Properties

Label 9200.2.a.da.1.6
Level $9200$
Weight $2$
Character 9200.1
Self dual yes
Analytic conductor $73.462$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9200,2,Mod(1,9200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 12x^{5} + 9x^{4} + 43x^{3} - 14x^{2} - 49x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 575)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.202227\) of defining polynomial
Character \(\chi\) \(=\) 9200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69619 q^{3} +2.81698 q^{7} +4.26945 q^{9} +1.84786 q^{11} -6.49089 q^{13} +7.06930 q^{17} +0.252319 q^{19} +7.59513 q^{21} +1.00000 q^{23} +3.42269 q^{27} +4.12351 q^{29} -3.54811 q^{31} +4.98220 q^{33} -7.91248 q^{37} -17.5007 q^{39} +6.53833 q^{41} -4.93835 q^{43} +0.851917 q^{47} +0.935388 q^{49} +19.0602 q^{51} +12.5831 q^{53} +0.680301 q^{57} +10.3616 q^{59} +1.01207 q^{61} +12.0270 q^{63} +3.37930 q^{67} +2.69619 q^{69} +0.851917 q^{71} +9.75748 q^{73} +5.20540 q^{77} +16.5320 q^{79} -3.58013 q^{81} +0.696772 q^{83} +11.1178 q^{87} +13.1835 q^{89} -18.2847 q^{91} -9.56638 q^{93} +5.48684 q^{97} +7.88937 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{7} + 15 q^{9} + q^{11} - 3 q^{13} + 10 q^{17} - 15 q^{19} + 2 q^{21} + 7 q^{23} + 3 q^{29} - 14 q^{31} + 6 q^{33} - 10 q^{37} + 8 q^{39} + 19 q^{41} - 5 q^{43} + 14 q^{47} + 40 q^{49} - 2 q^{51}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.69619 1.55665 0.778324 0.627863i \(-0.216070\pi\)
0.778324 + 0.627863i \(0.216070\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.81698 1.06472 0.532360 0.846518i \(-0.321305\pi\)
0.532360 + 0.846518i \(0.321305\pi\)
\(8\) 0 0
\(9\) 4.26945 1.42315
\(10\) 0 0
\(11\) 1.84786 0.557152 0.278576 0.960414i \(-0.410138\pi\)
0.278576 + 0.960414i \(0.410138\pi\)
\(12\) 0 0
\(13\) −6.49089 −1.80025 −0.900124 0.435633i \(-0.856525\pi\)
−0.900124 + 0.435633i \(0.856525\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.06930 1.71456 0.857279 0.514853i \(-0.172153\pi\)
0.857279 + 0.514853i \(0.172153\pi\)
\(18\) 0 0
\(19\) 0.252319 0.0578860 0.0289430 0.999581i \(-0.490786\pi\)
0.0289430 + 0.999581i \(0.490786\pi\)
\(20\) 0 0
\(21\) 7.59513 1.65739
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.42269 0.658696
\(28\) 0 0
\(29\) 4.12351 0.765717 0.382858 0.923807i \(-0.374940\pi\)
0.382858 + 0.923807i \(0.374940\pi\)
\(30\) 0 0
\(31\) −3.54811 −0.637259 −0.318630 0.947879i \(-0.603223\pi\)
−0.318630 + 0.947879i \(0.603223\pi\)
\(32\) 0 0
\(33\) 4.98220 0.867289
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.91248 −1.30080 −0.650402 0.759591i \(-0.725399\pi\)
−0.650402 + 0.759591i \(0.725399\pi\)
\(38\) 0 0
\(39\) −17.5007 −2.80235
\(40\) 0 0
\(41\) 6.53833 1.02111 0.510557 0.859844i \(-0.329439\pi\)
0.510557 + 0.859844i \(0.329439\pi\)
\(42\) 0 0
\(43\) −4.93835 −0.753092 −0.376546 0.926398i \(-0.622888\pi\)
−0.376546 + 0.926398i \(0.622888\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.851917 0.124265 0.0621324 0.998068i \(-0.480210\pi\)
0.0621324 + 0.998068i \(0.480210\pi\)
\(48\) 0 0
\(49\) 0.935388 0.133627
\(50\) 0 0
\(51\) 19.0602 2.66896
\(52\) 0 0
\(53\) 12.5831 1.72842 0.864208 0.503135i \(-0.167820\pi\)
0.864208 + 0.503135i \(0.167820\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.680301 0.0901080
\(58\) 0 0
\(59\) 10.3616 1.34897 0.674484 0.738290i \(-0.264366\pi\)
0.674484 + 0.738290i \(0.264366\pi\)
\(60\) 0 0
\(61\) 1.01207 0.129582 0.0647911 0.997899i \(-0.479362\pi\)
0.0647911 + 0.997899i \(0.479362\pi\)
\(62\) 0 0
\(63\) 12.0270 1.51526
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.37930 0.412848 0.206424 0.978463i \(-0.433817\pi\)
0.206424 + 0.978463i \(0.433817\pi\)
\(68\) 0 0
\(69\) 2.69619 0.324583
\(70\) 0 0
\(71\) 0.851917 0.101104 0.0505520 0.998721i \(-0.483902\pi\)
0.0505520 + 0.998721i \(0.483902\pi\)
\(72\) 0 0
\(73\) 9.75748 1.14203 0.571013 0.820941i \(-0.306551\pi\)
0.571013 + 0.820941i \(0.306551\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.20540 0.593211
\(78\) 0 0
\(79\) 16.5320 1.86000 0.929999 0.367561i \(-0.119807\pi\)
0.929999 + 0.367561i \(0.119807\pi\)
\(80\) 0 0
\(81\) −3.58013 −0.397793
\(82\) 0 0
\(83\) 0.696772 0.0764806 0.0382403 0.999269i \(-0.487825\pi\)
0.0382403 + 0.999269i \(0.487825\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.1178 1.19195
\(88\) 0 0
\(89\) 13.1835 1.39745 0.698724 0.715392i \(-0.253752\pi\)
0.698724 + 0.715392i \(0.253752\pi\)
\(90\) 0 0
\(91\) −18.2847 −1.91676
\(92\) 0 0
\(93\) −9.56638 −0.991988
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.48684 0.557104 0.278552 0.960421i \(-0.410146\pi\)
0.278552 + 0.960421i \(0.410146\pi\)
\(98\) 0 0
\(99\) 7.88937 0.792911
\(100\) 0 0
\(101\) −9.56925 −0.952176 −0.476088 0.879398i \(-0.657946\pi\)
−0.476088 + 0.879398i \(0.657946\pi\)
\(102\) 0 0
\(103\) −9.10123 −0.896770 −0.448385 0.893840i \(-0.648001\pi\)
−0.448385 + 0.893840i \(0.648001\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.7093 1.13198 0.565991 0.824411i \(-0.308494\pi\)
0.565991 + 0.824411i \(0.308494\pi\)
\(108\) 0 0
\(109\) 1.46844 0.140651 0.0703257 0.997524i \(-0.477596\pi\)
0.0703257 + 0.997524i \(0.477596\pi\)
\(110\) 0 0
\(111\) −21.3336 −2.02489
\(112\) 0 0
\(113\) −1.62939 −0.153280 −0.0766401 0.997059i \(-0.524419\pi\)
−0.0766401 + 0.997059i \(0.524419\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −27.7125 −2.56203
\(118\) 0 0
\(119\) 19.9141 1.82552
\(120\) 0 0
\(121\) −7.58540 −0.689581
\(122\) 0 0
\(123\) 17.6286 1.58952
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.59258 −0.762468 −0.381234 0.924479i \(-0.624501\pi\)
−0.381234 + 0.924479i \(0.624501\pi\)
\(128\) 0 0
\(129\) −13.3147 −1.17230
\(130\) 0 0
\(131\) −2.93777 −0.256674 −0.128337 0.991731i \(-0.540964\pi\)
−0.128337 + 0.991731i \(0.540964\pi\)
\(132\) 0 0
\(133\) 0.710778 0.0616323
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.9366 1.87417 0.937085 0.349101i \(-0.113513\pi\)
0.937085 + 0.349101i \(0.113513\pi\)
\(138\) 0 0
\(139\) −15.3324 −1.30048 −0.650239 0.759730i \(-0.725331\pi\)
−0.650239 + 0.759730i \(0.725331\pi\)
\(140\) 0 0
\(141\) 2.29693 0.193437
\(142\) 0 0
\(143\) −11.9943 −1.00301
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.52199 0.208010
\(148\) 0 0
\(149\) −15.0218 −1.23063 −0.615316 0.788281i \(-0.710972\pi\)
−0.615316 + 0.788281i \(0.710972\pi\)
\(150\) 0 0
\(151\) −17.5294 −1.42652 −0.713262 0.700897i \(-0.752783\pi\)
−0.713262 + 0.700897i \(0.752783\pi\)
\(152\) 0 0
\(153\) 30.1820 2.44007
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.10315 −0.566893 −0.283446 0.958988i \(-0.591478\pi\)
−0.283446 + 0.958988i \(0.591478\pi\)
\(158\) 0 0
\(159\) 33.9263 2.69053
\(160\) 0 0
\(161\) 2.81698 0.222009
\(162\) 0 0
\(163\) −14.5905 −1.14282 −0.571408 0.820666i \(-0.693603\pi\)
−0.571408 + 0.820666i \(0.693603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.45066 −0.731314 −0.365657 0.930750i \(-0.619156\pi\)
−0.365657 + 0.930750i \(0.619156\pi\)
\(168\) 0 0
\(169\) 29.1316 2.24090
\(170\) 0 0
\(171\) 1.07726 0.0823805
\(172\) 0 0
\(173\) 23.3055 1.77188 0.885940 0.463799i \(-0.153514\pi\)
0.885940 + 0.463799i \(0.153514\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 27.9369 2.09987
\(178\) 0 0
\(179\) −23.5562 −1.76068 −0.880338 0.474347i \(-0.842684\pi\)
−0.880338 + 0.474347i \(0.842684\pi\)
\(180\) 0 0
\(181\) 0.505059 0.0375407 0.0187704 0.999824i \(-0.494025\pi\)
0.0187704 + 0.999824i \(0.494025\pi\)
\(182\) 0 0
\(183\) 2.72874 0.201714
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 13.0631 0.955269
\(188\) 0 0
\(189\) 9.64165 0.701327
\(190\) 0 0
\(191\) −2.51313 −0.181844 −0.0909219 0.995858i \(-0.528981\pi\)
−0.0909219 + 0.995858i \(0.528981\pi\)
\(192\) 0 0
\(193\) 4.17037 0.300190 0.150095 0.988672i \(-0.452042\pi\)
0.150095 + 0.988672i \(0.452042\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.60102 0.470303 0.235151 0.971959i \(-0.424441\pi\)
0.235151 + 0.971959i \(0.424441\pi\)
\(198\) 0 0
\(199\) 9.91175 0.702626 0.351313 0.936258i \(-0.385735\pi\)
0.351313 + 0.936258i \(0.385735\pi\)
\(200\) 0 0
\(201\) 9.11125 0.642658
\(202\) 0 0
\(203\) 11.6159 0.815273
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.26945 0.296747
\(208\) 0 0
\(209\) 0.466251 0.0322513
\(210\) 0 0
\(211\) −8.33546 −0.573837 −0.286918 0.957955i \(-0.592631\pi\)
−0.286918 + 0.957955i \(0.592631\pi\)
\(212\) 0 0
\(213\) 2.29693 0.157383
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −9.99496 −0.678502
\(218\) 0 0
\(219\) 26.3080 1.77773
\(220\) 0 0
\(221\) −45.8860 −3.08663
\(222\) 0 0
\(223\) 13.4909 0.903420 0.451710 0.892165i \(-0.350814\pi\)
0.451710 + 0.892165i \(0.350814\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.77415 −0.383244 −0.191622 0.981469i \(-0.561375\pi\)
−0.191622 + 0.981469i \(0.561375\pi\)
\(228\) 0 0
\(229\) 22.3181 1.47482 0.737412 0.675444i \(-0.236048\pi\)
0.737412 + 0.675444i \(0.236048\pi\)
\(230\) 0 0
\(231\) 14.0348 0.923420
\(232\) 0 0
\(233\) −21.8227 −1.42965 −0.714825 0.699303i \(-0.753494\pi\)
−0.714825 + 0.699303i \(0.753494\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 44.5735 2.89536
\(238\) 0 0
\(239\) 26.7115 1.72782 0.863912 0.503644i \(-0.168007\pi\)
0.863912 + 0.503644i \(0.168007\pi\)
\(240\) 0 0
\(241\) 15.1565 0.976318 0.488159 0.872755i \(-0.337669\pi\)
0.488159 + 0.872755i \(0.337669\pi\)
\(242\) 0 0
\(243\) −19.9208 −1.27792
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.63778 −0.104209
\(248\) 0 0
\(249\) 1.87863 0.119053
\(250\) 0 0
\(251\) 13.2026 0.833340 0.416670 0.909058i \(-0.363197\pi\)
0.416670 + 0.909058i \(0.363197\pi\)
\(252\) 0 0
\(253\) 1.84786 0.116174
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.9450 −0.869866 −0.434933 0.900463i \(-0.643228\pi\)
−0.434933 + 0.900463i \(0.643228\pi\)
\(258\) 0 0
\(259\) −22.2893 −1.38499
\(260\) 0 0
\(261\) 17.6051 1.08973
\(262\) 0 0
\(263\) 21.7883 1.34352 0.671762 0.740767i \(-0.265538\pi\)
0.671762 + 0.740767i \(0.265538\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 35.5452 2.17533
\(268\) 0 0
\(269\) 10.2596 0.625540 0.312770 0.949829i \(-0.398743\pi\)
0.312770 + 0.949829i \(0.398743\pi\)
\(270\) 0 0
\(271\) −4.11888 −0.250204 −0.125102 0.992144i \(-0.539926\pi\)
−0.125102 + 0.992144i \(0.539926\pi\)
\(272\) 0 0
\(273\) −49.2991 −2.98372
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.62736 −0.578452 −0.289226 0.957261i \(-0.593398\pi\)
−0.289226 + 0.957261i \(0.593398\pi\)
\(278\) 0 0
\(279\) −15.1485 −0.906916
\(280\) 0 0
\(281\) 16.9191 1.00931 0.504654 0.863322i \(-0.331620\pi\)
0.504654 + 0.863322i \(0.331620\pi\)
\(282\) 0 0
\(283\) −7.51375 −0.446646 −0.223323 0.974744i \(-0.571691\pi\)
−0.223323 + 0.974744i \(0.571691\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.4183 1.08720
\(288\) 0 0
\(289\) 32.9750 1.93971
\(290\) 0 0
\(291\) 14.7936 0.867214
\(292\) 0 0
\(293\) −15.7923 −0.922596 −0.461298 0.887245i \(-0.652616\pi\)
−0.461298 + 0.887245i \(0.652616\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.32466 0.366994
\(298\) 0 0
\(299\) −6.49089 −0.375378
\(300\) 0 0
\(301\) −13.9112 −0.801831
\(302\) 0 0
\(303\) −25.8005 −1.48220
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −25.0861 −1.43174 −0.715870 0.698234i \(-0.753970\pi\)
−0.715870 + 0.698234i \(0.753970\pi\)
\(308\) 0 0
\(309\) −24.5387 −1.39596
\(310\) 0 0
\(311\) −18.2599 −1.03542 −0.517711 0.855555i \(-0.673216\pi\)
−0.517711 + 0.855555i \(0.673216\pi\)
\(312\) 0 0
\(313\) −11.3712 −0.642738 −0.321369 0.946954i \(-0.604143\pi\)
−0.321369 + 0.946954i \(0.604143\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.7315 −0.883570 −0.441785 0.897121i \(-0.645655\pi\)
−0.441785 + 0.897121i \(0.645655\pi\)
\(318\) 0 0
\(319\) 7.61969 0.426621
\(320\) 0 0
\(321\) 31.5706 1.76210
\(322\) 0 0
\(323\) 1.78372 0.0992488
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.95921 0.218945
\(328\) 0 0
\(329\) 2.39984 0.132307
\(330\) 0 0
\(331\) −12.5991 −0.692507 −0.346253 0.938141i \(-0.612546\pi\)
−0.346253 + 0.938141i \(0.612546\pi\)
\(332\) 0 0
\(333\) −33.7819 −1.85124
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.5473 0.901388 0.450694 0.892679i \(-0.351177\pi\)
0.450694 + 0.892679i \(0.351177\pi\)
\(338\) 0 0
\(339\) −4.39315 −0.238603
\(340\) 0 0
\(341\) −6.55643 −0.355050
\(342\) 0 0
\(343\) −17.0839 −0.922444
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.43461 0.452794 0.226397 0.974035i \(-0.427305\pi\)
0.226397 + 0.974035i \(0.427305\pi\)
\(348\) 0 0
\(349\) −13.2201 −0.707658 −0.353829 0.935310i \(-0.615121\pi\)
−0.353829 + 0.935310i \(0.615121\pi\)
\(350\) 0 0
\(351\) −22.2163 −1.18582
\(352\) 0 0
\(353\) 1.28663 0.0684803 0.0342401 0.999414i \(-0.489099\pi\)
0.0342401 + 0.999414i \(0.489099\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 53.6922 2.84169
\(358\) 0 0
\(359\) −14.7493 −0.778438 −0.389219 0.921145i \(-0.627255\pi\)
−0.389219 + 0.921145i \(0.627255\pi\)
\(360\) 0 0
\(361\) −18.9363 −0.996649
\(362\) 0 0
\(363\) −20.4517 −1.07344
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −25.9403 −1.35407 −0.677036 0.735950i \(-0.736736\pi\)
−0.677036 + 0.735950i \(0.736736\pi\)
\(368\) 0 0
\(369\) 27.9151 1.45320
\(370\) 0 0
\(371\) 35.4462 1.84028
\(372\) 0 0
\(373\) −13.1177 −0.679209 −0.339604 0.940568i \(-0.610293\pi\)
−0.339604 + 0.940568i \(0.610293\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.7653 −1.37848
\(378\) 0 0
\(379\) −9.63674 −0.495006 −0.247503 0.968887i \(-0.579610\pi\)
−0.247503 + 0.968887i \(0.579610\pi\)
\(380\) 0 0
\(381\) −23.1672 −1.18689
\(382\) 0 0
\(383\) −16.1595 −0.825711 −0.412856 0.910797i \(-0.635469\pi\)
−0.412856 + 0.910797i \(0.635469\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.0841 −1.07176
\(388\) 0 0
\(389\) 27.6271 1.40075 0.700374 0.713776i \(-0.253017\pi\)
0.700374 + 0.713776i \(0.253017\pi\)
\(390\) 0 0
\(391\) 7.06930 0.357510
\(392\) 0 0
\(393\) −7.92080 −0.399551
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.7707 −0.540565 −0.270282 0.962781i \(-0.587117\pi\)
−0.270282 + 0.962781i \(0.587117\pi\)
\(398\) 0 0
\(399\) 1.91639 0.0959397
\(400\) 0 0
\(401\) −31.5635 −1.57621 −0.788104 0.615542i \(-0.788937\pi\)
−0.788104 + 0.615542i \(0.788937\pi\)
\(402\) 0 0
\(403\) 23.0304 1.14723
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.6212 −0.724745
\(408\) 0 0
\(409\) 15.6426 0.773479 0.386740 0.922189i \(-0.373601\pi\)
0.386740 + 0.922189i \(0.373601\pi\)
\(410\) 0 0
\(411\) 59.1453 2.91742
\(412\) 0 0
\(413\) 29.1885 1.43627
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −41.3391 −2.02439
\(418\) 0 0
\(419\) 11.1799 0.546175 0.273088 0.961989i \(-0.411955\pi\)
0.273088 + 0.961989i \(0.411955\pi\)
\(420\) 0 0
\(421\) 0.661200 0.0322249 0.0161125 0.999870i \(-0.494871\pi\)
0.0161125 + 0.999870i \(0.494871\pi\)
\(422\) 0 0
\(423\) 3.63722 0.176848
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.85098 0.137969
\(428\) 0 0
\(429\) −32.3389 −1.56134
\(430\) 0 0
\(431\) 15.2276 0.733488 0.366744 0.930322i \(-0.380473\pi\)
0.366744 + 0.930322i \(0.380473\pi\)
\(432\) 0 0
\(433\) 22.2662 1.07005 0.535023 0.844838i \(-0.320303\pi\)
0.535023 + 0.844838i \(0.320303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.252319 0.0120701
\(438\) 0 0
\(439\) −21.1491 −1.00939 −0.504695 0.863298i \(-0.668395\pi\)
−0.504695 + 0.863298i \(0.668395\pi\)
\(440\) 0 0
\(441\) 3.99359 0.190171
\(442\) 0 0
\(443\) −9.94721 −0.472606 −0.236303 0.971679i \(-0.575936\pi\)
−0.236303 + 0.971679i \(0.575936\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −40.5016 −1.91566
\(448\) 0 0
\(449\) −8.32870 −0.393056 −0.196528 0.980498i \(-0.562967\pi\)
−0.196528 + 0.980498i \(0.562967\pi\)
\(450\) 0 0
\(451\) 12.0819 0.568916
\(452\) 0 0
\(453\) −47.2627 −2.22060
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.2599 −1.55583 −0.777916 0.628369i \(-0.783723\pi\)
−0.777916 + 0.628369i \(0.783723\pi\)
\(458\) 0 0
\(459\) 24.1960 1.12937
\(460\) 0 0
\(461\) 14.8481 0.691544 0.345772 0.938318i \(-0.387617\pi\)
0.345772 + 0.938318i \(0.387617\pi\)
\(462\) 0 0
\(463\) 15.6422 0.726956 0.363478 0.931603i \(-0.381589\pi\)
0.363478 + 0.931603i \(0.381589\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.26987 0.243861 0.121930 0.992539i \(-0.461092\pi\)
0.121930 + 0.992539i \(0.461092\pi\)
\(468\) 0 0
\(469\) 9.51944 0.439567
\(470\) 0 0
\(471\) −19.1514 −0.882452
\(472\) 0 0
\(473\) −9.12541 −0.419587
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 53.7228 2.45980
\(478\) 0 0
\(479\) −0.404422 −0.0184785 −0.00923927 0.999957i \(-0.502941\pi\)
−0.00923927 + 0.999957i \(0.502941\pi\)
\(480\) 0 0
\(481\) 51.3590 2.34177
\(482\) 0 0
\(483\) 7.59513 0.345590
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17.0409 0.772198 0.386099 0.922457i \(-0.373822\pi\)
0.386099 + 0.922457i \(0.373822\pi\)
\(488\) 0 0
\(489\) −39.3388 −1.77896
\(490\) 0 0
\(491\) 9.42821 0.425489 0.212745 0.977108i \(-0.431760\pi\)
0.212745 + 0.977108i \(0.431760\pi\)
\(492\) 0 0
\(493\) 29.1503 1.31287
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.39984 0.107647
\(498\) 0 0
\(499\) 25.7959 1.15478 0.577391 0.816468i \(-0.304071\pi\)
0.577391 + 0.816468i \(0.304071\pi\)
\(500\) 0 0
\(501\) −25.4808 −1.13840
\(502\) 0 0
\(503\) −21.6111 −0.963589 −0.481795 0.876284i \(-0.660015\pi\)
−0.481795 + 0.876284i \(0.660015\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 78.5445 3.48828
\(508\) 0 0
\(509\) −6.13182 −0.271788 −0.135894 0.990723i \(-0.543391\pi\)
−0.135894 + 0.990723i \(0.543391\pi\)
\(510\) 0 0
\(511\) 27.4866 1.21594
\(512\) 0 0
\(513\) 0.863609 0.0381293
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.57423 0.0692345
\(518\) 0 0
\(519\) 62.8360 2.75819
\(520\) 0 0
\(521\) 22.4021 0.981454 0.490727 0.871313i \(-0.336731\pi\)
0.490727 + 0.871313i \(0.336731\pi\)
\(522\) 0 0
\(523\) −8.25468 −0.360952 −0.180476 0.983579i \(-0.557764\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.0827 −1.09262
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 44.2384 1.91978
\(532\) 0 0
\(533\) −42.4395 −1.83826
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −63.5121 −2.74075
\(538\) 0 0
\(539\) 1.72847 0.0744505
\(540\) 0 0
\(541\) 24.9079 1.07087 0.535437 0.844575i \(-0.320147\pi\)
0.535437 + 0.844575i \(0.320147\pi\)
\(542\) 0 0
\(543\) 1.36174 0.0584376
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.8049 0.846795 0.423398 0.905944i \(-0.360837\pi\)
0.423398 + 0.905944i \(0.360837\pi\)
\(548\) 0 0
\(549\) 4.32098 0.184415
\(550\) 0 0
\(551\) 1.04044 0.0443243
\(552\) 0 0
\(553\) 46.5704 1.98038
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.6380 −1.55240 −0.776201 0.630486i \(-0.782856\pi\)
−0.776201 + 0.630486i \(0.782856\pi\)
\(558\) 0 0
\(559\) 32.0543 1.35575
\(560\) 0 0
\(561\) 35.2207 1.48702
\(562\) 0 0
\(563\) −19.0783 −0.804054 −0.402027 0.915628i \(-0.631694\pi\)
−0.402027 + 0.915628i \(0.631694\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.0852 −0.423537
\(568\) 0 0
\(569\) 4.50086 0.188686 0.0943429 0.995540i \(-0.469925\pi\)
0.0943429 + 0.995540i \(0.469925\pi\)
\(570\) 0 0
\(571\) −1.25913 −0.0526930 −0.0263465 0.999653i \(-0.508387\pi\)
−0.0263465 + 0.999653i \(0.508387\pi\)
\(572\) 0 0
\(573\) −6.77589 −0.283067
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.33814 0.0557077 0.0278539 0.999612i \(-0.491133\pi\)
0.0278539 + 0.999612i \(0.491133\pi\)
\(578\) 0 0
\(579\) 11.2441 0.467289
\(580\) 0 0
\(581\) 1.96279 0.0814304
\(582\) 0 0
\(583\) 23.2518 0.962990
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.4997 0.928664 0.464332 0.885661i \(-0.346295\pi\)
0.464332 + 0.885661i \(0.346295\pi\)
\(588\) 0 0
\(589\) −0.895256 −0.0368884
\(590\) 0 0
\(591\) 17.7976 0.732096
\(592\) 0 0
\(593\) −30.8988 −1.26886 −0.634432 0.772979i \(-0.718766\pi\)
−0.634432 + 0.772979i \(0.718766\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 26.7240 1.09374
\(598\) 0 0
\(599\) 7.34413 0.300073 0.150036 0.988680i \(-0.452061\pi\)
0.150036 + 0.988680i \(0.452061\pi\)
\(600\) 0 0
\(601\) −5.10253 −0.208136 −0.104068 0.994570i \(-0.533186\pi\)
−0.104068 + 0.994570i \(0.533186\pi\)
\(602\) 0 0
\(603\) 14.4278 0.587544
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −21.4965 −0.872518 −0.436259 0.899821i \(-0.643697\pi\)
−0.436259 + 0.899821i \(0.643697\pi\)
\(608\) 0 0
\(609\) 31.3186 1.26909
\(610\) 0 0
\(611\) −5.52970 −0.223708
\(612\) 0 0
\(613\) −44.4369 −1.79479 −0.897396 0.441227i \(-0.854543\pi\)
−0.897396 + 0.441227i \(0.854543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.0662 1.00913 0.504564 0.863375i \(-0.331653\pi\)
0.504564 + 0.863375i \(0.331653\pi\)
\(618\) 0 0
\(619\) 11.6002 0.466252 0.233126 0.972447i \(-0.425105\pi\)
0.233126 + 0.972447i \(0.425105\pi\)
\(620\) 0 0
\(621\) 3.42269 0.137348
\(622\) 0 0
\(623\) 37.1377 1.48789
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.25710 0.0502039
\(628\) 0 0
\(629\) −55.9357 −2.23030
\(630\) 0 0
\(631\) 9.17437 0.365226 0.182613 0.983185i \(-0.441544\pi\)
0.182613 + 0.983185i \(0.441544\pi\)
\(632\) 0 0
\(633\) −22.4740 −0.893261
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.07150 −0.240562
\(638\) 0 0
\(639\) 3.63722 0.143886
\(640\) 0 0
\(641\) 3.98400 0.157359 0.0786793 0.996900i \(-0.474930\pi\)
0.0786793 + 0.996900i \(0.474930\pi\)
\(642\) 0 0
\(643\) −13.3005 −0.524520 −0.262260 0.964997i \(-0.584468\pi\)
−0.262260 + 0.964997i \(0.584468\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.02871 −0.119071 −0.0595354 0.998226i \(-0.518962\pi\)
−0.0595354 + 0.998226i \(0.518962\pi\)
\(648\) 0 0
\(649\) 19.1469 0.751580
\(650\) 0 0
\(651\) −26.9483 −1.05619
\(652\) 0 0
\(653\) 24.8569 0.972727 0.486363 0.873757i \(-0.338323\pi\)
0.486363 + 0.873757i \(0.338323\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 41.6591 1.62528
\(658\) 0 0
\(659\) −30.2901 −1.17994 −0.589968 0.807427i \(-0.700860\pi\)
−0.589968 + 0.807427i \(0.700860\pi\)
\(660\) 0 0
\(661\) −41.7574 −1.62418 −0.812088 0.583535i \(-0.801669\pi\)
−0.812088 + 0.583535i \(0.801669\pi\)
\(662\) 0 0
\(663\) −123.718 −4.80479
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.12351 0.159663
\(668\) 0 0
\(669\) 36.3742 1.40631
\(670\) 0 0
\(671\) 1.87017 0.0721971
\(672\) 0 0
\(673\) −18.1446 −0.699424 −0.349712 0.936857i \(-0.613721\pi\)
−0.349712 + 0.936857i \(0.613721\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.4647 0.632790 0.316395 0.948627i \(-0.397527\pi\)
0.316395 + 0.948627i \(0.397527\pi\)
\(678\) 0 0
\(679\) 15.4563 0.593159
\(680\) 0 0
\(681\) −15.5682 −0.596575
\(682\) 0 0
\(683\) −46.7050 −1.78712 −0.893558 0.448948i \(-0.851799\pi\)
−0.893558 + 0.448948i \(0.851799\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 60.1740 2.29578
\(688\) 0 0
\(689\) −81.6752 −3.11158
\(690\) 0 0
\(691\) 11.5366 0.438872 0.219436 0.975627i \(-0.429578\pi\)
0.219436 + 0.975627i \(0.429578\pi\)
\(692\) 0 0
\(693\) 22.2242 0.844228
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 46.2214 1.75076
\(698\) 0 0
\(699\) −58.8381 −2.22546
\(700\) 0 0
\(701\) 31.8694 1.20369 0.601845 0.798613i \(-0.294432\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(702\) 0 0
\(703\) −1.99647 −0.0752982
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −26.9564 −1.01380
\(708\) 0 0
\(709\) 5.06884 0.190364 0.0951822 0.995460i \(-0.469657\pi\)
0.0951822 + 0.995460i \(0.469657\pi\)
\(710\) 0 0
\(711\) 70.5827 2.64706
\(712\) 0 0
\(713\) −3.54811 −0.132878
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 72.0193 2.68961
\(718\) 0 0
\(719\) −6.53346 −0.243657 −0.121828 0.992551i \(-0.538876\pi\)
−0.121828 + 0.992551i \(0.538876\pi\)
\(720\) 0 0
\(721\) −25.6380 −0.954809
\(722\) 0 0
\(723\) 40.8649 1.51978
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −46.2193 −1.71418 −0.857089 0.515169i \(-0.827729\pi\)
−0.857089 + 0.515169i \(0.827729\pi\)
\(728\) 0 0
\(729\) −42.9699 −1.59148
\(730\) 0 0
\(731\) −34.9107 −1.29122
\(732\) 0 0
\(733\) 20.2561 0.748177 0.374089 0.927393i \(-0.377956\pi\)
0.374089 + 0.927393i \(0.377956\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.24450 0.230019
\(738\) 0 0
\(739\) −0.454209 −0.0167083 −0.00835417 0.999965i \(-0.502659\pi\)
−0.00835417 + 0.999965i \(0.502659\pi\)
\(740\) 0 0
\(741\) −4.41576 −0.162217
\(742\) 0 0
\(743\) −17.9525 −0.658614 −0.329307 0.944223i \(-0.606815\pi\)
−0.329307 + 0.944223i \(0.606815\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.97483 0.108843
\(748\) 0 0
\(749\) 32.9849 1.20524
\(750\) 0 0
\(751\) −14.8866 −0.543219 −0.271610 0.962408i \(-0.587556\pi\)
−0.271610 + 0.962408i \(0.587556\pi\)
\(752\) 0 0
\(753\) 35.5967 1.29722
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31.7028 1.15226 0.576129 0.817358i \(-0.304562\pi\)
0.576129 + 0.817358i \(0.304562\pi\)
\(758\) 0 0
\(759\) 4.98220 0.180842
\(760\) 0 0
\(761\) −6.80194 −0.246570 −0.123285 0.992371i \(-0.539343\pi\)
−0.123285 + 0.992371i \(0.539343\pi\)
\(762\) 0 0
\(763\) 4.13658 0.149754
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −67.2561 −2.42848
\(768\) 0 0
\(769\) 19.2067 0.692612 0.346306 0.938122i \(-0.387436\pi\)
0.346306 + 0.938122i \(0.387436\pi\)
\(770\) 0 0
\(771\) −37.5985 −1.35408
\(772\) 0 0
\(773\) −27.6037 −0.992835 −0.496418 0.868084i \(-0.665351\pi\)
−0.496418 + 0.868084i \(0.665351\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −60.0962 −2.15594
\(778\) 0 0
\(779\) 1.64974 0.0591082
\(780\) 0 0
\(781\) 1.57423 0.0563303
\(782\) 0 0
\(783\) 14.1135 0.504375
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.6271 −1.26997 −0.634984 0.772525i \(-0.718993\pi\)
−0.634984 + 0.772525i \(0.718993\pi\)
\(788\) 0 0
\(789\) 58.7455 2.09139
\(790\) 0 0
\(791\) −4.58997 −0.163200
\(792\) 0 0
\(793\) −6.56923 −0.233280
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.85579 −0.349110 −0.174555 0.984647i \(-0.555849\pi\)
−0.174555 + 0.984647i \(0.555849\pi\)
\(798\) 0 0
\(799\) 6.02246 0.213059
\(800\) 0 0
\(801\) 56.2863 1.98878
\(802\) 0 0
\(803\) 18.0305 0.636282
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 27.6619 0.973745
\(808\) 0 0
\(809\) 35.4171 1.24520 0.622599 0.782541i \(-0.286077\pi\)
0.622599 + 0.782541i \(0.286077\pi\)
\(810\) 0 0
\(811\) 23.6023 0.828790 0.414395 0.910097i \(-0.363993\pi\)
0.414395 + 0.910097i \(0.363993\pi\)
\(812\) 0 0
\(813\) −11.1053 −0.389480
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.24604 −0.0435934
\(818\) 0 0
\(819\) −78.0657 −2.72784
\(820\) 0 0
\(821\) −21.1904 −0.739548 −0.369774 0.929122i \(-0.620565\pi\)
−0.369774 + 0.929122i \(0.620565\pi\)
\(822\) 0 0
\(823\) 28.8463 1.00552 0.502759 0.864427i \(-0.332318\pi\)
0.502759 + 0.864427i \(0.332318\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.85313 0.273080 0.136540 0.990635i \(-0.456402\pi\)
0.136540 + 0.990635i \(0.456402\pi\)
\(828\) 0 0
\(829\) −7.58148 −0.263316 −0.131658 0.991295i \(-0.542030\pi\)
−0.131658 + 0.991295i \(0.542030\pi\)
\(830\) 0 0
\(831\) −25.9572 −0.900446
\(832\) 0 0
\(833\) 6.61254 0.229111
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −12.1441 −0.419760
\(838\) 0 0
\(839\) −33.2424 −1.14765 −0.573827 0.818977i \(-0.694542\pi\)
−0.573827 + 0.818977i \(0.694542\pi\)
\(840\) 0 0
\(841\) −11.9967 −0.413678
\(842\) 0 0
\(843\) 45.6171 1.57114
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −21.3679 −0.734211
\(848\) 0 0
\(849\) −20.2585 −0.695271
\(850\) 0 0
\(851\) −7.91248 −0.271236
\(852\) 0 0
\(853\) −21.1798 −0.725183 −0.362591 0.931948i \(-0.618108\pi\)
−0.362591 + 0.931948i \(0.618108\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.2340 0.452066 0.226033 0.974120i \(-0.427424\pi\)
0.226033 + 0.974120i \(0.427424\pi\)
\(858\) 0 0
\(859\) 31.6863 1.08112 0.540561 0.841305i \(-0.318212\pi\)
0.540561 + 0.841305i \(0.318212\pi\)
\(860\) 0 0
\(861\) 49.6594 1.69239
\(862\) 0 0
\(863\) −1.12760 −0.0383840 −0.0191920 0.999816i \(-0.506109\pi\)
−0.0191920 + 0.999816i \(0.506109\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 88.9070 3.01944
\(868\) 0 0
\(869\) 30.5490 1.03630
\(870\) 0 0
\(871\) −21.9347 −0.743228
\(872\) 0 0
\(873\) 23.4258 0.792843
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.9499 1.04510 0.522552 0.852608i \(-0.324980\pi\)
0.522552 + 0.852608i \(0.324980\pi\)
\(878\) 0 0
\(879\) −42.5791 −1.43616
\(880\) 0 0
\(881\) 45.9333 1.54753 0.773765 0.633472i \(-0.218371\pi\)
0.773765 + 0.633472i \(0.218371\pi\)
\(882\) 0 0
\(883\) −14.0404 −0.472496 −0.236248 0.971693i \(-0.575918\pi\)
−0.236248 + 0.971693i \(0.575918\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.4833 1.12426 0.562129 0.827049i \(-0.309982\pi\)
0.562129 + 0.827049i \(0.309982\pi\)
\(888\) 0 0
\(889\) −24.2051 −0.811814
\(890\) 0 0
\(891\) −6.61560 −0.221631
\(892\) 0 0
\(893\) 0.214955 0.00719319
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −17.5007 −0.584331
\(898\) 0 0
\(899\) −14.6307 −0.487960
\(900\) 0 0
\(901\) 88.9534 2.96347
\(902\) 0 0
\(903\) −37.5074 −1.24817
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.0732 −0.732929 −0.366464 0.930432i \(-0.619432\pi\)
−0.366464 + 0.930432i \(0.619432\pi\)
\(908\) 0 0
\(909\) −40.8555 −1.35509
\(910\) 0 0
\(911\) 29.9624 0.992699 0.496349 0.868123i \(-0.334673\pi\)
0.496349 + 0.868123i \(0.334673\pi\)
\(912\) 0 0
\(913\) 1.28754 0.0426113
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.27565 −0.273286
\(918\) 0 0
\(919\) −27.8980 −0.920269 −0.460134 0.887849i \(-0.652199\pi\)
−0.460134 + 0.887849i \(0.652199\pi\)
\(920\) 0 0
\(921\) −67.6370 −2.22871
\(922\) 0 0
\(923\) −5.52970 −0.182012
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −38.8573 −1.27624
\(928\) 0 0
\(929\) −25.6063 −0.840115 −0.420057 0.907498i \(-0.637990\pi\)
−0.420057 + 0.907498i \(0.637990\pi\)
\(930\) 0 0
\(931\) 0.236016 0.00773512
\(932\) 0 0
\(933\) −49.2322 −1.61179
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.1946 −0.757736 −0.378868 0.925451i \(-0.623687\pi\)
−0.378868 + 0.925451i \(0.623687\pi\)
\(938\) 0 0
\(939\) −30.6589 −1.00052
\(940\) 0 0
\(941\) 8.04530 0.262269 0.131135 0.991365i \(-0.458138\pi\)
0.131135 + 0.991365i \(0.458138\pi\)
\(942\) 0 0
\(943\) 6.53833 0.212917
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.2271 1.37220 0.686098 0.727509i \(-0.259322\pi\)
0.686098 + 0.727509i \(0.259322\pi\)
\(948\) 0 0
\(949\) −63.3347 −2.05593
\(950\) 0 0
\(951\) −42.4152 −1.37541
\(952\) 0 0
\(953\) 13.3175 0.431396 0.215698 0.976460i \(-0.430797\pi\)
0.215698 + 0.976460i \(0.430797\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 20.5442 0.664098
\(958\) 0 0
\(959\) 61.7950 1.99546
\(960\) 0 0
\(961\) −18.4109 −0.593901
\(962\) 0 0
\(963\) 49.9924 1.61098
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 42.9969 1.38269 0.691344 0.722526i \(-0.257019\pi\)
0.691344 + 0.722526i \(0.257019\pi\)
\(968\) 0 0
\(969\) 4.80925 0.154495
\(970\) 0 0
\(971\) 9.01250 0.289225 0.144612 0.989488i \(-0.453806\pi\)
0.144612 + 0.989488i \(0.453806\pi\)
\(972\) 0 0
\(973\) −43.1911 −1.38464
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −41.1074 −1.31514 −0.657571 0.753392i \(-0.728416\pi\)
−0.657571 + 0.753392i \(0.728416\pi\)
\(978\) 0 0
\(979\) 24.3613 0.778591
\(980\) 0 0
\(981\) 6.26945 0.200168
\(982\) 0 0
\(983\) −59.8861 −1.91007 −0.955035 0.296493i \(-0.904183\pi\)
−0.955035 + 0.296493i \(0.904183\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.47042 0.205956
\(988\) 0 0
\(989\) −4.93835 −0.157030
\(990\) 0 0
\(991\) −20.8275 −0.661607 −0.330804 0.943700i \(-0.607320\pi\)
−0.330804 + 0.943700i \(0.607320\pi\)
\(992\) 0 0
\(993\) −33.9695 −1.07799
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12.7634 0.404222 0.202111 0.979363i \(-0.435220\pi\)
0.202111 + 0.979363i \(0.435220\pi\)
\(998\) 0 0
\(999\) −27.0819 −0.856834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.da.1.6 7
4.3 odd 2 575.2.a.k.1.4 7
5.4 even 2 9200.2.a.db.1.2 7
12.11 even 2 5175.2.a.cg.1.4 7
20.3 even 4 575.2.b.f.24.7 14
20.7 even 4 575.2.b.f.24.8 14
20.19 odd 2 575.2.a.l.1.4 yes 7
60.59 even 2 5175.2.a.cb.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.2.a.k.1.4 7 4.3 odd 2
575.2.a.l.1.4 yes 7 20.19 odd 2
575.2.b.f.24.7 14 20.3 even 4
575.2.b.f.24.8 14 20.7 even 4
5175.2.a.cb.1.4 7 60.59 even 2
5175.2.a.cg.1.4 7 12.11 even 2
9200.2.a.da.1.6 7 1.1 even 1 trivial
9200.2.a.db.1.2 7 5.4 even 2