Properties

Label 9200.2.a.ch
Level 92009200
Weight 22
Character orbit 9200.a
Self dual yes
Analytic conductor 73.46273.462
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9200,2,Mod(1,9200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9200=245223 9200 = 2^{4} \cdot 5^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.462369859673.4623698596
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 4600)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q3+(2β1+2)q7+(β22β1)q9+(2β2+2β1)q11+(β2+2β11)q13+(2β12)q17+(4β2+4β14)q19++(8β2+2β18)q99+O(q100) q + ( - \beta_1 + 1) q^{3} + ( - 2 \beta_1 + 2) q^{7} + (\beta_{2} - 2 \beta_1) q^{9} + (2 \beta_{2} + 2 \beta_1) q^{11} + ( - \beta_{2} + 2 \beta_1 - 1) q^{13} + (2 \beta_1 - 2) q^{17} + ( - 4 \beta_{2} + 4 \beta_1 - 4) q^{19}+ \cdots + ( - 8 \beta_{2} + 2 \beta_1 - 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q3+4q73q94q174q19+12q213q23q274q2910q3114q33+10q377q394q4124q43+16q47+3q4912q51+14q99+O(q100) 3 q + 2 q^{3} + 4 q^{7} - 3 q^{9} - 4 q^{17} - 4 q^{19} + 12 q^{21} - 3 q^{23} - q^{27} - 4 q^{29} - 10 q^{31} - 14 q^{33} + 10 q^{37} - 7 q^{39} - 4 q^{41} - 24 q^{43} + 16 q^{47} + 3 q^{49} - 12 q^{51}+ \cdots - 14 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ14+ζ141\nu = \zeta_{14} + \zeta_{14}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.80194
0.445042
−1.24698
0 −0.801938 0 0 0 −1.60388 0 −2.35690 0
1.2 0 0.554958 0 0 0 1.10992 0 −2.69202 0
1.3 0 2.24698 0 0 0 4.49396 0 2.04892 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
2323 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9200.2.a.ch 3
4.b odd 2 1 4600.2.a.w 3
5.b even 2 1 9200.2.a.cb 3
20.d odd 2 1 4600.2.a.z yes 3
20.e even 4 2 4600.2.e.s 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4600.2.a.w 3 4.b odd 2 1
4600.2.a.z yes 3 20.d odd 2 1
4600.2.e.s 6 20.e even 4 2
9200.2.a.cb 3 5.b even 2 1
9200.2.a.ch 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9200))S_{2}^{\mathrm{new}}(\Gamma_0(9200)):

T332T32T3+1 T_{3}^{3} - 2T_{3}^{2} - T_{3} + 1 Copy content Toggle raw display
T734T724T7+8 T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 8 Copy content Toggle raw display
T11328T1156 T_{11}^{3} - 28T_{11} - 56 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T32T2T+1 T^{3} - 2T^{2} - T + 1 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T34T2++8 T^{3} - 4 T^{2} + \cdots + 8 Copy content Toggle raw display
1111 T328T56 T^{3} - 28T - 56 Copy content Toggle raw display
1313 T37T+7 T^{3} - 7T + 7 Copy content Toggle raw display
1717 T3+4T2+8 T^{3} + 4 T^{2} + \cdots - 8 Copy content Toggle raw display
1919 T3+4T2+64 T^{3} + 4 T^{2} + \cdots - 64 Copy content Toggle raw display
2323 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
2929 T3+4T2+169 T^{3} + 4 T^{2} + \cdots - 169 Copy content Toggle raw display
3131 T3+10T2+41 T^{3} + 10 T^{2} + \cdots - 41 Copy content Toggle raw display
3737 T310T2++328 T^{3} - 10 T^{2} + \cdots + 328 Copy content Toggle raw display
4141 T3+4T2++41 T^{3} + 4 T^{2} + \cdots + 41 Copy content Toggle raw display
4343 T3+24T2++232 T^{3} + 24 T^{2} + \cdots + 232 Copy content Toggle raw display
4747 T316T2+83 T^{3} - 16 T^{2} + \cdots - 83 Copy content Toggle raw display
5353 T3+10T2+104 T^{3} + 10 T^{2} + \cdots - 104 Copy content Toggle raw display
5959 T311T2++379 T^{3} - 11 T^{2} + \cdots + 379 Copy content Toggle raw display
6161 T3+4T2++104 T^{3} + 4 T^{2} + \cdots + 104 Copy content Toggle raw display
6767 T312T2++832 T^{3} - 12 T^{2} + \cdots + 832 Copy content Toggle raw display
7171 T3+4T2+533 T^{3} + 4 T^{2} + \cdots - 533 Copy content Toggle raw display
7373 T3+4T2++349 T^{3} + 4 T^{2} + \cdots + 349 Copy content Toggle raw display
7979 T34T2++568 T^{3} - 4 T^{2} + \cdots + 568 Copy content Toggle raw display
8383 T3+8T2+1856 T^{3} + 8 T^{2} + \cdots - 1856 Copy content Toggle raw display
8989 T3+20T2++8 T^{3} + 20 T^{2} + \cdots + 8 Copy content Toggle raw display
9797 T3+38T2++1912 T^{3} + 38 T^{2} + \cdots + 1912 Copy content Toggle raw display
show more
show less