) −917769. + 2.00963e6i −0.460430 + 1.00820i 0.526960 + 0.849890i \(0.323332\pi\)
−0.987389 + 0.158310i \(0.949395\pi\)
\(332\) 0 0
\(333\) −1.71784e6 1.98249e6i −0.848928 0.979716i
\(334\) 0 0
\(335\) 1.19686e6 + 351429.i 0.582680 + 0.171090i
\(336\) 0 0
\(337\) 2.76459e6 + 1.77669e6i 1.32604 + 0.852193i 0.995787 0.0917004i \(-0.0292302\pi\)
0.330251 + 0.943893i \(0.392867\pi\)
\(338\) 0 0
\(339\) −419192. + 2.91555e6i −0.198114 + 1.37791i
\(340\) 0 0
\(341\) −280087. 1.94805e6i −0.130439 0.907223i
\(342\) 0 0
\(343\) −80324.2 + 92699.1i −0.0368647 + 0.0425442i
\(344\) 0 0
\(345\) −1.87155e6 + 818678.i −0.846552 + 0.370310i
\(346\) 0 0
\(347\) 1.37439e6 1.58613e6i 0.612753 0.707154i −0.361561 0.932348i \(-0.617756\pi\)
0.974314 + 0.225194i \(0.0723016\pi\)
\(348\) 0 0
\(349\) 577625. + 4.01747e6i 0.253853 + 1.76559i 0.574611 + 0.818427i \(0.305153\pi\)
−0.320758 + 0.947161i \(0.603938\pi\)
\(350\) 0 0
\(351\) 244403. 1.69986e6i 0.105886 0.736453i
\(352\) 0 0
\(353\) 1.66258e6 + 1.06848e6i 0.710145 + 0.456382i 0.845196 0.534456i \(-0.179484\pi\)
−0.135051 + 0.990839i \(0.543120\pi\)
\(354\) 0 0
\(355\) 318633. + 93559.0i 0.134190 + 0.0394017i
\(356\) 0 0
\(357\) 3.84194e6 + 4.43383e6i 1.59544 + 1.84123i
\(358\) 0 0
\(359\) −1.21615e6 + 2.66300e6i −0.498025 + 1.09052i 0.479082 + 0.877770i \(0.340970\pi\)
−0.977106 + 0.212751i \(0.931758\pi\)
\(360\) 0 0
\(361\) −5.03407e6 + 1.47814e6i −2.03307 + 0.596962i
\(362\) 0 0
\(363\) 4.35196e6 + 9.52947e6i 1.73348 + 3.79579i
\(364\) 0 0
\(365\) −959038. + 616336.i −0.376794 + 0.242151i
\(366\) 0 0
\(367\) 3.49428e6 1.35423 0.677115 0.735877i \(-0.263230\pi\)
0.677115 + 0.735877i \(0.263230\pi\)
\(368\) 0 0
\(369\) −8.07847e6 −3.08861
\(370\) 0 0
\(371\) 3.01947e6 1.94049e6i 1.13893 0.731944i
\(372\) 0 0
\(373\) −421640. 923262.i −0.156917 0.343600i 0.814803 0.579739i \(-0.196845\pi\)
−0.971719 + 0.236139i \(0.924118\pi\)
\(374\) 0 0
\(375\) −4.22514e6 + 1.24061e6i −1.55154 + 0.455573i
\(376\) 0 0
\(377\) −236704. + 518309.i −0.0857733 + 0.187817i
\(378\) 0 0
\(379\) 1.95508e6 + 2.25629e6i 0.699145 + 0.806857i 0.988637 0.150324i \(-0.0480316\pi\)
−0.289491 + 0.957181i \(0.593486\pi\)
\(380\) 0 0
\(381\) 6.99499e6 + 2.05391e6i 2.46874 + 0.724886i
\(382\) 0 0
\(383\) 222381. + 142916.i 0.0774642 + 0.0497832i 0.578800 0.815470i \(-0.303521\pi\)
−0.501335 + 0.865253i \(0.667158\pi\)
\(384\) 0 0
\(385\) 533405. 3.70992e6i 0.183403 1.27559i
\(386\) 0 0
\(387\) −765199. 5.32208e6i −0.259715 1.80636i
\(388\) 0 0
\(389\) 2.77116e6 3.19808e6i 0.928511 1.07156i −0.0687531 0.997634i \(-0.521902\pi\)
0.997264 0.0739248i \(-0.0235525\pi\)
\(390\) 0 0
\(391\) −2.07933e6 1.86099e6i −0.687830 0.615604i
\(392\) 0 0
\(393\) 3.00551e6 3.46855e6i 0.981606 1.13283i
\(394\) 0 0
\(395\) −18306.0 127321.i −0.00590338 0.0410589i
\(396\) 0 0
\(397\) 467511. 3.25161e6i 0.148873 1.03543i −0.769196 0.639013i \(-0.779343\pi\)
0.918069 0.396420i \(-0.129748\pi\)
\(398\) 0 0
\(399\) −1.24695e7 8.01369e6i −3.92119 2.52000i
\(400\) 0 0
\(401\) 1.57602e6 + 462761.i 0.489441 + 0.143713i 0.517135 0.855904i \(-0.326998\pi\)
−0.0276945 + 0.999616i \(0.508817\pi\)
\(402\) 0 0
\(403\) 308313. + 355813.i 0.0945649 + 0.109134i
\(404\) 0 0
\(405\) −1.65893e6 + 3.63256e6i −0.502564 + 1.10046i
\(406\) 0 0
\(407\) −3.10585e6 + 911959.i −0.929382 + 0.272891i
\(408\) 0 0
\(409\) 126234. + 276414.i 0.0373138 + 0.0817057i 0.927371 0.374143i \(-0.122063\pi\)
−0.890057 + 0.455849i \(0.849336\pi\)
\(410\) 0 0
\(411\) 366039. 235239.i 0.106887 0.0686919i
\(412\) 0 0
\(413\) −3.71264e6 −1.07105
\(414\) 0 0
\(415\) −311502. −0.0887853
\(416\) 0 0
\(417\) 4.09399e6 2.63105e6i 1.15294 0.740950i
\(418\) 0 0
\(419\) 2.62270e6 + 5.74290e6i 0.729815 + 1.59807i 0.799617 + 0.600511i \(0.205036\pi\)
−0.0698016 + 0.997561i \(0.522237\pi\)
\(420\) 0 0
\(421\) 4.88974e6 1.43576e6i 1.34456 0.394799i 0.471267 0.881991i \(-0.343797\pi\)
0.873295 + 0.487191i \(0.161979\pi\)
\(422\) 0 0
\(423\) 1.98465e6 4.34579e6i 0.539304 1.18091i
\(424\) 0 0
\(425\) −1.68828e6 1.94838e6i −0.453391 0.523241i
\(426\) 0 0
\(427\) −9.84407e6 2.89048e6i −2.61279 0.767185i
\(428\) 0 0
\(429\) −3.04204e6 1.95500e6i −0.798035 0.512866i
\(430\) 0 0
\(431\) 52449.2 364792.i 0.0136002 0.0945915i −0.981891 0.189448i \(-0.939330\pi\)
0.995491 + 0.0948565i \(0.0302392\pi\)
\(432\) 0 0
\(433\) 283016. + 1.96842e6i 0.0725423 + 0.504543i 0.993405 + 0.114656i \(0.0365767\pi\)
−0.920863 + 0.389887i \(0.872514\pi\)
\(434\) 0 0
\(435\) 1.73390e6 2.00103e6i 0.439341 0.507026i
\(436\) 0 0
\(437\) 6.36531e6 + 3.03129e6i 1.59447 + 0.759319i
\(438\) 0 0
\(439\) −4.57773e6 + 5.28298e6i −1.13367 + 1.30833i −0.188386 + 0.982095i \(0.560326\pi\)
−0.945289 + 0.326235i \(0.894220\pi\)
\(440\) 0 0
\(441\) −1.45940e6 1.01503e7i −0.357337 2.48533i
\(442\) 0 0
\(443\) −24311.1 + 169087.i −0.00588565 + 0.0409356i −0.992553 0.121817i \(-0.961128\pi\)
0.986667 + 0.162752i \(0.0520371\pi\)
\(444\) 0 0
\(445\) −1.68904e6 1.08548e6i −0.404335 0.259850i
\(446\) 0 0
\(447\) 3.79174e6 + 1.11335e6i 0.897572 + 0.263551i
\(448\) 0 0
\(449\) −4.02808e6 4.64865e6i −0.942936 1.08821i −0.995977 0.0896140i \(-0.971437\pi\)
0.0530404 0.998592i \(-0.483109\pi\)
\(450\) 0 0
\(451\) −4.14111e6 + 9.06777e6i −0.958685 + 2.09923i
\(452\) 0 0
\(453\) 2.51856e6 739515.i 0.576642 0.169317i
\(454\) 0 0
\(455\) 372469. + 815593.i 0.0843454 + 0.184691i
\(456\) 0 0
\(457\) 829653. 533186.i 0.185826 0.119423i −0.444420 0.895818i \(-0.646590\pi\)
0.630246 + 0.776395i \(0.282954\pi\)
\(458\) 0 0
\(459\) −1.09011e7 −2.41511
\(460\) 0 0
\(461\) 491966. 0.107816 0.0539079 0.998546i \(-0.482832\pi\)
0.0539079 + 0.998546i \(0.482832\pi\)
\(462\) 0 0
\(463\) 5.43537e6 3.49310e6i 1.17836 0.757284i 0.203273 0.979122i \(-0.434842\pi\)
0.975083 + 0.221838i \(0.0712057\pi\)
\(464\) 0 0
\(465\) −908820. 1.99004e6i −0.194915 0.426804i
\(466\) 0 0
\(467\) 3.58693e6 1.05322e6i 0.761081 0.223474i 0.121913 0.992541i \(-0.461097\pi\)
0.639168 + 0.769067i \(0.279279\pi\)
\(468\) 0 0
\(469\) 3.43258e6 7.51630e6i 0.720591 1.57787i
\(470\) 0 0
\(471\) −6.74185e6 7.78051e6i −1.40032 1.61605i
\(472\) 0 0
\(473\) −6.36608e6 1.86925e6i −1.30833 0.384162i
\(474\) 0 0
\(475\) 5.47956e6 + 3.52150e6i 1.11432 + 0.716133i
\(476\) 0 0
\(477\) −1.61956e6 + 1.12643e7i −0.325913 + 2.26678i
\(478\) 0 0
\(479\) 563815. + 3.92142e6i 0.112279 + 0.780916i 0.965694 + 0.259684i \(0.0836184\pi\)
−0.853415 + 0.521232i \(0.825473\pi\)
\(480\) 0 0
\(481\) 507093. 585217.i 0.0999367 0.115333i
\(482\) 0 0
\(483\) 3.60357e6 + 1.30433e7i 0.702855 + 2.54401i
\(484\) 0 0
\(485\) −160465. + 185187.i −0.0309761 + 0.0357483i
\(486\) 0 0
\(487\) −209376. 1.45624e6i −0.0400041 0.278234i 0.959994 0.280019i \(-0.0903409\pi\)
−0.999998 + 0.00178505i \(0.999432\pi\)
\(488\) 0 0
\(489\) −605134. + 4.20880e6i −0.114440 + 0.795950i
\(490\) 0 0
\(491\) −3.96413e6 2.54759e6i −0.742069 0.476899i 0.114181 0.993460i \(-0.463576\pi\)
−0.856250 + 0.516561i \(0.827212\pi\)
\(492\) 0 0
\(493\) 3.47039e6 + 1.01900e6i 0.643074 + 0.188824i
\(494\) 0 0
\(495\) 7.78217e6 + 8.98110e6i 1.42754 + 1.64747i
\(496\) 0 0
\(497\) 913837. 2.00102e6i 0.165950 0.363380i
\(498\) 0 0
\(499\) 540526. 158713.i 0.0971774 0.0285339i −0.232782 0.972529i \(-0.574783\pi\)
0.329960 + 0.943995i \(0.392965\pi\)
\(500\) 0 0
\(501\) 5.14082e6 + 1.12568e7i 0.915036 + 2.00365i
\(502\) 0 0
\(503\) −35181.4 + 22609.7i −0.00620001 + 0.00398451i −0.543737 0.839256i \(-0.682991\pi\)
0.537537 + 0.843240i \(0.319355\pi\)
\(504\) 0 0
\(505\) −4.29070e6 −0.748685
\(506\) 0 0
\(507\) −9.83184e6 −1.69869
\(508\) 0 0
\(509\) −2.93127e6 + 1.88382e6i −0.501490 + 0.322288i −0.766812 0.641872i \(-0.778158\pi\)
0.265322 + 0.964160i \(0.414522\pi\)
\(510\) 0 0
\(511\) 3.13711e6 + 6.86930e6i 0.531468 + 1.16375i
\(512\) 0 0
\(513\) 2.64261e7 7.75941e6i 4.43343 1.30177i
\(514\) 0 0
\(515\) −35753.4 + 78289.0i −0.00594018 + 0.0130072i
\(516\) 0 0
\(517\) −3.86062e6 4.45540e6i −0.635230 0.733095i
\(518\) 0 0
\(519\) −3.72164e6 1.09277e6i −0.606479 0.178078i
\(520\) 0 0
\(521\) −485166. 311797.i −0.0783062 0.0503244i 0.500902 0.865504i \(-0.333002\pi\)
−0.579208 + 0.815180i \(0.696638\pi\)
\(522\) 0 0
\(523\) 1.51018e6 1.05035e7i 0.241420 1.67911i −0.403589 0.914940i \(-0.632238\pi\)
0.645010 0.764174i \(-0.276853\pi\)
\(524\) 0 0
\(525\) 1.77920e6 + 1.23746e7i 0.281725 + 1.95944i
\(526\) 0 0
\(527\) 1.95707e6 2.25858e6i 0.306958 0.354248i
\(528\) 0 0
\(529\) −2.48454e6 5.93747e6i −0.386017 0.922492i
\(530\) 0 0
\(531\) 7.70862e6 8.89622e6i 1.18643 1.36921i
\(532\) 0 0
\(533\) −339379. 2.36044e6i −0.0517449 0.359894i
\(534\) 0 0
\(535\) 38170.9 265484.i 0.00576564 0.0401009i
\(536\) 0 0
\(537\) −1.44752e7 9.30263e6i −2.16615 1.39210i
\(538\) 0 0
\(539\) −1.21415e7 3.56506e6i −1.80011 0.528560i
\(540\) 0 0
\(541\) 3.57204e6 + 4.12236e6i 0.524715 + 0.605553i 0.954805 0.297233i \(-0.0960637\pi\)
−0.430090 + 0.902786i \(0.641518\pi\)
\(542\) 0 0
\(543\) −3.24488e6 + 7.10529e6i −0.472279 + 1.03415i
\(544\) 0 0
\(545\) −1.14161e6 + 335206.i −0.164636 + 0.0483416i
\(546\) 0 0
\(547\) 999654. + 2.18894e6i 0.142850 + 0.312799i 0.967511 0.252829i \(-0.0813611\pi\)
−0.824661 + 0.565628i \(0.808634\pi\)
\(548\) 0 0
\(549\) 2.73655e7 1.75868e7i 3.87501 2.49032i
\(550\) 0 0
\(551\) −9.13816e6 −1.28227
\(552\) 0 0
\(553\) −852082. −0.118486
\(554\) 0 0
\(555\) −3.02704e6 + 1.94536e6i −0.417143 + 0.268082i
\(556\) 0 0
\(557\) −3.62365e6 7.93469e6i −0.494890 1.08366i −0.978097 0.208152i \(-0.933255\pi\)
0.483207 0.875506i \(-0.339472\pi\)
\(558\) 0 0
\(559\) 1.52290e6 447165.i 0.206131 0.0605254i
\(560\) 0 0
\(561\) −9.53528e6 + 2.08794e7i −1.27916 + 2.80098i
\(562\) 0 0
\(563\) 150078. + 173199.i 0.0199547 + 0.0230290i 0.765639 0.643270i \(-0.222423\pi\)
−0.745684 + 0.666299i \(0.767877\pi\)
\(564\) 0 0
\(565\) 2.74173e6 + 805044.i 0.361330 + 0.106096i
\(566\) 0 0
\(567\) 2.22542e7 + 1.43019e7i 2.90706 + 1.86825i
\(568\) 0 0
\(569\) −2.00840e6 + 1.39687e7i −0.260058 + 1.80874i 0.272288 + 0.962216i \(0.412220\pi\)
−0.532346 + 0.846527i \(0.678689\pi\)
\(570\) 0 0
\(571\) −810676. 5.63838e6i −0.104054 0.723709i −0.973335 0.229390i \(-0.926327\pi\)
0.869281 0.494318i \(-0.164582\pi\)
\(572\) 0 0
\(573\) −662606. + 764689.i −0.0843081 + 0.0972967i
\(574\) 0 0
\(575\) −1.58354e6 5.73167e6i −0.199737 0.722956i
\(576\) 0 0
\(577\) 2.59709e6 2.99720e6i 0.324748 0.374780i −0.569775 0.821801i \(-0.692970\pi\)
0.894523 + 0.447021i \(0.147515\pi\)
\(578\) 0 0
\(579\) −203211. 1.41336e6i −0.0251913 0.175210i
\(580\) 0 0
\(581\) −293663. + 2.04247e6i −0.0360918 + 0.251024i
\(582\) 0 0
\(583\) 1.18136e7 + 7.59211e6i 1.43949 + 0.925105i
\(584\) 0 0
\(585\) −2.72768e6 800920.i −0.329537 0.0967608i
\(586\) 0 0
\(587\) −4.52282e6 5.21961e6i −0.541768 0.625234i 0.417177 0.908825i \(-0.363020\pi\)
−0.958945 + 0.283591i \(0.908474\pi\)
\(588\) 0 0
\(589\) −3.13661e6 + 6.86823e6i −0.372540 + 0.815749i
\(590\) 0 0
\(591\) 5.78755e6 1.69938e6i 0.681595 0.200134i
\(592\) 0 0
\(593\) 6.03383e6 + 1.32122e7i 0.704622 + 1.54291i 0.834276 + 0.551348i \(0.185886\pi\)
−0.129653 + 0.991559i \(0.541386\pi\)
\(594\) 0 0
\(595\) 4.78793e6 3.07702e6i 0.554441 0.356318i
\(596\) 0 0
\(597\) −2.08170e7 −2.39047
\(598\) 0 0
\(599\) −2.05140e6 −0.233606 −0.116803 0.993155i \(-0.537265\pi\)
−0.116803 + 0.993155i \(0.537265\pi\)
\(600\) 0 0
\(601\) 2.58635e6 1.66214e6i 0.292079 0.187708i −0.386393 0.922334i \(-0.626279\pi\)
0.678472 + 0.734627i \(0.262643\pi\)
\(602\) 0 0
\(603\) 1.08834e7 + 2.38313e7i 1.21891 + 2.66904i
\(604\) 0 0
\(605\) 9.75134e6 2.86325e6i 1.08312 0.318032i
\(606\) 0 0
\(607\) 490863. 1.07484e6i 0.0540740 0.118406i −0.880666 0.473737i \(-0.842905\pi\)
0.934740 + 0.355331i \(0.115632\pi\)
\(608\) 0 0
\(609\) −1.14858e7 1.32554e7i −1.25493 1.44827i
\(610\) 0 0
\(611\) 1.35316e6 + 397325.i 0.146638 + 0.0430569i
\(612\) 0 0
\(613\) 4794.26 + 3081.08i 0.000515312 + 0.000331171i 0.540898 0.841088i \(-0.318084\pi\)
−0.540383 + 0.841419i \(0.681721\pi\)
\(614\) 0 0
\(615\) −1.57702e6 + 1.09684e7i −0.168132 + 1.16938i
\(616\) 0 0
\(617\) 1.22623e6 + 8.52858e6i 0.129675 + 0.901912i 0.945965 + 0.324269i \(0.105118\pi\)
−0.816290 + 0.577643i \(0.803973\pi\)
\(618\) 0 0
\(619\) −1.63649e6 + 1.88861e6i −0.171667 + 0.198114i −0.835063 0.550154i \(-0.814569\pi\)
0.663396 + 0.748268i \(0.269114\pi\)
\(620\) 0 0
\(621\) −2.27009e7 1.08106e7i −2.36218 1.12492i
\(622\) 0 0
\(623\) −8.70966e6 + 1.00515e7i −0.899044 + 1.03755i
\(624\) 0 0
\(625\) −434449. 3.02166e6i −0.0444876 0.309418i
\(626\) 0 0
\(627\) 8.25323e6 5.74025e7i 0.838407 5.83125i
\(628\) 0 0
\(629\) −4.13503e6 2.65742e6i −0.416728 0.267815i
\(630\) 0 0
\(631\) 1.61988e7 + 4.75641e6i 1.61961 + 0.475560i 0.960914 0.276849i \(-0.0892901\pi\)
0.658696 + 0.752409i \(0.271108\pi\)
\(632\) 0 0
\(633\) 1.60245e7 + 1.84932e7i 1.58955 + 1.83444i
\(634\) 0 0
\(635\) 2.93797e6 6.43325e6i 0.289143 0.633135i
\(636\) 0 0
\(637\) 2.90450e6 852839.i 0.283611 0.0832757i
\(638\) 0 0
\(639\) 2.89743e6 + 6.34449e6i 0.280712 + 0.614674i
\(640\) 0 0
\(641\) −1.03665e6 + 666215.i −0.0996523 + 0.0640426i −0.589518 0.807755i \(-0.700682\pi\)
0.489866 + 0.871798i \(0.337046\pi\)
\(642\) 0 0
\(643\) 9.16430e6 0.874121 0.437061 0.899432i \(-0.356020\pi\)
0.437061 + 0.899432i \(0.356020\pi\)
\(644\) 0 0
\(645\) −7.37535e6 −0.698045
\(646\) 0 0
\(647\) −1.13990e7 + 7.32566e6i −1.07054 + 0.687996i −0.952354 0.304995i \(-0.901345\pi\)
−0.118189 + 0.992991i \(0.537709\pi\)
\(648\) 0 0
\(649\) −6.03414e6 1.32129e7i −0.562346 1.23137i
\(650\) 0 0
\(651\) −1.39051e7 + 4.08292e6i −1.28595 + 0.377588i
\(652\) 0 0
\(653\) −7.57374e6 + 1.65842e7i −0.695068 + 1.52199i 0.150782 + 0.988567i \(0.451821\pi\)
−0.845851 + 0.533420i \(0.820907\pi\)
\(654\) 0 0
\(655\) −2.91567e6 3.36486e6i −0.265543 0.306453i
\(656\) 0 0
\(657\) −2.29738e7 6.74572e6i −2.07644 0.609698i
\(658\) 0 0
\(659\) −1.45171e6 932957.i −0.130217 0.0836851i 0.473911 0.880573i \(-0.342842\pi\)
−0.604127 + 0.796888i \(0.706478\pi\)
\(660\) 0 0
\(661\) 2.20073e6 1.53064e7i 0.195913 1.36261i −0.620077 0.784541i \(-0.712899\pi\)
0.815990 0.578065i \(-0.196192\pi\)
\(662\) 0 0
\(663\) −781451. 5.43511e6i −0.0690427 0.480203i
\(664\) 0 0
\(665\) −9.41656e6 + 1.08673e7i −0.825730 + 0.952943i
\(666\) 0 0
\(667\) 6.21635e6 + 5.56360e6i 0.541029 + 0.484218i
\(668\) 0 0
\(669\) −1.97456e7 + 2.27877e7i −1.70571 + 1.96850i
\(670\) 0 0
\(671\) −5.71259e6 3.97319e7i −0.489809 3.40670i
\(672\) 0 0
\(673\) 2.45481e6 1.70736e7i 0.208920 1.45307i −0.567768 0.823188i \(-0.692193\pi\)
0.776689 0.629885i \(-0.216898\pi\)
\(674\) 0 0
\(675\) −1.95420e7 1.25589e7i −1.65086 1.06094i
\(676\) 0 0
\(677\) 8.37912e6 + 2.46033e6i 0.702630 + 0.206311i 0.613483 0.789708i \(-0.289768\pi\)
0.0891469 + 0.996018i \(0.471586\pi\)
\(678\) 0 0
\(679\) 1.06296e6 + 1.22673e6i 0.0884799 + 0.102111i
\(680\) 0 0
\(681\) 6.49597e6 1.42242e7i 0.536755 1.17533i
\(682\) 0 0
\(683\) 2.19114e7 6.43378e6i 1.79729 0.527733i 0.799916 0.600112i \(-0.204877\pi\)
0.997377 + 0.0723789i \(0.0230591\pi\)
\(684\) 0 0
\(685\) −175349. 383960.i −0.0142783 0.0312651i
\(686\) 0 0
\(687\) −7.48275e6 + 4.80887e6i −0.604881 + 0.388733i
\(688\) 0 0
\(689\) −3.35934e6 −0.269591
\(690\) 0 0
\(691\) −1.57937e7 −1.25831 −0.629157 0.777279i \(-0.716600\pi\)
−0.629157 + 0.777279i \(0.716600\pi\)
\(692\) 0 0
\(693\) 6.62242e7 4.25597e7i 5.23822 3.36640i
\(694\) 0 0
\(695\) −1.96120e6 4.29443e6i −0.154014 0.337243i
\(696\) 0 0
\(697\) −1.45241e7 + 4.26467e6i −1.13242 + 0.332509i
\(698\) 0 0
\(699\) 6.41467e6 1.40462e7i 0.496571 1.08734i
\(700\) 0 0
\(701\) −5.56092e6 6.41764e6i −0.427416 0.493265i 0.500666 0.865641i \(-0.333089\pi\)
−0.928082 + 0.372376i \(0.878543\pi\)
\(702\) 0 0
\(703\) 1.19156e7 + 3.49874e6i 0.909343 + 0.267007i
\(704\) 0 0
\(705\) −5.51300e6 3.54299e6i −0.417749 0.268471i
\(706\) 0 0
\(707\) −4.04498e6 + 2.81334e7i −0.304346 + 2.11677i
\(708\) 0 0
\(709\) 167404. + 1.16432e6i 0.0125070 + 0.0869878i 0.995119 0.0986835i \(-0.0314631\pi\)
−0.982612 + 0.185671i \(0.940554\pi\)
\(710\) 0 0
\(711\) 1.76919e6 2.04176e6i 0.131250 0.151471i
\(712\) 0 0
\(713\) 6.31531e6 2.76253e6i 0.465234 0.203509i
\(714\) 0 0
\(715\) −2.29724e6 + 2.65116e6i −0.168051 + 0.193941i
\(716\) 0 0
\(717\) 6.51374e6 + 4.53041e7i 0.473187 + 3.29109i
\(718\) 0 0
\(719\) −2.20077e6 + 1.53067e7i −0.158764 + 1.10423i 0.742151 + 0.670233i \(0.233806\pi\)
−0.900915 + 0.433996i \(0.857103\pi\)
\(720\) 0 0
\(721\) 479623. + 308235.i 0.0343607 + 0.0220823i
\(722\) 0 0
\(723\) −4.35739e7 1.27944e7i −3.10013 0.910281i
\(724\) 0 0
\(725\) 5.04729e6 + 5.82488e6i 0.356626 + 0.411568i
\(726\) 0 0
\(727\) −2.22342e6 + 4.86861e6i −0.156022 + 0.341640i −0.971460 0.237204i \(-0.923769\pi\)
0.815438 + 0.578845i \(0.196496\pi\)
\(728\) 0 0
\(729\) −1.39042e7 + 4.08263e6i −0.969005 + 0.284526i
\(730\) 0 0
\(731\) −4.18529e6 9.16451e6i −0.289689 0.634331i
\(732\) 0 0
\(733\) 8.38402e6 5.38808e6i 0.576358 0.370403i −0.219751 0.975556i \(-0.570524\pi\)
0.796109 + 0.605153i \(0.206888\pi\)
\(734\) 0 0
\(735\) −1.40664e7 −0.960426
\(736\) 0 0
\(737\) 3.23287e7 2.19240
\(738\) 0 0
\(739\) 4.80917e6 3.09066e6i 0.323936 0.208181i −0.368558 0.929605i \(-0.620148\pi\)
0.692494 + 0.721424i \(0.256512\pi\)
\(740\) 0 0
\(741\) 5.76310e6 + 1.26194e7i 0.385577 + 0.844295i
\(742\) 0 0
\(743\) 5.34775e6 1.57024e6i 0.355385 0.104350i −0.0991667 0.995071i \(-0.531618\pi\)
0.454552 + 0.890720i \(0.349800\pi\)
\(744\) 0 0
\(745\) 1.59257e6 3.48724e6i 0.105125 0.230192i
\(746\) 0 0
\(747\) −4.28443e6 4.94449e6i −0.280925 0.324205i
\(748\) 0 0
\(749\) −1.70475e6 500561.i −0.111034 0.0326026i
\(750\) 0 0
\(751\) 1.30002e7 + 8.35475e6i 0.841108 + 0.540547i 0.888790 0.458315i \(-0.151547\pi\)
−0.0476818 + 0.998863i \(0.515183\pi\)
\(752\) 0 0
\(753\) −567801. + 3.94914e6i −0.0364929 + 0.253814i
\(754\) 0 0
\(755\) −362393. 2.52050e6i −0.0231373 0.160923i
\(756\) 0 0
\(757\) −1.37683e7 + 1.58895e7i −0.873256 + 1.00779i 0.126619 + 0.991951i \(0.459588\pi\)
−0.999875 + 0.0158397i \(0.994958\pi\)
\(758\) 0 0
\(759\) −4.05628e7 + 3.40239e7i −2.55578 + 2.14378i
\(760\) 0 0
\(761\) 1.07563e7 1.24134e7i 0.673286 0.777014i −0.311601 0.950213i \(-0.600865\pi\)
0.984887 + 0.173199i \(0.0554105\pi\)
\(762\) 0 0
\(763\) 1.12167e6 + 7.80135e6i 0.0697512 + 0.485130i
\(764\) 0 0
\(765\) −2.56812e6 + 1.78617e7i −0.158658 + 1.10349i
\(766\) 0 0
\(767\) 2.92322e6 + 1.87864e6i 0.179421 + 0.115307i
\(768\) 0 0
\(769\) 2.23043e7 + 6.54914e6i 1.36011 + 0.399364i 0.878801 0.477189i \(-0.158344\pi\)
0.481307 + 0.876552i \(0.340162\pi\)
\(770\) 0 0
\(771\) 1.45573e7 + 1.68000e7i 0.881951 + 1.01783i
\(772\) 0 0
\(773\) −3.96240e6 + 8.67644e6i −0.238512 + 0.522267i −0.990599 0.136796i \(-0.956320\pi\)
0.752088 + 0.659063i \(0.229047\pi\)
\(774\) 0 0
\(775\) 6.11042e6 1.79418e6i 0.365440 0.107303i
\(776\) 0 0
\(777\) 9.90173e6 + 2.16818e7i 0.588381 + 1.28837i
\(778\) 0 0
\(779\) 3.21735e7 2.06766e7i 1.89956 1.22078i
\(780\) 0 0
\(781\) 8.60670e6 0.504904
\(782\) 0 0
\(783\) 3.25898e7 1.89967
\(784\) 0 0
\(785\) −8.40189e6 + 5.39957e6i −0.486634 + 0.312741i
\(786\) 0 0
\(787\) 4.44303e6 + 9.72889e6i 0.255707 + 0.559920i 0.993332 0.115291i \(-0.0367799\pi\)
−0.737625 + 0.675211i \(0.764053\pi\)
\(788\) 0 0
\(789\) −2.92000e7 + 8.57388e6i −1.66990 + 0.490326i
\(790\) 0 0
\(791\) 7.86327e6 1.72182e7i 0.446850 0.978465i
\(792\) 0 0
\(793\) 6.28829e6 + 7.25707e6i 0.355099 + 0.409806i
\(794\) 0 0
\(795\) 1.49778e7 + 4.39788e6i 0.840485 + 0.246789i
\(796\) 0 0
\(797\) −1.61788e7 1.03975e7i −0.902197 0.579807i 0.00524410 0.999986i \(-0.498331\pi\)
−0.907441 + 0.420180i \(0.861967\pi\)
\(798\) 0 0
\(799\) 1.27401e6 8.86092e6i 0.0706001 0.491034i
\(800\) 0 0
\(801\) −6.00132e6 4.17401e7i −0.330495 2.29865i
\(802\) 0 0
\(803\) −1.93484e7 + 2.23293e7i −1.05891 + 1.22204i
\(804\) 0 0
\(805\) 1.30221e7 1.65951e6i 0.708256 0.0902589i
\(806\) 0 0
\(807\) 4.18764e7 4.83279e7i 2.26353 2.61225i
\(808\) 0 0
\(809\) 235223. + 1.63601e6i 0.0126360 + 0.0878851i 0.995164 0.0982320i \(-0.0313187\pi\)
−0.982528 + 0.186117i \(0.940410\pi\)
\(810\) 0 0
\(811\) −3.46220e6 + 2.40801e7i −0.184842 + 1.28560i 0.660276 + 0.751023i \(0.270439\pi\)
−0.845118 + 0.534580i \(0.820470\pi\)
\(812\) 0 0
\(813\) −3.04387e7 1.95618e7i −1.61510 1.03796i
\(814\) 0 0
\(815\) 3.95788e6 + 1.16214e6i 0.208722 + 0.0612864i
\(816\) 0 0
\(817\) 1.66692e7 + 1.92373e7i 0.873695 + 1.00830i
\(818\) 0 0
\(819\) −7.82298e6 + 1.71299e7i −0.407533 + 0.892372i
\(820\) 0 0
\(821\) −2.04891e7 + 6.01614e6i −1.06088 + 0.311501i −0.765204 0.643788i \(-0.777362\pi\)
−0.295672 + 0.955289i \(0.595544\pi\)
\(822\) 0 0
\(823\) 4.75055e6 + 1.04023e7i 0.244481 + 0.535338i 0.991599 0.129354i \(-0.0412903\pi\)
−0.747118 + 0.664691i \(0.768563\pi\)
\(824\) 0 0
\(825\) −4.11482e7 + 2.64443e7i −2.10482 + 1.35269i
\(826\) 0 0
\(827\) 2.44806e7 1.24468 0.622342 0.782746i \(-0.286181\pi\)
0.622342 + 0.782746i \(0.286181\pi\)
\(828\) 0 0
\(829\) −2.25593e7 −1.14009 −0.570046 0.821612i \(-0.693075\pi\)
−0.570046 + 0.821612i \(0.693075\pi\)
\(830\) 0 0
\(831\) 2.33372e6 1.49979e6i 0.117232 0.0753405i
\(832\) 0 0
\(833\) −7.98225e6 1.74787e7i −0.398577 0.872763i
\(834\) 0 0
\(835\) 1.15189e7 3.38226e6i 0.571736 0.167877i
\(836\) 0 0
\(837\) 1.11862e7 2.44944e7i 0.551912 1.20852i
\(838\) 0 0
\(839\) 2.02229e6 + 2.33385e6i 0.0991832 + 0.114464i 0.803171 0.595749i \(-0.203145\pi\)
−0.703988 + 0.710212i \(0.748599\pi\)
\(840\) 0 0
\(841\) 9.30524e6 + 2.73226e6i 0.453667 + 0.133209i
\(842\) 0 0
\(843\) −3.58931e6 2.30671e6i −0.173957 0.111795i
\(844\) 0 0
\(845\) −1.35739e6 + 9.44086e6i −0.0653978 + 0.454852i
\(846\) 0 0
\(847\) −9.58100e6 6.66373e7i −0.458883 3.19160i
\(848\) 0 0
\(849\) −1.82952e7 + 2.11138e7i −0.871101 + 1.00530i
\(850\) 0 0
\(851\) −5.97560e6 9.63465e6i −0.282851 0.456050i
\(852\) 0 0
\(853\) 1.77720e7 2.05100e7i 0.836302 0.965144i −0.163469 0.986548i \(-0.552268\pi\)
0.999771 + 0.0214045i \(0.00681377\pi\)
\(854\) 0 0
\(855\) −6.48840e6 4.51278e7i −0.303545 2.11120i
\(856\) 0 0
\(857\) −3.50349e6 + 2.43673e7i −0.162948 + 1.13333i 0.730092 + 0.683349i \(0.239477\pi\)
−0.893039 + 0.449978i \(0.851432\pi\)
\(858\) 0 0
\(859\) −3.91771e6 2.51776e6i −0.181154 0.116421i 0.446921 0.894574i \(-0.352521\pi\)
−0.628075 + 0.778153i \(0.716157\pi\)
\(860\) 0 0
\(861\) 7.04316e7 + 2.06806e7i 3.23787 + 0.950724i
\(862\) 0 0
\(863\) −2.72827e7 3.14859e7i −1.24698 1.43909i −0.854596 0.519294i \(-0.826195\pi\)
−0.392386 0.919801i \(-0.628350\pi\)
\(864\) 0 0
\(865\) −1.56313e6 + 3.42277e6i −0.0710320 + 0.155538i
\(866\) 0 0
\(867\) 5.80575e6 1.70472e6i 0.262308 0.0770204i
\(868\) 0 0
\(869\) −1.38489e6 3.03248e6i −0.0622106 0.136222i
\(870\) 0 0
\(871\) −6.50603e6 + 4.18117e6i −0.290583 + 0.186747i
\(872\) 0 0
\(873\) −5.14653e6 −0.228549
\(874\) 0 0
\(875\) 2.82981e7 1.24950
\(876\) 0 0
\(877\) −9.16170e6 + 5.88787e6i −0.402232 + 0.258499i −0.726080 0.687610i \(-0.758660\pi\)
0.323848 + 0.946109i \(0.395023\pi\)
\(878\) 0 0
\(879\) 2.19565e7 + 4.80780e7i 0.958496 + 2.09881i
\(880\) 0 0
\(881\) 3.63174e7 1.06637e7i 1.57643 0.462881i 0.627565 0.778565i \(-0.284052\pi\)
0.948865 + 0.315683i \(0.102234\pi\)
\(882\) 0 0
\(883\) 1.56389e7 3.42445e7i 0.675002 1.47805i −0.192851 0.981228i \(-0.561774\pi\)
0.867853 0.496820i \(-0.165499\pi\)
\(884\) 0 0
\(885\) −1.05739e7 1.22029e7i −0.453813 0.523728i
\(886\) 0 0
\(887\) −1.71192e7 5.02665e6i −0.730591 0.214521i −0.104780 0.994495i \(-0.533414\pi\)
−0.625811 + 0.779974i \(0.715232\pi\)
\(888\) 0 0
\(889\) −3.94121e7 2.53286e7i −1.67254 1.07487i
\(890\) 0 0
\(891\) −1.47294e7 + 1.02445e8i −0.621571 + 4.32312i
\(892\) 0 0
\(893\) 3.21880e6 + 2.23873e7i 0.135072 + 0.939448i
\(894\) 0 0
\(895\) −1.09311e7 + 1.26152e7i −0.456150 + 0.526425i
\(896\) 0 0
\(897\) 3.76268e6 1.20933e7i 0.156141 0.501837i
\(898\) 0 0
\(899\) −5.85084e6 + 6.75223e6i −0.241445 + 0.278643i
\(900\) 0 0
\(901\) 3.03471e6 + 2.11069e7i 0.124539 + 0.866188i
\(902\) 0 0
\(903\) −6.95298e6 + 4.83590e7i −0.283760 + 1.97359i
\(904\) 0 0
\(905\) 6.37474e6 + 4.09680e6i 0.258727 + 0.166273i
\(906\) 0 0
\(907\) 2.20599e7 + 6.47736e6i 0.890399 + 0.261445i 0.694769 0.719233i \(-0.255507\pi\)
0.195630 + 0.980678i \(0.437325\pi\)
\(908\) 0 0
\(909\) −5.90146e7 6.81064e7i −2.36891 2.73387i
\(910\) 0 0
\(911\) −1.39637e7 + 3.05762e7i −0.557447 + 1.22064i 0.395769 + 0.918350i \(0.370478\pi\)
−0.953216 + 0.302289i \(0.902249\pi\)
\(912\) 0 0
\(913\) −7.74624e6 + 2.27450e6i −0.307549 + 0.0903045i
\(914\) 0 0
\(915\) −1.85361e7 4.05883e7i −0.731922 1.60269i
\(916\) 0 0
\(917\) −2.48116e7 + 1.59454e7i −0.974385 + 0.626199i
\(918\) 0 0
\(919\) −2.17303e7 −0.848745 −0.424372 0.905488i \(-0.639505\pi\)
−0.424372 + 0.905488i \(0.639505\pi\)
\(920\) 0 0
\(921\) 1.84309e7 0.715973
\(922\) 0 0
\(923\) −1.73206e6 + 1.11313e6i −0.0669206 + 0.0430073i
\(924\) 0 0
\(925\) −4.35117e6 9.52774e6i −0.167206 0.366130i
\(926\) 0 0
\(927\) −1.73444e6 + 509278.i −0.0662918 + 0.0194650i
\(928\) 0 0
\(929\) −9.28376e6 + 2.03286e7i −0.352927 + 0.772802i 0.647020 + 0.762473i \(0.276015\pi\)
−0.999947 + 0.0103290i \(0.996712\pi\)
\(930\) 0 0
\(931\) 3.17917e7 + 3.66896e7i 1.20210 + 1.38730i
\(932\) 0 0
\(933\) 959016. + 281592.i 0.0360680 + 0.0105905i
\(934\) 0 0
\(935\) 1.87326e7 + 1.20387e7i 0.700759 + 0.450351i
\(936\) 0 0
\(937\) −5.35015e6 + 3.72111e7i −0.199075 + 1.38460i 0.607900 + 0.794014i \(0.292012\pi\)
−0.806975 + 0.590585i \(0.798897\pi\)
\(938\) 0 0
\(939\) −9.63492e6 6.70123e7i −0.356602 2.48022i
\(940\) 0 0
\(941\) 8.24316e6 9.51312e6i 0.303473 0.350226i −0.583446 0.812152i \(-0.698296\pi\)
0.886919 + 0.461926i \(0.152841\pi\)
\(942\) 0 0
\(943\) −3.44750e7 5.52268e6i −1.26248 0.202242i
\(944\) 0 0
\(945\) 3.35826e7 3.87564e7i 1.22331 1.41177i
\(946\) 0 0
\(947\) −2.43527e6 1.69377e7i −0.0882415 0.613733i −0.985173 0.171564i \(-0.945118\pi\)
0.896932 0.442169i \(-0.145791\pi\)
\(948\) 0 0
\(949\) 1.00588e6 6.99607e6i 0.0362562 0.252167i
\(950\) 0 0
\(951\) −1.66012e7 1.06689e7i −0.595234 0.382534i
\(952\) 0 0
\(953\) −2.07448e7 6.09122e6i −0.739907 0.217256i −0.110005 0.993931i \(-0.535087\pi\)
−0.629902 + 0.776675i \(0.716905\pi\)
\(954\) 0 0
\(955\) 642799. + 741830.i 0.0228069 + 0.0263206i
\(956\) 0 0
\(957\) 2.85066e7 6.24208e7i 1.00616 2.20318i
\(958\) 0 0
\(959\) −2.68287e6 + 787763.i −0.0942006 + 0.0276598i
\(960\) 0 0
\(961\) −8.82628e6 1.93269e7i −0.308297 0.675076i
\(962\) 0 0
\(963\) 4.73905e6 3.04560e6i 0.164674 0.105830i
\(964\) 0 0
\(965\) −1.38521e6 −0.0478849
\(966\) 0 0
\(967\) 2.84035e7 0.976801 0.488400 0.872620i \(-0.337581\pi\)
0.488400 + 0.872620i \(0.337581\pi\)
\(968\) 0 0
\(969\) 7.40822e7 4.76098e7i 2.53457 1.62887i
\(970\) 0 0
\(971\) 2.00841e6 + 4.39780e6i 0.0683603 + 0.149688i 0.940728 0.339162i \(-0.110144\pi\)
−0.872368 + 0.488851i \(0.837416\pi\)
\(972\) 0 0
\(973\) −3.00068e7 + 8.81079e6i −1.01610 + 0.298354i
\(974\) 0 0
\(975\) 4.86078e6 1.06436e7i 0.163755 0.358573i
\(976\) 0 0
\(977\) 1.65359e7 + 1.90835e7i 0.554233 + 0.639619i 0.961864 0.273528i \(-0.0881906\pi\)
−0.407631 + 0.913147i \(0.633645\pi\)
\(978\) 0 0
\(979\) −4.99280e7 1.46602e7i −1.66490 0.488858i
\(980\) 0 0
\(981\) −2.10225e7 1.35103e7i −0.697448 0.448223i
\(982\) 0 0
\(983\) 8.31932e6 5.78621e7i 0.274602 1.90990i −0.123115 0.992392i \(-0.539288\pi\)
0.397717 0.917508i \(-0.369802\pi\)
\(984\) 0 0
\(985\) −832766. 5.79201e6i −0.0273484 0.190213i
\(986\) 0 0
\(987\) −2.84281e7 + 3.28078e7i −0.928870 + 1.07197i
\(988\) 0 0
\(989\) 372832. 2.32351e7i 0.0121205 0.755361i
\(990\) 0 0
\(991\) −3.06596e7 + 3.53830e7i −0.991704 + 1.14449i −0.00219726 + 0.999998i \(0.500699\pi\)
−0.989506 + 0.144489i \(0.953846\pi\)
\(992\) 0 0
\(993\) 9.05820e6 + 6.30012e7i 0.291520 + 2.02757i
\(994\) 0 0
\(995\) −2.87401e6 + 1.99892e7i −0.0920303 + 0.640085i
\(996\) 0 0
\(997\) −4.45381e7 2.86229e7i −1.41904 0.911961i −0.999992 0.00399569i \(-0.998728\pi\)
−0.419046 0.907965i \(-0.637636\pi\)
\(998\) 0 0
\(999\) −4.24951e7 1.24777e7i −1.34718 0.395567i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.6.e.a.85.10 yes 100
23.13 even 11 inner 92.6.e.a.13.10 100
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.6.e.a.13.10 100 23.13 even 11 inner
92.6.e.a.85.10 yes 100 1.1 even 1 trivial