Properties

Label 924.2.n.b
Level $924$
Weight $2$
Character orbit 924.n
Analytic conductor $7.378$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(923,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.923");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} + 13x^{4} - 12x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{5} - \beta_{2}) q^{3} + \beta_{4} q^{4} + \beta_{6} q^{5} + ( - \beta_{4} - 2) q^{6} + ( - \beta_{6} - \beta_{3}) q^{7} + ( - 2 \beta_{5} - \beta_{2}) q^{8} + 3 q^{9} + (\beta_{7} - \beta_{6} + \beta_{3}) q^{10}+ \cdots + ( - 6 \beta_{7} + 3 \beta_{6} + \cdots + 3 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 12 q^{6} + 24 q^{9} - 28 q^{16} - 20 q^{22} + 36 q^{24} - 24 q^{25} - 24 q^{35} - 12 q^{36} + 16 q^{37} + 16 q^{49} - 36 q^{54} - 48 q^{58} - 24 q^{62} + 44 q^{64} + 20 q^{70} + 72 q^{81}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 8x^{6} + 13x^{4} - 12x^{2} + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 6\nu^{4} + 17\nu^{2} + 18 ) / 24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 14\nu^{5} + 97\nu^{3} + 138\nu ) / 144 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 4\nu^{2} - 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - 6\nu^{4} - 5\nu^{2} + 6 ) / 12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} - 14\nu^{5} - 25\nu^{3} + 78\nu ) / 72 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -7\nu^{7} - 50\nu^{5} - 55\nu^{3} + 186\nu ) / 144 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + 2\beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -4\beta_{5} + 3\beta_{4} - 8\beta_{2} + 11 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{7} - 13\beta_{6} - 5\beta_{3} + 15\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 7\beta_{5} - 18\beta_{4} + 38\beta_{2} - 50 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -42\beta_{7} + 85\beta_{6} + 20\beta_{3} - 57\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
923.1
0.258819 2.15988i
−0.258819 + 2.15988i
0.258819 + 2.15988i
−0.258819 2.15988i
−0.965926 + 0.578737i
0.965926 0.578737i
−0.965926 0.578737i
0.965926 + 0.578737i
−0.866025 1.11803i 1.73205 −0.500000 + 1.93649i −1.41421 −1.50000 1.93649i 2.12132 1.58114i 2.59808 1.11803i 3.00000 1.22474 + 1.58114i
923.2 −0.866025 1.11803i 1.73205 −0.500000 + 1.93649i 1.41421 −1.50000 1.93649i −2.12132 + 1.58114i 2.59808 1.11803i 3.00000 −1.22474 1.58114i
923.3 −0.866025 + 1.11803i 1.73205 −0.500000 1.93649i −1.41421 −1.50000 + 1.93649i 2.12132 + 1.58114i 2.59808 + 1.11803i 3.00000 1.22474 1.58114i
923.4 −0.866025 + 1.11803i 1.73205 −0.500000 1.93649i 1.41421 −1.50000 + 1.93649i −2.12132 1.58114i 2.59808 + 1.11803i 3.00000 −1.22474 + 1.58114i
923.5 0.866025 1.11803i −1.73205 −0.500000 1.93649i −1.41421 −1.50000 + 1.93649i 2.12132 1.58114i −2.59808 1.11803i 3.00000 −1.22474 + 1.58114i
923.6 0.866025 1.11803i −1.73205 −0.500000 1.93649i 1.41421 −1.50000 + 1.93649i −2.12132 + 1.58114i −2.59808 1.11803i 3.00000 1.22474 1.58114i
923.7 0.866025 + 1.11803i −1.73205 −0.500000 + 1.93649i −1.41421 −1.50000 1.93649i 2.12132 + 1.58114i −2.59808 + 1.11803i 3.00000 −1.22474 1.58114i
923.8 0.866025 + 1.11803i −1.73205 −0.500000 + 1.93649i 1.41421 −1.50000 1.93649i −2.12132 1.58114i −2.59808 + 1.11803i 3.00000 1.22474 + 1.58114i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 923.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner
21.c even 2 1 inner
28.d even 2 1 inner
33.d even 2 1 inner
44.c even 2 1 inner
77.b even 2 1 inner
924.n even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 924.2.n.b 8
3.b odd 2 1 924.2.n.c yes 8
4.b odd 2 1 924.2.n.c yes 8
7.b odd 2 1 924.2.n.c yes 8
11.b odd 2 1 924.2.n.c yes 8
12.b even 2 1 inner 924.2.n.b 8
21.c even 2 1 inner 924.2.n.b 8
28.d even 2 1 inner 924.2.n.b 8
33.d even 2 1 inner 924.2.n.b 8
44.c even 2 1 inner 924.2.n.b 8
77.b even 2 1 inner 924.2.n.b 8
84.h odd 2 1 924.2.n.c yes 8
132.d odd 2 1 924.2.n.c yes 8
231.h odd 2 1 924.2.n.c yes 8
308.g odd 2 1 924.2.n.c yes 8
924.n even 2 1 inner 924.2.n.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
924.2.n.b 8 1.a even 1 1 trivial
924.2.n.b 8 12.b even 2 1 inner
924.2.n.b 8 21.c even 2 1 inner
924.2.n.b 8 28.d even 2 1 inner
924.2.n.b 8 33.d even 2 1 inner
924.2.n.b 8 44.c even 2 1 inner
924.2.n.b 8 77.b even 2 1 inner
924.2.n.b 8 924.n even 2 1 inner
924.2.n.c yes 8 3.b odd 2 1
924.2.n.c yes 8 4.b odd 2 1
924.2.n.c yes 8 7.b odd 2 1
924.2.n.c yes 8 11.b odd 2 1
924.2.n.c yes 8 84.h odd 2 1
924.2.n.c yes 8 132.d odd 2 1
924.2.n.c yes 8 231.h odd 2 1
924.2.n.c yes 8 308.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(924, [\chi])\):

\( T_{5}^{2} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 6 \) Copy content Toggle raw display
\( T_{83} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 4 T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{2} + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{2} + 40)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 48)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$37$ \( (T - 2)^{8} \) Copy content Toggle raw display
$41$ \( (T^{2} + 60)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{2} + 30)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 90)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 120)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 54)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 60)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 150)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 96)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 18)^{4} \) Copy content Toggle raw display
$83$ \( (T + 6)^{8} \) Copy content Toggle raw display
$89$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 180)^{4} \) Copy content Toggle raw display
show more
show less