Properties

Label 9200.2.a.ch
Level $9200$
Weight $2$
Character orbit 9200.a
Self dual yes
Analytic conductor $73.462$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9200,2,Mod(1,9200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4600)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + ( - 2 \beta_1 + 2) q^{7} + (\beta_{2} - 2 \beta_1) q^{9} + (2 \beta_{2} + 2 \beta_1) q^{11} + ( - \beta_{2} + 2 \beta_1 - 1) q^{13} + (2 \beta_1 - 2) q^{17} + ( - 4 \beta_{2} + 4 \beta_1 - 4) q^{19}+ \cdots + ( - 8 \beta_{2} + 2 \beta_1 - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 4 q^{7} - 3 q^{9} - 4 q^{17} - 4 q^{19} + 12 q^{21} - 3 q^{23} - q^{27} - 4 q^{29} - 10 q^{31} - 14 q^{33} + 10 q^{37} - 7 q^{39} - 4 q^{41} - 24 q^{43} + 16 q^{47} + 3 q^{49} - 12 q^{51}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
0 −0.801938 0 0 0 −1.60388 0 −2.35690 0
1.2 0 0.554958 0 0 0 1.10992 0 −2.69202 0
1.3 0 2.24698 0 0 0 4.49396 0 2.04892 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9200.2.a.ch 3
4.b odd 2 1 4600.2.a.w 3
5.b even 2 1 9200.2.a.cb 3
20.d odd 2 1 4600.2.a.z yes 3
20.e even 4 2 4600.2.e.s 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4600.2.a.w 3 4.b odd 2 1
4600.2.a.z yes 3 20.d odd 2 1
4600.2.e.s 6 20.e even 4 2
9200.2.a.cb 3 5.b even 2 1
9200.2.a.ch 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9200))\):

\( T_{3}^{3} - 2T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{3} - 28T_{11} - 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{3} - 28T - 56 \) Copy content Toggle raw display
$13$ \( T^{3} - 7T + 7 \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( (T + 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 4 T^{2} + \cdots - 169 \) Copy content Toggle raw display
$31$ \( T^{3} + 10 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$37$ \( T^{3} - 10 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$41$ \( T^{3} + 4 T^{2} + \cdots + 41 \) Copy content Toggle raw display
$43$ \( T^{3} + 24 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$47$ \( T^{3} - 16 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$53$ \( T^{3} + 10 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$59$ \( T^{3} - 11 T^{2} + \cdots + 379 \) Copy content Toggle raw display
$61$ \( T^{3} + 4 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 832 \) Copy content Toggle raw display
$71$ \( T^{3} + 4 T^{2} + \cdots - 533 \) Copy content Toggle raw display
$73$ \( T^{3} + 4 T^{2} + \cdots + 349 \) Copy content Toggle raw display
$79$ \( T^{3} - 4 T^{2} + \cdots + 568 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 1856 \) Copy content Toggle raw display
$89$ \( T^{3} + 20 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$97$ \( T^{3} + 38 T^{2} + \cdots + 1912 \) Copy content Toggle raw display
show more
show less