Properties

Label 924.2.l.b.881.2
Level $924$
Weight $2$
Character 924.881
Analytic conductor $7.378$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(881,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 924.881
Dual form 924.2.l.b.881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +1.73205 q^{5} +(2.00000 + 1.73205i) q^{7} +3.00000 q^{9} -1.00000i q^{11} +5.19615i q^{13} -3.00000 q^{15} -1.73205i q^{19} +(-3.46410 - 3.00000i) q^{21} -6.00000i q^{23} -2.00000 q^{25} -5.19615 q^{27} +9.00000i q^{29} +3.46410i q^{31} +1.73205i q^{33} +(3.46410 + 3.00000i) q^{35} +7.00000 q^{37} -9.00000i q^{39} +6.92820 q^{41} +10.0000 q^{43} +5.19615 q^{45} -8.66025 q^{47} +(1.00000 + 6.92820i) q^{49} -1.73205i q^{55} +3.00000i q^{57} -1.73205 q^{59} +13.8564i q^{61} +(6.00000 + 5.19615i) q^{63} +9.00000i q^{65} +5.00000 q^{67} +10.3923i q^{69} +12.0000i q^{71} -8.66025i q^{73} +3.46410 q^{75} +(1.73205 - 2.00000i) q^{77} -10.0000 q^{79} +9.00000 q^{81} +13.8564 q^{83} -15.5885i q^{87} +6.92820 q^{89} +(-9.00000 + 10.3923i) q^{91} -6.00000i q^{93} -3.00000i q^{95} -17.3205i q^{97} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} + 12 q^{9} - 12 q^{15} - 8 q^{25} + 28 q^{37} + 40 q^{43} + 4 q^{49} + 24 q^{63} + 20 q^{67} - 40 q^{79} + 36 q^{81} - 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −1.00000
\(4\) 0 0
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 5.19615i 1.44115i 0.693375 + 0.720577i \(0.256123\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 1.73205i 0.397360i −0.980064 0.198680i \(-0.936335\pi\)
0.980064 0.198680i \(-0.0636654\pi\)
\(20\) 0 0
\(21\) −3.46410 3.00000i −0.755929 0.654654i
\(22\) 0 0
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 9.00000i 1.67126i 0.549294 + 0.835629i \(0.314897\pi\)
−0.549294 + 0.835629i \(0.685103\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 1.73205i 0.301511i
\(34\) 0 0
\(35\) 3.46410 + 3.00000i 0.585540 + 0.507093i
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) 9.00000i 1.44115i
\(40\) 0 0
\(41\) 6.92820 1.08200 0.541002 0.841021i \(-0.318045\pi\)
0.541002 + 0.841021i \(0.318045\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 5.19615 0.774597
\(46\) 0 0
\(47\) −8.66025 −1.26323 −0.631614 0.775283i \(-0.717607\pi\)
−0.631614 + 0.775283i \(0.717607\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 1.73205i 0.233550i
\(56\) 0 0
\(57\) 3.00000i 0.397360i
\(58\) 0 0
\(59\) −1.73205 −0.225494 −0.112747 0.993624i \(-0.535965\pi\)
−0.112747 + 0.993624i \(0.535965\pi\)
\(60\) 0 0
\(61\) 13.8564i 1.77413i 0.461644 + 0.887066i \(0.347260\pi\)
−0.461644 + 0.887066i \(0.652740\pi\)
\(62\) 0 0
\(63\) 6.00000 + 5.19615i 0.755929 + 0.654654i
\(64\) 0 0
\(65\) 9.00000i 1.11631i
\(66\) 0 0
\(67\) 5.00000 0.610847 0.305424 0.952217i \(-0.401202\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 0 0
\(69\) 10.3923i 1.25109i
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 8.66025i 1.01361i −0.862062 0.506803i \(-0.830827\pi\)
0.862062 0.506803i \(-0.169173\pi\)
\(74\) 0 0
\(75\) 3.46410 0.400000
\(76\) 0 0
\(77\) 1.73205 2.00000i 0.197386 0.227921i
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 13.8564 1.52094 0.760469 0.649374i \(-0.224969\pi\)
0.760469 + 0.649374i \(0.224969\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 15.5885i 1.67126i
\(88\) 0 0
\(89\) 6.92820 0.734388 0.367194 0.930144i \(-0.380318\pi\)
0.367194 + 0.930144i \(0.380318\pi\)
\(90\) 0 0
\(91\) −9.00000 + 10.3923i −0.943456 + 1.08941i
\(92\) 0 0
\(93\) 6.00000i 0.622171i
\(94\) 0 0
\(95\) 3.00000i 0.307794i
\(96\) 0 0
\(97\) 17.3205i 1.75863i −0.476240 0.879316i \(-0.658000\pi\)
0.476240 0.879316i \(-0.342000\pi\)
\(98\) 0 0
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 3.46410 0.344691 0.172345 0.985037i \(-0.444865\pi\)
0.172345 + 0.985037i \(0.444865\pi\)
\(102\) 0 0
\(103\) 3.46410i 0.341328i −0.985329 0.170664i \(-0.945409\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) 0 0
\(105\) −6.00000 5.19615i −0.585540 0.507093i
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −12.1244 −1.15079
\(112\) 0 0
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 10.3923i 0.969087i
\(116\) 0 0
\(117\) 15.5885i 1.44115i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) −17.3205 −1.52499
\(130\) 0 0
\(131\) 6.92820 0.605320 0.302660 0.953099i \(-0.402125\pi\)
0.302660 + 0.953099i \(0.402125\pi\)
\(132\) 0 0
\(133\) 3.00000 3.46410i 0.260133 0.300376i
\(134\) 0 0
\(135\) −9.00000 −0.774597
\(136\) 0 0
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) 10.3923i 0.881464i −0.897639 0.440732i \(-0.854719\pi\)
0.897639 0.440732i \(-0.145281\pi\)
\(140\) 0 0
\(141\) 15.0000 1.26323
\(142\) 0 0
\(143\) 5.19615 0.434524
\(144\) 0 0
\(145\) 15.5885i 1.29455i
\(146\) 0 0
\(147\) −1.73205 12.0000i −0.142857 0.989743i
\(148\) 0 0
\(149\) 21.0000i 1.72039i −0.509968 0.860194i \(-0.670343\pi\)
0.509968 0.860194i \(-0.329657\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000i 0.481932i
\(156\) 0 0
\(157\) 3.46410i 0.276465i −0.990400 0.138233i \(-0.955858\pi\)
0.990400 0.138233i \(-0.0441422\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.3923 12.0000i 0.819028 0.945732i
\(162\) 0 0
\(163\) −7.00000 −0.548282 −0.274141 0.961689i \(-0.588394\pi\)
−0.274141 + 0.961689i \(0.588394\pi\)
\(164\) 0 0
\(165\) 3.00000i 0.233550i
\(166\) 0 0
\(167\) −10.3923 −0.804181 −0.402090 0.915600i \(-0.631716\pi\)
−0.402090 + 0.915600i \(0.631716\pi\)
\(168\) 0 0
\(169\) −14.0000 −1.07692
\(170\) 0 0
\(171\) 5.19615i 0.397360i
\(172\) 0 0
\(173\) −17.3205 −1.31685 −0.658427 0.752645i \(-0.728778\pi\)
−0.658427 + 0.752645i \(0.728778\pi\)
\(174\) 0 0
\(175\) −4.00000 3.46410i −0.302372 0.261861i
\(176\) 0 0
\(177\) 3.00000 0.225494
\(178\) 0 0
\(179\) 6.00000i 0.448461i 0.974536 + 0.224231i \(0.0719869\pi\)
−0.974536 + 0.224231i \(0.928013\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i −0.966282 0.257485i \(-0.917106\pi\)
0.966282 0.257485i \(-0.0828937\pi\)
\(182\) 0 0
\(183\) 24.0000i 1.77413i
\(184\) 0 0
\(185\) 12.1244 0.891400
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.3923 9.00000i −0.755929 0.654654i
\(190\) 0 0
\(191\) 24.0000i 1.73658i 0.496058 + 0.868290i \(0.334780\pi\)
−0.496058 + 0.868290i \(0.665220\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) 15.5885i 1.11631i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 24.2487i 1.71895i −0.511182 0.859473i \(-0.670792\pi\)
0.511182 0.859473i \(-0.329208\pi\)
\(200\) 0 0
\(201\) −8.66025 −0.610847
\(202\) 0 0
\(203\) −15.5885 + 18.0000i −1.09410 + 1.26335i
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 18.0000i 1.25109i
\(208\) 0 0
\(209\) −1.73205 −0.119808
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 20.7846i 1.42414i
\(214\) 0 0
\(215\) 17.3205 1.18125
\(216\) 0 0
\(217\) −6.00000 + 6.92820i −0.407307 + 0.470317i
\(218\) 0 0
\(219\) 15.0000i 1.01361i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.8564i 0.927894i −0.885863 0.463947i \(-0.846433\pi\)
0.885863 0.463947i \(-0.153567\pi\)
\(224\) 0 0
\(225\) −6.00000 −0.400000
\(226\) 0 0
\(227\) 6.92820 0.459841 0.229920 0.973209i \(-0.426153\pi\)
0.229920 + 0.973209i \(0.426153\pi\)
\(228\) 0 0
\(229\) 10.3923i 0.686743i 0.939200 + 0.343371i \(0.111569\pi\)
−0.939200 + 0.343371i \(0.888431\pi\)
\(230\) 0 0
\(231\) −3.00000 + 3.46410i −0.197386 + 0.227921i
\(232\) 0 0
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) −15.0000 −0.978492
\(236\) 0 0
\(237\) 17.3205 1.12509
\(238\) 0 0
\(239\) 3.00000i 0.194054i −0.995282 0.0970269i \(-0.969067\pi\)
0.995282 0.0970269i \(-0.0309333\pi\)
\(240\) 0 0
\(241\) 5.19615i 0.334714i −0.985896 0.167357i \(-0.946477\pi\)
0.985896 0.167357i \(-0.0535232\pi\)
\(242\) 0 0
\(243\) −15.5885 −1.00000
\(244\) 0 0
\(245\) 1.73205 + 12.0000i 0.110657 + 0.766652i
\(246\) 0 0
\(247\) 9.00000 0.572656
\(248\) 0 0
\(249\) −24.0000 −1.52094
\(250\) 0 0
\(251\) 29.4449 1.85854 0.929272 0.369397i \(-0.120436\pi\)
0.929272 + 0.369397i \(0.120436\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.73205 −0.108042 −0.0540212 0.998540i \(-0.517204\pi\)
−0.0540212 + 0.998540i \(0.517204\pi\)
\(258\) 0 0
\(259\) 14.0000 + 12.1244i 0.869918 + 0.753371i
\(260\) 0 0
\(261\) 27.0000i 1.67126i
\(262\) 0 0
\(263\) 3.00000i 0.184988i 0.995713 + 0.0924940i \(0.0294839\pi\)
−0.995713 + 0.0924940i \(0.970516\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −13.8564 −0.844840 −0.422420 0.906400i \(-0.638819\pi\)
−0.422420 + 0.906400i \(0.638819\pi\)
\(270\) 0 0
\(271\) 15.5885i 0.946931i −0.880812 0.473466i \(-0.843003\pi\)
0.880812 0.473466i \(-0.156997\pi\)
\(272\) 0 0
\(273\) 15.5885 18.0000i 0.943456 1.08941i
\(274\) 0 0
\(275\) 2.00000i 0.120605i
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 0 0
\(279\) 10.3923i 0.622171i
\(280\) 0 0
\(281\) 3.00000i 0.178965i 0.995988 + 0.0894825i \(0.0285213\pi\)
−0.995988 + 0.0894825i \(0.971479\pi\)
\(282\) 0 0
\(283\) 12.1244i 0.720718i −0.932814 0.360359i \(-0.882654\pi\)
0.932814 0.360359i \(-0.117346\pi\)
\(284\) 0 0
\(285\) 5.19615i 0.307794i
\(286\) 0 0
\(287\) 13.8564 + 12.0000i 0.817918 + 0.708338i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 30.0000i 1.75863i
\(292\) 0 0
\(293\) −6.92820 −0.404750 −0.202375 0.979308i \(-0.564866\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(294\) 0 0
\(295\) −3.00000 −0.174667
\(296\) 0 0
\(297\) 5.19615i 0.301511i
\(298\) 0 0
\(299\) 31.1769 1.80301
\(300\) 0 0
\(301\) 20.0000 + 17.3205i 1.15278 + 0.998337i
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 24.0000i 1.37424i
\(306\) 0 0
\(307\) 3.46410i 0.197707i 0.995102 + 0.0988534i \(0.0315175\pi\)
−0.995102 + 0.0988534i \(0.968483\pi\)
\(308\) 0 0
\(309\) 6.00000i 0.341328i
\(310\) 0 0
\(311\) −10.3923 −0.589294 −0.294647 0.955606i \(-0.595202\pi\)
−0.294647 + 0.955606i \(0.595202\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 10.3923 + 9.00000i 0.585540 + 0.507093i
\(316\) 0 0
\(317\) 24.0000i 1.34797i −0.738743 0.673987i \(-0.764580\pi\)
0.738743 0.673987i \(-0.235420\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0 0
\(321\) 5.19615i 0.290021i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 10.3923i 0.576461i
\(326\) 0 0
\(327\) −17.3205 −0.957826
\(328\) 0 0
\(329\) −17.3205 15.0000i −0.954911 0.826977i
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 21.0000 1.15079
\(334\) 0 0
\(335\) 8.66025 0.473160
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) 31.1769i 1.69330i
\(340\) 0 0
\(341\) 3.46410 0.187592
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 18.0000i 0.969087i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 19.0526i 1.01986i 0.860216 + 0.509930i \(0.170329\pi\)
−0.860216 + 0.509930i \(0.829671\pi\)
\(350\) 0 0
\(351\) 27.0000i 1.44115i
\(352\) 0 0
\(353\) 8.66025 0.460939 0.230469 0.973080i \(-0.425974\pi\)
0.230469 + 0.973080i \(0.425974\pi\)
\(354\) 0 0
\(355\) 20.7846i 1.10313i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000i 0.633336i −0.948536 0.316668i \(-0.897436\pi\)
0.948536 0.316668i \(-0.102564\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 0 0
\(363\) 1.73205 0.0909091
\(364\) 0 0
\(365\) 15.0000i 0.785136i
\(366\) 0 0
\(367\) 10.3923i 0.542474i 0.962513 + 0.271237i \(0.0874327\pi\)
−0.962513 + 0.271237i \(0.912567\pi\)
\(368\) 0 0
\(369\) 20.7846 1.08200
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.0000 −0.828449 −0.414224 0.910175i \(-0.635947\pi\)
−0.414224 + 0.910175i \(0.635947\pi\)
\(374\) 0 0
\(375\) 21.0000 1.08444
\(376\) 0 0
\(377\) −46.7654 −2.40854
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) 27.7128 1.41977
\(382\) 0 0
\(383\) −10.3923 −0.531022 −0.265511 0.964108i \(-0.585541\pi\)
−0.265511 + 0.964108i \(0.585541\pi\)
\(384\) 0 0
\(385\) 3.00000 3.46410i 0.152894 0.176547i
\(386\) 0 0
\(387\) 30.0000 1.52499
\(388\) 0 0
\(389\) 24.0000i 1.21685i 0.793612 + 0.608424i \(0.208198\pi\)
−0.793612 + 0.608424i \(0.791802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −17.3205 −0.871489
\(396\) 0 0
\(397\) 13.8564i 0.695433i 0.937600 + 0.347717i \(0.113043\pi\)
−0.937600 + 0.347717i \(0.886957\pi\)
\(398\) 0 0
\(399\) −5.19615 + 6.00000i −0.260133 + 0.300376i
\(400\) 0 0
\(401\) 6.00000i 0.299626i −0.988714 0.149813i \(-0.952133\pi\)
0.988714 0.149813i \(-0.0478671\pi\)
\(402\) 0 0
\(403\) −18.0000 −0.896644
\(404\) 0 0
\(405\) 15.5885 0.774597
\(406\) 0 0
\(407\) 7.00000i 0.346977i
\(408\) 0 0
\(409\) 27.7128i 1.37031i −0.728397 0.685155i \(-0.759734\pi\)
0.728397 0.685155i \(-0.240266\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 0 0
\(413\) −3.46410 3.00000i −0.170457 0.147620i
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) 18.0000i 0.881464i
\(418\) 0 0
\(419\) −29.4449 −1.43848 −0.719238 0.694764i \(-0.755509\pi\)
−0.719238 + 0.694764i \(0.755509\pi\)
\(420\) 0 0
\(421\) 29.0000 1.41337 0.706687 0.707527i \(-0.250189\pi\)
0.706687 + 0.707527i \(0.250189\pi\)
\(422\) 0 0
\(423\) −25.9808 −1.26323
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −24.0000 + 27.7128i −1.16144 + 1.34112i
\(428\) 0 0
\(429\) −9.00000 −0.434524
\(430\) 0 0
\(431\) 21.0000i 1.01153i −0.862670 0.505767i \(-0.831209\pi\)
0.862670 0.505767i \(-0.168791\pi\)
\(432\) 0 0
\(433\) 24.2487i 1.16532i −0.812716 0.582659i \(-0.802012\pi\)
0.812716 0.582659i \(-0.197988\pi\)
\(434\) 0 0
\(435\) 27.0000i 1.29455i
\(436\) 0 0
\(437\) −10.3923 −0.497131
\(438\) 0 0
\(439\) 8.66025i 0.413331i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 3.00000 + 20.7846i 0.142857 + 0.989743i
\(442\) 0 0
\(443\) 6.00000i 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 36.3731i 1.72039i
\(448\) 0 0
\(449\) 42.0000i 1.98210i −0.133482 0.991051i \(-0.542616\pi\)
0.133482 0.991051i \(-0.457384\pi\)
\(450\) 0 0
\(451\) 6.92820i 0.326236i
\(452\) 0 0
\(453\) 13.8564 0.651031
\(454\) 0 0
\(455\) −15.5885 + 18.0000i −0.730798 + 0.843853i
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.3923 0.484018 0.242009 0.970274i \(-0.422194\pi\)
0.242009 + 0.970274i \(0.422194\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 0 0
\(465\) 10.3923i 0.481932i
\(466\) 0 0
\(467\) −25.9808 −1.20225 −0.601123 0.799156i \(-0.705280\pi\)
−0.601123 + 0.799156i \(0.705280\pi\)
\(468\) 0 0
\(469\) 10.0000 + 8.66025i 0.461757 + 0.399893i
\(470\) 0 0
\(471\) 6.00000i 0.276465i
\(472\) 0 0
\(473\) 10.0000i 0.459800i
\(474\) 0 0
\(475\) 3.46410i 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 34.6410 1.58279 0.791394 0.611306i \(-0.209356\pi\)
0.791394 + 0.611306i \(0.209356\pi\)
\(480\) 0 0
\(481\) 36.3731i 1.65847i
\(482\) 0 0
\(483\) −18.0000 + 20.7846i −0.819028 + 0.945732i
\(484\) 0 0
\(485\) 30.0000i 1.36223i
\(486\) 0 0
\(487\) 40.0000 1.81257 0.906287 0.422664i \(-0.138905\pi\)
0.906287 + 0.422664i \(0.138905\pi\)
\(488\) 0 0
\(489\) 12.1244 0.548282
\(490\) 0 0
\(491\) 3.00000i 0.135388i 0.997706 + 0.0676941i \(0.0215642\pi\)
−0.997706 + 0.0676941i \(0.978436\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 5.19615i 0.233550i
\(496\) 0 0
\(497\) −20.7846 + 24.0000i −0.932317 + 1.07655i
\(498\) 0 0
\(499\) −23.0000 −1.02962 −0.514811 0.857304i \(-0.672138\pi\)
−0.514811 + 0.857304i \(0.672138\pi\)
\(500\) 0 0
\(501\) 18.0000 0.804181
\(502\) 0 0
\(503\) 13.8564 0.617827 0.308913 0.951090i \(-0.400035\pi\)
0.308913 + 0.951090i \(0.400035\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) 24.2487 1.07692
\(508\) 0 0
\(509\) −27.7128 −1.22835 −0.614174 0.789170i \(-0.710511\pi\)
−0.614174 + 0.789170i \(0.710511\pi\)
\(510\) 0 0
\(511\) 15.0000 17.3205i 0.663561 0.766214i
\(512\) 0 0
\(513\) 9.00000i 0.397360i
\(514\) 0 0
\(515\) 6.00000i 0.264392i
\(516\) 0 0
\(517\) 8.66025i 0.380878i
\(518\) 0 0
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) −25.9808 −1.13824 −0.569119 0.822255i \(-0.692716\pi\)
−0.569119 + 0.822255i \(0.692716\pi\)
\(522\) 0 0
\(523\) 29.4449i 1.28753i −0.765222 0.643767i \(-0.777371\pi\)
0.765222 0.643767i \(-0.222629\pi\)
\(524\) 0 0
\(525\) 6.92820 + 6.00000i 0.302372 + 0.261861i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −5.19615 −0.225494
\(532\) 0 0
\(533\) 36.0000i 1.55933i
\(534\) 0 0
\(535\) 5.19615i 0.224649i
\(536\) 0 0
\(537\) 10.3923i 0.448461i
\(538\) 0 0
\(539\) 6.92820 1.00000i 0.298419 0.0430730i
\(540\) 0 0
\(541\) 32.0000 1.37579 0.687894 0.725811i \(-0.258536\pi\)
0.687894 + 0.725811i \(0.258536\pi\)
\(542\) 0 0
\(543\) 12.0000i 0.514969i
\(544\) 0 0
\(545\) 17.3205 0.741929
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 0 0
\(549\) 41.5692i 1.77413i
\(550\) 0 0
\(551\) 15.5885 0.664091
\(552\) 0 0
\(553\) −20.0000 17.3205i −0.850487 0.736543i
\(554\) 0 0
\(555\) −21.0000 −0.891400
\(556\) 0 0
\(557\) 21.0000i 0.889799i −0.895581 0.444899i \(-0.853239\pi\)
0.895581 0.444899i \(-0.146761\pi\)
\(558\) 0 0
\(559\) 51.9615i 2.19774i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.8564 0.583978 0.291989 0.956422i \(-0.405683\pi\)
0.291989 + 0.956422i \(0.405683\pi\)
\(564\) 0 0
\(565\) 31.1769i 1.31162i
\(566\) 0 0
\(567\) 18.0000 + 15.5885i 0.755929 + 0.654654i
\(568\) 0 0
\(569\) 30.0000i 1.25767i −0.777541 0.628833i \(-0.783533\pi\)
0.777541 0.628833i \(-0.216467\pi\)
\(570\) 0 0
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 0 0
\(573\) 41.5692i 1.73658i
\(574\) 0 0
\(575\) 12.0000i 0.500435i
\(576\) 0 0
\(577\) 3.46410i 0.144212i 0.997397 + 0.0721062i \(0.0229721\pi\)
−0.997397 + 0.0721062i \(0.977028\pi\)
\(578\) 0 0
\(579\) −6.92820 −0.287926
\(580\) 0 0
\(581\) 27.7128 + 24.0000i 1.14972 + 0.995688i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 27.0000i 1.11631i
\(586\) 0 0
\(587\) −12.1244 −0.500426 −0.250213 0.968191i \(-0.580501\pi\)
−0.250213 + 0.968191i \(0.580501\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 10.3923i 0.427482i
\(592\) 0 0
\(593\) 24.2487 0.995775 0.497888 0.867242i \(-0.334109\pi\)
0.497888 + 0.867242i \(0.334109\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 42.0000i 1.71895i
\(598\) 0 0
\(599\) 6.00000i 0.245153i −0.992459 0.122577i \(-0.960884\pi\)
0.992459 0.122577i \(-0.0391157\pi\)
\(600\) 0 0
\(601\) 29.4449i 1.20108i −0.799594 0.600541i \(-0.794952\pi\)
0.799594 0.600541i \(-0.205048\pi\)
\(602\) 0 0
\(603\) 15.0000 0.610847
\(604\) 0 0
\(605\) −1.73205 −0.0704179
\(606\) 0 0
\(607\) 15.5885i 0.632716i −0.948640 0.316358i \(-0.897540\pi\)
0.948640 0.316358i \(-0.102460\pi\)
\(608\) 0 0
\(609\) 27.0000 31.1769i 1.09410 1.26335i
\(610\) 0 0
\(611\) 45.0000i 1.82051i
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 0 0
\(615\) −20.7846 −0.838116
\(616\) 0 0
\(617\) 30.0000i 1.20775i −0.797077 0.603877i \(-0.793622\pi\)
0.797077 0.603877i \(-0.206378\pi\)
\(618\) 0 0
\(619\) 10.3923i 0.417702i −0.977947 0.208851i \(-0.933028\pi\)
0.977947 0.208851i \(-0.0669724\pi\)
\(620\) 0 0
\(621\) 31.1769i 1.25109i
\(622\) 0 0
\(623\) 13.8564 + 12.0000i 0.555145 + 0.480770i
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 3.00000 0.119808
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) −6.92820 −0.275371
\(634\) 0 0
\(635\) −27.7128 −1.09975
\(636\) 0 0
\(637\) −36.0000 + 5.19615i −1.42637 + 0.205879i
\(638\) 0 0
\(639\) 36.0000i 1.42414i
\(640\) 0 0
\(641\) 42.0000i 1.65890i 0.558581 + 0.829450i \(0.311346\pi\)
−0.558581 + 0.829450i \(0.688654\pi\)
\(642\) 0 0
\(643\) 3.46410i 0.136611i −0.997664 0.0683054i \(-0.978241\pi\)
0.997664 0.0683054i \(-0.0217592\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) 0 0
\(647\) −19.0526 −0.749033 −0.374517 0.927220i \(-0.622191\pi\)
−0.374517 + 0.927220i \(0.622191\pi\)
\(648\) 0 0
\(649\) 1.73205i 0.0679889i
\(650\) 0 0
\(651\) 10.3923 12.0000i 0.407307 0.470317i
\(652\) 0 0
\(653\) 36.0000i 1.40879i −0.709809 0.704394i \(-0.751219\pi\)
0.709809 0.704394i \(-0.248781\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) 25.9808i 1.01361i
\(658\) 0 0
\(659\) 33.0000i 1.28550i 0.766077 + 0.642749i \(0.222206\pi\)
−0.766077 + 0.642749i \(0.777794\pi\)
\(660\) 0 0
\(661\) 34.6410i 1.34738i 0.739014 + 0.673690i \(0.235292\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.19615 6.00000i 0.201498 0.232670i
\(666\) 0 0
\(667\) 54.0000 2.09089
\(668\) 0 0
\(669\) 24.0000i 0.927894i
\(670\) 0 0
\(671\) 13.8564 0.534921
\(672\) 0 0
\(673\) −8.00000 −0.308377 −0.154189 0.988041i \(-0.549276\pi\)
−0.154189 + 0.988041i \(0.549276\pi\)
\(674\) 0 0
\(675\) 10.3923 0.400000
\(676\) 0 0
\(677\) 24.2487 0.931954 0.465977 0.884797i \(-0.345703\pi\)
0.465977 + 0.884797i \(0.345703\pi\)
\(678\) 0 0
\(679\) 30.0000 34.6410i 1.15129 1.32940i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 6.00000i 0.229584i −0.993390 0.114792i \(-0.963380\pi\)
0.993390 0.114792i \(-0.0366201\pi\)
\(684\) 0 0
\(685\) 20.7846i 0.794139i
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 3.46410i 0.131781i 0.997827 + 0.0658903i \(0.0209887\pi\)
−0.997827 + 0.0658903i \(0.979011\pi\)
\(692\) 0 0
\(693\) 5.19615 6.00000i 0.197386 0.227921i
\(694\) 0 0
\(695\) 18.0000i 0.682779i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 10.3923i 0.393073i
\(700\) 0 0
\(701\) 30.0000i 1.13308i 0.824033 + 0.566542i \(0.191719\pi\)
−0.824033 + 0.566542i \(0.808281\pi\)
\(702\) 0 0
\(703\) 12.1244i 0.457279i
\(704\) 0 0
\(705\) 25.9808 0.978492
\(706\) 0 0
\(707\) 6.92820 + 6.00000i 0.260562 + 0.225653i
\(708\) 0 0
\(709\) 19.0000 0.713560 0.356780 0.934188i \(-0.383875\pi\)
0.356780 + 0.934188i \(0.383875\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) 0 0
\(713\) 20.7846 0.778390
\(714\) 0 0
\(715\) 9.00000 0.336581
\(716\) 0 0
\(717\) 5.19615i 0.194054i
\(718\) 0 0
\(719\) −29.4449 −1.09811 −0.549054 0.835787i \(-0.685012\pi\)
−0.549054 + 0.835787i \(0.685012\pi\)
\(720\) 0 0
\(721\) 6.00000 6.92820i 0.223452 0.258020i
\(722\) 0 0
\(723\) 9.00000i 0.334714i
\(724\) 0 0
\(725\) 18.0000i 0.668503i
\(726\) 0 0
\(727\) 51.9615i 1.92715i 0.267445 + 0.963573i \(0.413821\pi\)
−0.267445 + 0.963573i \(0.586179\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −3.00000 20.7846i −0.110657 0.766652i
\(736\) 0 0
\(737\) 5.00000i 0.184177i
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 0 0
\(741\) −15.5885 −0.572656
\(742\) 0 0
\(743\) 15.0000i 0.550297i −0.961402 0.275148i \(-0.911273\pi\)
0.961402 0.275148i \(-0.0887270\pi\)
\(744\) 0 0
\(745\) 36.3731i 1.33261i
\(746\) 0 0
\(747\) 41.5692 1.52094
\(748\) 0 0
\(749\) −5.19615 + 6.00000i −0.189863 + 0.219235i
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) 0 0
\(753\) −51.0000 −1.85854
\(754\) 0 0
\(755\) −13.8564 −0.504286
\(756\) 0 0
\(757\) 1.00000 0.0363456 0.0181728 0.999835i \(-0.494215\pi\)
0.0181728 + 0.999835i \(0.494215\pi\)
\(758\) 0 0
\(759\) 10.3923 0.377217
\(760\) 0 0
\(761\) −38.1051 −1.38131 −0.690655 0.723185i \(-0.742678\pi\)
−0.690655 + 0.723185i \(0.742678\pi\)
\(762\) 0 0
\(763\) 20.0000 + 17.3205i 0.724049 + 0.627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.00000i 0.324971i
\(768\) 0 0
\(769\) 39.8372i 1.43657i −0.695752 0.718283i \(-0.744929\pi\)
0.695752 0.718283i \(-0.255071\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) −36.3731 −1.30825 −0.654124 0.756387i \(-0.726963\pi\)
−0.654124 + 0.756387i \(0.726963\pi\)
\(774\) 0 0
\(775\) 6.92820i 0.248868i
\(776\) 0 0
\(777\) −24.2487 21.0000i −0.869918 0.753371i
\(778\) 0 0
\(779\) 12.0000i 0.429945i
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 46.7654i 1.67126i
\(784\) 0 0
\(785\) 6.00000i 0.214149i
\(786\) 0 0
\(787\) 5.19615i 0.185223i −0.995702 0.0926114i \(-0.970479\pi\)
0.995702 0.0926114i \(-0.0295214\pi\)
\(788\) 0 0
\(789\) 5.19615i 0.184988i
\(790\) 0 0
\(791\) −31.1769 + 36.0000i −1.10852 + 1.28001i
\(792\) 0 0
\(793\) −72.0000 −2.55679
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.73205 −0.0613524 −0.0306762 0.999529i \(-0.509766\pi\)
−0.0306762 + 0.999529i \(0.509766\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 20.7846 0.734388
\(802\) 0 0
\(803\) −8.66025 −0.305614
\(804\) 0 0
\(805\) 18.0000 20.7846i 0.634417 0.732561i
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) 0 0
\(809\) 27.0000i 0.949269i −0.880183 0.474635i \(-0.842580\pi\)
0.880183 0.474635i \(-0.157420\pi\)
\(810\) 0 0
\(811\) 39.8372i 1.39887i 0.714695 + 0.699436i \(0.246565\pi\)
−0.714695 + 0.699436i \(0.753435\pi\)
\(812\) 0 0
\(813\) 27.0000i 0.946931i
\(814\) 0 0
\(815\) −12.1244 −0.424698
\(816\) 0 0
\(817\) 17.3205i 0.605968i
\(818\) 0 0
\(819\) −27.0000 + 31.1769i −0.943456 + 1.08941i
\(820\) 0 0
\(821\) 21.0000i 0.732905i −0.930437 0.366453i \(-0.880572\pi\)
0.930437 0.366453i \(-0.119428\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) 3.46410i 0.120605i
\(826\) 0 0
\(827\) 21.0000i 0.730242i 0.930960 + 0.365121i \(0.118972\pi\)
−0.930960 + 0.365121i \(0.881028\pi\)
\(828\) 0 0
\(829\) 6.92820i 0.240626i 0.992736 + 0.120313i \(0.0383899\pi\)
−0.992736 + 0.120313i \(0.961610\pi\)
\(830\) 0 0
\(831\) 38.1051 1.32185
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 18.0000i 0.622171i
\(838\) 0 0
\(839\) 36.3731 1.25574 0.627869 0.778319i \(-0.283927\pi\)
0.627869 + 0.778319i \(0.283927\pi\)
\(840\) 0 0
\(841\) −52.0000 −1.79310
\(842\) 0 0
\(843\) 5.19615i 0.178965i
\(844\) 0 0
\(845\) −24.2487 −0.834181
\(846\) 0 0
\(847\) −2.00000 1.73205i −0.0687208 0.0595140i
\(848\) 0 0
\(849\) 21.0000i 0.720718i
\(850\) 0 0
\(851\) 42.0000i 1.43974i
\(852\) 0 0
\(853\) 27.7128i 0.948869i −0.880291 0.474434i \(-0.842653\pi\)
0.880291 0.474434i \(-0.157347\pi\)
\(854\) 0 0
\(855\) 9.00000i 0.307794i
\(856\) 0 0
\(857\) 48.4974 1.65664 0.828320 0.560255i \(-0.189297\pi\)
0.828320 + 0.560255i \(0.189297\pi\)
\(858\) 0 0
\(859\) 3.46410i 0.118194i −0.998252 0.0590968i \(-0.981178\pi\)
0.998252 0.0590968i \(-0.0188221\pi\)
\(860\) 0 0
\(861\) −24.0000 20.7846i −0.817918 0.708338i
\(862\) 0 0
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 0 0
\(865\) −30.0000 −1.02003
\(866\) 0 0
\(867\) 29.4449 1.00000
\(868\) 0 0
\(869\) 10.0000i 0.339227i
\(870\) 0 0
\(871\) 25.9808i 0.880325i
\(872\) 0 0
\(873\) 51.9615i 1.75863i
\(874\) 0 0
\(875\) −24.2487 21.0000i −0.819756 0.709930i
\(876\) 0 0
\(877\) −4.00000 −0.135070 −0.0675352 0.997717i \(-0.521513\pi\)
−0.0675352 + 0.997717i \(0.521513\pi\)
\(878\) 0 0
\(879\) 12.0000 0.404750
\(880\) 0 0
\(881\) −25.9808 −0.875314 −0.437657 0.899142i \(-0.644192\pi\)
−0.437657 + 0.899142i \(0.644192\pi\)
\(882\) 0 0
\(883\) 7.00000 0.235569 0.117784 0.993039i \(-0.462421\pi\)
0.117784 + 0.993039i \(0.462421\pi\)
\(884\) 0 0
\(885\) 5.19615 0.174667
\(886\) 0 0
\(887\) 31.1769 1.04682 0.523409 0.852081i \(-0.324660\pi\)
0.523409 + 0.852081i \(0.324660\pi\)
\(888\) 0 0
\(889\) −32.0000 27.7128i −1.07325 0.929458i
\(890\) 0 0
\(891\) 9.00000i 0.301511i
\(892\) 0 0
\(893\) 15.0000i 0.501956i
\(894\) 0 0
\(895\) 10.3923i 0.347376i
\(896\) 0 0
\(897\) −54.0000 −1.80301
\(898\) 0 0
\(899\) −31.1769 −1.03981
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −34.6410 30.0000i −1.15278 0.998337i
\(904\) 0 0
\(905\) 12.0000i 0.398893i
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) 10.3923 0.344691
\(910\) 0 0
\(911\) 54.0000i 1.78910i 0.446968 + 0.894550i \(0.352504\pi\)
−0.446968 + 0.894550i \(0.647496\pi\)
\(912\) 0 0
\(913\) 13.8564i 0.458580i
\(914\) 0 0
\(915\) 41.5692i 1.37424i
\(916\) 0 0
\(917\) 13.8564 + 12.0000i 0.457579 + 0.396275i
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) 6.00000i 0.197707i
\(922\) 0 0
\(923\) −62.3538 −2.05240
\(924\) 0 0
\(925\) −14.0000 −0.460317
\(926\) 0 0
\(927\) 10.3923i 0.341328i
\(928\) 0 0
\(929\) −46.7654 −1.53432 −0.767161 0.641455i \(-0.778331\pi\)
−0.767161 + 0.641455i \(0.778331\pi\)
\(930\) 0 0
\(931\) 12.0000 1.73205i 0.393284 0.0567657i
\(932\) 0 0
\(933\) 18.0000 0.589294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.92820i 0.226335i 0.993576 + 0.113167i \(0.0360996\pi\)
−0.993576 + 0.113167i \(0.963900\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.46410 −0.112926 −0.0564632 0.998405i \(-0.517982\pi\)
−0.0564632 + 0.998405i \(0.517982\pi\)
\(942\) 0 0
\(943\) 41.5692i 1.35368i
\(944\) 0 0
\(945\) −18.0000 15.5885i −0.585540 0.507093i
\(946\) 0 0
\(947\) 18.0000i 0.584921i 0.956278 + 0.292461i \(0.0944741\pi\)
−0.956278 + 0.292461i \(0.905526\pi\)
\(948\) 0 0
\(949\) 45.0000 1.46076
\(950\) 0 0
\(951\) 41.5692i 1.34797i
\(952\) 0 0
\(953\) 3.00000i 0.0971795i −0.998819 0.0485898i \(-0.984527\pi\)
0.998819 0.0485898i \(-0.0154727\pi\)
\(954\) 0 0
\(955\) 41.5692i 1.34515i
\(956\) 0 0
\(957\) −15.5885 −0.503903
\(958\) 0 0
\(959\) 20.7846 24.0000i 0.671170 0.775000i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 9.00000i 0.290021i
\(964\) 0 0
\(965\) 6.92820 0.223027
\(966\) 0 0
\(967\) 50.0000 1.60789 0.803946 0.594703i \(-0.202730\pi\)
0.803946 + 0.594703i \(0.202730\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.9808 0.833762 0.416881 0.908961i \(-0.363123\pi\)
0.416881 + 0.908961i \(0.363123\pi\)
\(972\) 0 0
\(973\) 18.0000 20.7846i 0.577054 0.666324i
\(974\) 0 0
\(975\) 18.0000i 0.576461i
\(976\) 0 0
\(977\) 42.0000i 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 6.92820i 0.221426i
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) 0 0
\(983\) 38.1051 1.21536 0.607682 0.794180i \(-0.292099\pi\)
0.607682 + 0.794180i \(0.292099\pi\)
\(984\) 0 0
\(985\) 10.3923i 0.331126i
\(986\) 0 0
\(987\) 30.0000 + 25.9808i 0.954911 + 0.826977i
\(988\) 0 0
\(989\) 60.0000i 1.90789i
\(990\) 0 0
\(991\) −5.00000 −0.158830 −0.0794151 0.996842i \(-0.525305\pi\)
−0.0794151 + 0.996842i \(0.525305\pi\)
\(992\) 0 0
\(993\) −6.92820 −0.219860
\(994\) 0 0
\(995\) 42.0000i 1.33149i
\(996\) 0 0
\(997\) 27.7128i 0.877674i −0.898567 0.438837i \(-0.855391\pi\)
0.898567 0.438837i \(-0.144609\pi\)
\(998\) 0 0
\(999\) −36.3731 −1.15079
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 924.2.l.b.881.2 yes 4
3.2 odd 2 inner 924.2.l.b.881.4 yes 4
7.6 odd 2 inner 924.2.l.b.881.3 yes 4
21.20 even 2 inner 924.2.l.b.881.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
924.2.l.b.881.1 4 21.20 even 2 inner
924.2.l.b.881.2 yes 4 1.1 even 1 trivial
924.2.l.b.881.3 yes 4 7.6 odd 2 inner
924.2.l.b.881.4 yes 4 3.2 odd 2 inner