Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [92,9,Mod(47,92)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(92, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("92.47");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(37.4788321256\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −15.9956 | − | 0.376294i | 130.796i | 255.717 | + | 12.0381i | −534.997 | 49.2176 | − | 2092.15i | − | 2047.49i | −4085.81 | − | 288.781i | −10546.5 | 8557.59 | + | 201.317i | |||||||
47.2 | −15.9956 | + | 0.376294i | − | 130.796i | 255.717 | − | 12.0381i | −534.997 | 49.2176 | + | 2092.15i | 2047.49i | −4085.81 | + | 288.781i | −10546.5 | 8557.59 | − | 201.317i | |||||||
47.3 | −15.9695 | − | 0.988222i | − | 94.8206i | 254.047 | + | 31.5627i | 110.310 | −93.7038 | + | 1514.23i | − | 4110.64i | −4025.80 | − | 755.094i | −2429.96 | −1761.59 | − | 109.010i | ||||||
47.4 | −15.9695 | + | 0.988222i | 94.8206i | 254.047 | − | 31.5627i | 110.310 | −93.7038 | − | 1514.23i | 4110.64i | −4025.80 | + | 755.094i | −2429.96 | −1761.59 | + | 109.010i | ||||||||
47.5 | −15.6955 | − | 3.10661i | − | 104.882i | 236.698 | + | 97.5198i | 1207.34 | −325.828 | + | 1646.18i | 1632.69i | −3412.14 | − | 2265.95i | −4439.27 | −18949.9 | − | 3750.75i | |||||||
47.6 | −15.6955 | + | 3.10661i | 104.882i | 236.698 | − | 97.5198i | 1207.34 | −325.828 | − | 1646.18i | − | 1632.69i | −3412.14 | + | 2265.95i | −4439.27 | −18949.9 | + | 3750.75i | |||||||
47.7 | −15.6747 | − | 3.20986i | 49.0116i | 235.394 | + | 100.627i | −941.139 | 157.320 | − | 768.243i | 885.862i | −3366.73 | − | 2332.88i | 4158.87 | 14752.1 | + | 3020.92i | ||||||||
47.8 | −15.6747 | + | 3.20986i | − | 49.0116i | 235.394 | − | 100.627i | −941.139 | 157.320 | + | 768.243i | − | 885.862i | −3366.73 | + | 2332.88i | 4158.87 | 14752.1 | − | 3020.92i | ||||||
47.9 | −15.5166 | − | 3.90338i | 43.7598i | 225.527 | + | 121.134i | 351.830 | 170.811 | − | 679.001i | 1727.11i | −3026.57 | − | 2759.90i | 4646.08 | −5459.20 | − | 1373.33i | ||||||||
47.10 | −15.5166 | + | 3.90338i | − | 43.7598i | 225.527 | − | 121.134i | 351.830 | 170.811 | + | 679.001i | − | 1727.11i | −3026.57 | + | 2759.90i | 4646.08 | −5459.20 | + | 1373.33i | ||||||
47.11 | −14.6855 | − | 6.35107i | 28.7070i | 175.328 | + | 186.537i | 496.805 | 182.320 | − | 421.577i | − | 2901.60i | −1390.06 | − | 3852.91i | 5736.91 | −7295.82 | − | 3155.24i | |||||||
47.12 | −14.6855 | + | 6.35107i | − | 28.7070i | 175.328 | − | 186.537i | 496.805 | 182.320 | + | 421.577i | 2901.60i | −1390.06 | + | 3852.91i | 5736.91 | −7295.82 | + | 3155.24i | |||||||
47.13 | −14.5818 | − | 6.58577i | − | 44.6750i | 169.255 | + | 192.064i | −184.175 | −294.220 | + | 651.440i | 1320.25i | −1203.14 | − | 3915.31i | 4565.14 | 2685.59 | + | 1212.93i | |||||||
47.14 | −14.5818 | + | 6.58577i | 44.6750i | 169.255 | − | 192.064i | −184.175 | −294.220 | − | 651.440i | − | 1320.25i | −1203.14 | + | 3915.31i | 4565.14 | 2685.59 | − | 1212.93i | |||||||
47.15 | −13.2258 | − | 9.00431i | − | 160.150i | 93.8448 | + | 238.179i | −225.940 | −1442.04 | + | 2118.12i | − | 1273.33i | 903.462 | − | 3995.12i | −19087.0 | 2988.24 | + | 2034.43i | ||||||
47.16 | −13.2258 | + | 9.00431i | 160.150i | 93.8448 | − | 238.179i | −225.940 | −1442.04 | − | 2118.12i | 1273.33i | 903.462 | + | 3995.12i | −19087.0 | 2988.24 | − | 2034.43i | ||||||||
47.17 | −12.8088 | − | 9.58823i | − | 39.5308i | 72.1315 | + | 245.628i | −1109.36 | −379.030 | + | 506.342i | − | 4026.66i | 1431.22 | − | 3837.82i | 4998.32 | 14209.6 | + | 10636.8i | ||||||
47.18 | −12.8088 | + | 9.58823i | 39.5308i | 72.1315 | − | 245.628i | −1109.36 | −379.030 | − | 506.342i | 4026.66i | 1431.22 | + | 3837.82i | 4998.32 | 14209.6 | − | 10636.8i | ||||||||
47.19 | −12.8034 | − | 9.59541i | 137.683i | 71.8563 | + | 245.709i | 620.599 | 1321.13 | − | 1762.82i | 4034.34i | 1437.67 | − | 3835.41i | −12395.6 | −7945.80 | − | 5954.90i | ||||||||
47.20 | −12.8034 | + | 9.59541i | − | 137.683i | 71.8563 | − | 245.709i | 620.599 | 1321.13 | + | 1762.82i | − | 4034.34i | 1437.67 | + | 3835.41i | −12395.6 | −7945.80 | + | 5954.90i | ||||||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 92.9.c.a | ✓ | 88 |
4.b | odd | 2 | 1 | inner | 92.9.c.a | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
92.9.c.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
92.9.c.a | ✓ | 88 | 4.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{9}^{\mathrm{new}}(92, [\chi])\).