Properties

Label 924.2.n.c.923.6
Level $924$
Weight $2$
Character 924.923
Analytic conductor $7.378$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [924,2,Mod(923,924)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(924, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("924.923");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 924.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.37817714677\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 8x^{6} + 13x^{4} - 12x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 923.6
Root \(0.965926 + 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 924.923
Dual form 924.2.n.c.923.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.11803i) q^{2} +1.73205 q^{3} +(-0.500000 - 1.93649i) q^{4} +1.41421 q^{5} +(1.50000 - 1.93649i) q^{6} +(2.12132 + 1.58114i) q^{7} +(-2.59808 - 1.11803i) q^{8} +3.00000 q^{9} +(1.22474 - 1.58114i) q^{10} +(2.44949 - 2.23607i) q^{11} +(-0.866025 - 3.35410i) q^{12} -2.44949 q^{13} +(3.60488 - 1.00240i) q^{14} +2.44949 q^{15} +(-3.50000 + 1.93649i) q^{16} +(2.59808 - 3.35410i) q^{18} +6.32456i q^{19} +(-0.707107 - 2.73861i) q^{20} +(3.67423 + 2.73861i) q^{21} +(-0.378680 - 4.67510i) q^{22} -2.44949 q^{23} +(-4.50000 - 1.93649i) q^{24} -3.00000 q^{25} +(-2.12132 + 2.73861i) q^{26} +5.19615 q^{27} +(2.00120 - 4.89849i) q^{28} -6.92820 q^{29} +(2.12132 - 2.73861i) q^{30} +3.46410 q^{31} +(-0.866025 + 5.59017i) q^{32} +(4.24264 - 3.87298i) q^{33} +(3.00000 + 2.23607i) q^{35} +(-1.50000 - 5.80948i) q^{36} +2.00000 q^{37} +(7.07107 + 5.47723i) q^{38} -4.24264 q^{39} +(-3.67423 - 1.58114i) q^{40} -7.74597i q^{41} +(6.24384 - 1.73621i) q^{42} +(-5.55487 - 3.62538i) q^{44} +4.24264 q^{45} +(-2.12132 + 2.73861i) q^{46} -5.47723i q^{47} +(-6.06218 + 3.35410i) q^{48} +(2.00000 + 6.70820i) q^{49} +(-2.59808 + 3.35410i) q^{50} +(1.22474 + 4.74342i) q^{52} -9.48683i q^{53} +(4.50000 - 5.80948i) q^{54} +(3.46410 - 3.16228i) q^{55} +(-3.74358 - 6.47963i) q^{56} +10.9545i q^{57} +(-6.00000 + 7.74597i) q^{58} +10.9545i q^{59} +(-1.22474 - 4.74342i) q^{60} -7.34847 q^{61} +(3.00000 - 3.87298i) q^{62} +(6.36396 + 4.74342i) q^{63} +(5.50000 + 5.80948i) q^{64} -3.46410 q^{65} +(-0.655892 - 8.09752i) q^{66} -7.74597i q^{67} -4.24264 q^{69} +(5.09808 - 1.41761i) q^{70} -12.2474 q^{71} +(-7.79423 - 3.35410i) q^{72} -9.79796 q^{73} +(1.73205 - 2.23607i) q^{74} -5.19615 q^{75} +(12.2474 - 3.16228i) q^{76} +(8.73169 - 0.870433i) q^{77} +(-3.67423 + 4.74342i) q^{78} -4.24264 q^{79} +(-4.94975 + 2.73861i) q^{80} +9.00000 q^{81} +(-8.66025 - 6.70820i) q^{82} +6.00000 q^{83} +(3.46618 - 8.48443i) q^{84} -12.0000 q^{87} +(-8.86396 + 3.07086i) q^{88} -2.82843 q^{89} +(3.67423 - 4.74342i) q^{90} +(-5.19615 - 3.87298i) q^{91} +(1.22474 + 4.74342i) q^{92} +6.00000 q^{93} +(-6.12372 - 4.74342i) q^{94} +8.94427i q^{95} +(-1.50000 + 9.68246i) q^{96} +13.4164i q^{97} +(9.23205 + 3.57341i) q^{98} +(7.34847 - 6.70820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 12 q^{6} + 24 q^{9} - 28 q^{16} - 20 q^{22} - 36 q^{24} - 24 q^{25} + 24 q^{35} - 12 q^{36} + 16 q^{37} + 16 q^{49} + 36 q^{54} - 48 q^{58} + 24 q^{62} + 44 q^{64} + 20 q^{70} + 72 q^{81}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/924\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(617\) \(661\) \(673\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.11803i 0.612372 0.790569i
\(3\) 1.73205 1.00000
\(4\) −0.500000 1.93649i −0.250000 0.968246i
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 1.50000 1.93649i 0.612372 0.790569i
\(7\) 2.12132 + 1.58114i 0.801784 + 0.597614i
\(8\) −2.59808 1.11803i −0.918559 0.395285i
\(9\) 3.00000 1.00000
\(10\) 1.22474 1.58114i 0.387298 0.500000i
\(11\) 2.44949 2.23607i 0.738549 0.674200i
\(12\) −0.866025 3.35410i −0.250000 0.968246i
\(13\) −2.44949 −0.679366 −0.339683 0.940540i \(-0.610320\pi\)
−0.339683 + 0.940540i \(0.610320\pi\)
\(14\) 3.60488 1.00240i 0.963446 0.267903i
\(15\) 2.44949 0.632456
\(16\) −3.50000 + 1.93649i −0.875000 + 0.484123i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.59808 3.35410i 0.612372 0.790569i
\(19\) 6.32456i 1.45095i 0.688247 + 0.725476i \(0.258380\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −0.707107 2.73861i −0.158114 0.612372i
\(21\) 3.67423 + 2.73861i 0.801784 + 0.597614i
\(22\) −0.378680 4.67510i −0.0807348 0.996736i
\(23\) −2.44949 −0.510754 −0.255377 0.966842i \(-0.582200\pi\)
−0.255377 + 0.966842i \(0.582200\pi\)
\(24\) −4.50000 1.93649i −0.918559 0.395285i
\(25\) −3.00000 −0.600000
\(26\) −2.12132 + 2.73861i −0.416025 + 0.537086i
\(27\) 5.19615 1.00000
\(28\) 2.00120 4.89849i 0.378192 0.925727i
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 2.12132 2.73861i 0.387298 0.500000i
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) −0.866025 + 5.59017i −0.153093 + 0.988212i
\(33\) 4.24264 3.87298i 0.738549 0.674200i
\(34\) 0 0
\(35\) 3.00000 + 2.23607i 0.507093 + 0.377964i
\(36\) −1.50000 5.80948i −0.250000 0.968246i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 7.07107 + 5.47723i 1.14708 + 0.888523i
\(39\) −4.24264 −0.679366
\(40\) −3.67423 1.58114i −0.580948 0.250000i
\(41\) 7.74597i 1.20972i −0.796333 0.604858i \(-0.793230\pi\)
0.796333 0.604858i \(-0.206770\pi\)
\(42\) 6.24384 1.73621i 0.963446 0.267903i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −5.55487 3.62538i −0.837428 0.546547i
\(45\) 4.24264 0.632456
\(46\) −2.12132 + 2.73861i −0.312772 + 0.403786i
\(47\) 5.47723i 0.798935i −0.916747 0.399468i \(-0.869195\pi\)
0.916747 0.399468i \(-0.130805\pi\)
\(48\) −6.06218 + 3.35410i −0.875000 + 0.484123i
\(49\) 2.00000 + 6.70820i 0.285714 + 0.958315i
\(50\) −2.59808 + 3.35410i −0.367423 + 0.474342i
\(51\) 0 0
\(52\) 1.22474 + 4.74342i 0.169842 + 0.657794i
\(53\) 9.48683i 1.30312i −0.758599 0.651558i \(-0.774116\pi\)
0.758599 0.651558i \(-0.225884\pi\)
\(54\) 4.50000 5.80948i 0.612372 0.790569i
\(55\) 3.46410 3.16228i 0.467099 0.426401i
\(56\) −3.74358 6.47963i −0.500258 0.865877i
\(57\) 10.9545i 1.45095i
\(58\) −6.00000 + 7.74597i −0.787839 + 1.01710i
\(59\) 10.9545i 1.42615i 0.701089 + 0.713074i \(0.252698\pi\)
−0.701089 + 0.713074i \(0.747302\pi\)
\(60\) −1.22474 4.74342i −0.158114 0.612372i
\(61\) −7.34847 −0.940875 −0.470438 0.882433i \(-0.655904\pi\)
−0.470438 + 0.882433i \(0.655904\pi\)
\(62\) 3.00000 3.87298i 0.381000 0.491869i
\(63\) 6.36396 + 4.74342i 0.801784 + 0.597614i
\(64\) 5.50000 + 5.80948i 0.687500 + 0.726184i
\(65\) −3.46410 −0.429669
\(66\) −0.655892 8.09752i −0.0807348 0.996736i
\(67\) 7.74597i 0.946320i −0.880976 0.473160i \(-0.843113\pi\)
0.880976 0.473160i \(-0.156887\pi\)
\(68\) 0 0
\(69\) −4.24264 −0.510754
\(70\) 5.09808 1.41761i 0.609337 0.169437i
\(71\) −12.2474 −1.45350 −0.726752 0.686900i \(-0.758971\pi\)
−0.726752 + 0.686900i \(0.758971\pi\)
\(72\) −7.79423 3.35410i −0.918559 0.395285i
\(73\) −9.79796 −1.14676 −0.573382 0.819288i \(-0.694369\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 1.73205 2.23607i 0.201347 0.259938i
\(75\) −5.19615 −0.600000
\(76\) 12.2474 3.16228i 1.40488 0.362738i
\(77\) 8.73169 0.870433i 0.995068 0.0991951i
\(78\) −3.67423 + 4.74342i −0.416025 + 0.537086i
\(79\) −4.24264 −0.477334 −0.238667 0.971101i \(-0.576710\pi\)
−0.238667 + 0.971101i \(0.576710\pi\)
\(80\) −4.94975 + 2.73861i −0.553399 + 0.306186i
\(81\) 9.00000 1.00000
\(82\) −8.66025 6.70820i −0.956365 0.740797i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 3.46618 8.48443i 0.378192 0.925727i
\(85\) 0 0
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) −8.86396 + 3.07086i −0.944901 + 0.327355i
\(89\) −2.82843 −0.299813 −0.149906 0.988700i \(-0.547897\pi\)
−0.149906 + 0.988700i \(0.547897\pi\)
\(90\) 3.67423 4.74342i 0.387298 0.500000i
\(91\) −5.19615 3.87298i −0.544705 0.405999i
\(92\) 1.22474 + 4.74342i 0.127688 + 0.494535i
\(93\) 6.00000 0.622171
\(94\) −6.12372 4.74342i −0.631614 0.489246i
\(95\) 8.94427i 0.917663i
\(96\) −1.50000 + 9.68246i −0.153093 + 0.988212i
\(97\) 13.4164i 1.36223i 0.732177 + 0.681115i \(0.238505\pi\)
−0.732177 + 0.681115i \(0.761495\pi\)
\(98\) 9.23205 + 3.57341i 0.932578 + 0.360969i
\(99\) 7.34847 6.70820i 0.738549 0.674200i
\(100\) 1.50000 + 5.80948i 0.150000 + 0.580948i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 3.46410 0.341328 0.170664 0.985329i \(-0.445409\pi\)
0.170664 + 0.985329i \(0.445409\pi\)
\(104\) 6.36396 + 2.73861i 0.624038 + 0.268543i
\(105\) 5.19615 + 3.87298i 0.507093 + 0.377964i
\(106\) −10.6066 8.21584i −1.03020 0.797993i
\(107\) 4.47214i 0.432338i 0.976356 + 0.216169i \(0.0693562\pi\)
−0.976356 + 0.216169i \(0.930644\pi\)
\(108\) −2.59808 10.0623i −0.250000 0.968246i
\(109\) 5.47723i 0.524623i 0.964983 + 0.262312i \(0.0844848\pi\)
−0.964983 + 0.262312i \(0.915515\pi\)
\(110\) −0.535534 6.61160i −0.0510612 0.630391i
\(111\) 3.46410 0.328798
\(112\) −10.4865 1.42607i −0.990880 0.134751i
\(113\) 18.9737i 1.78489i 0.451154 + 0.892446i \(0.351013\pi\)
−0.451154 + 0.892446i \(0.648987\pi\)
\(114\) 12.2474 + 9.48683i 1.14708 + 0.888523i
\(115\) −3.46410 −0.323029
\(116\) 3.46410 + 13.4164i 0.321634 + 1.24568i
\(117\) −7.34847 −0.679366
\(118\) 12.2474 + 9.48683i 1.12747 + 0.873334i
\(119\) 0 0
\(120\) −6.36396 2.73861i −0.580948 0.250000i
\(121\) 1.00000 10.9545i 0.0909091 0.995859i
\(122\) −6.36396 + 8.21584i −0.576166 + 0.743827i
\(123\) 13.4164i 1.20972i
\(124\) −1.73205 6.70820i −0.155543 0.602414i
\(125\) −11.3137 −1.01193
\(126\) 10.8147 3.00721i 0.963446 0.267903i
\(127\) 21.2132 1.88237 0.941184 0.337895i \(-0.109715\pi\)
0.941184 + 0.337895i \(0.109715\pi\)
\(128\) 11.2583 1.11803i 0.995105 0.0988212i
\(129\) 0 0
\(130\) −3.00000 + 3.87298i −0.263117 + 0.339683i
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) −9.62132 6.27935i −0.837428 0.546547i
\(133\) −10.0000 + 13.4164i −0.867110 + 1.16335i
\(134\) −8.66025 6.70820i −0.748132 0.579501i
\(135\) 7.34847 0.632456
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) −3.67423 + 4.74342i −0.312772 + 0.403786i
\(139\) 12.6491i 1.07288i −0.843937 0.536442i \(-0.819768\pi\)
0.843937 0.536442i \(-0.180232\pi\)
\(140\) 2.83013 6.92751i 0.239189 0.585481i
\(141\) 9.48683i 0.798935i
\(142\) −10.6066 + 13.6931i −0.890086 + 1.14910i
\(143\) −6.00000 + 5.47723i −0.501745 + 0.458029i
\(144\) −10.5000 + 5.80948i −0.875000 + 0.484123i
\(145\) −9.79796 −0.813676
\(146\) −8.48528 + 10.9545i −0.702247 + 0.906597i
\(147\) 3.46410 + 11.6190i 0.285714 + 0.958315i
\(148\) −1.00000 3.87298i −0.0821995 0.318357i
\(149\) 6.92820 0.567581 0.283790 0.958886i \(-0.408408\pi\)
0.283790 + 0.958886i \(0.408408\pi\)
\(150\) −4.50000 + 5.80948i −0.367423 + 0.474342i
\(151\) 12.7279 1.03578 0.517892 0.855446i \(-0.326717\pi\)
0.517892 + 0.855446i \(0.326717\pi\)
\(152\) 7.07107 16.4317i 0.573539 1.33278i
\(153\) 0 0
\(154\) 6.58869 10.5161i 0.530932 0.847415i
\(155\) 4.89898 0.393496
\(156\) 2.12132 + 8.21584i 0.169842 + 0.657794i
\(157\) 13.4164i 1.07075i 0.844616 + 0.535373i \(0.179829\pi\)
−0.844616 + 0.535373i \(0.820171\pi\)
\(158\) −3.67423 + 4.74342i −0.292306 + 0.377366i
\(159\) 16.4317i 1.30312i
\(160\) −1.22474 + 7.90569i −0.0968246 + 0.625000i
\(161\) −5.19615 3.87298i −0.409514 0.305234i
\(162\) 7.79423 10.0623i 0.612372 0.790569i
\(163\) 15.4919i 1.21342i −0.794923 0.606711i \(-0.792489\pi\)
0.794923 0.606711i \(-0.207511\pi\)
\(164\) −15.0000 + 3.87298i −1.17130 + 0.302429i
\(165\) 6.00000 5.47723i 0.467099 0.426401i
\(166\) 5.19615 6.70820i 0.403300 0.520658i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) −6.48408 11.2230i −0.500258 0.865877i
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) 18.9737i 1.45095i
\(172\) 0 0
\(173\) 15.4919i 1.17783i 0.808195 + 0.588915i \(0.200445\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(174\) −10.3923 + 13.4164i −0.787839 + 1.01710i
\(175\) −6.36396 4.74342i −0.481070 0.358569i
\(176\) −4.24309 + 12.5697i −0.319835 + 0.947473i
\(177\) 18.9737i 1.42615i
\(178\) −2.44949 + 3.16228i −0.183597 + 0.237023i
\(179\) 14.6969 1.09850 0.549250 0.835658i \(-0.314913\pi\)
0.549250 + 0.835658i \(0.314913\pi\)
\(180\) −2.12132 8.21584i −0.158114 0.612372i
\(181\) 13.4164i 0.997234i −0.866822 0.498617i \(-0.833841\pi\)
0.866822 0.498617i \(-0.166159\pi\)
\(182\) −8.83013 + 2.45537i −0.654533 + 0.182004i
\(183\) −12.7279 −0.940875
\(184\) 6.36396 + 2.73861i 0.469157 + 0.201893i
\(185\) 2.82843 0.207950
\(186\) 5.19615 6.70820i 0.381000 0.491869i
\(187\) 0 0
\(188\) −10.6066 + 2.73861i −0.773566 + 0.199734i
\(189\) 11.0227 + 8.21584i 0.801784 + 0.597614i
\(190\) 10.0000 + 7.74597i 0.725476 + 0.561951i
\(191\) −12.2474 −0.886194 −0.443097 0.896474i \(-0.646120\pi\)
−0.443097 + 0.896474i \(0.646120\pi\)
\(192\) 9.52628 + 10.0623i 0.687500 + 0.726184i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 15.0000 + 11.6190i 1.07694 + 0.834192i
\(195\) −6.00000 −0.429669
\(196\) 11.9904 7.22709i 0.856456 0.516220i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −1.13604 14.0253i −0.0807348 0.996736i
\(199\) −24.2487 −1.71895 −0.859473 0.511182i \(-0.829208\pi\)
−0.859473 + 0.511182i \(0.829208\pi\)
\(200\) 7.79423 + 3.35410i 0.551135 + 0.237171i
\(201\) 13.4164i 0.946320i
\(202\) 0 0
\(203\) −14.6969 10.9545i −1.03152 0.768852i
\(204\) 0 0
\(205\) 10.9545i 0.765092i
\(206\) 3.00000 3.87298i 0.209020 0.269844i
\(207\) −7.34847 −0.510754
\(208\) 8.57321 4.74342i 0.594445 0.328897i
\(209\) 14.1421 + 15.4919i 0.978232 + 1.07160i
\(210\) 8.83013 2.45537i 0.609337 0.169437i
\(211\) 8.48528 0.584151 0.292075 0.956395i \(-0.405654\pi\)
0.292075 + 0.956395i \(0.405654\pi\)
\(212\) −18.3712 + 4.74342i −1.26174 + 0.325779i
\(213\) −21.2132 −1.45350
\(214\) 5.00000 + 3.87298i 0.341793 + 0.264752i
\(215\) 0 0
\(216\) −13.5000 5.80948i −0.918559 0.395285i
\(217\) 7.34847 + 5.47723i 0.498847 + 0.371818i
\(218\) 6.12372 + 4.74342i 0.414751 + 0.321265i
\(219\) −16.9706 −1.14676
\(220\) −7.85578 5.12707i −0.529636 0.345667i
\(221\) 0 0
\(222\) 3.00000 3.87298i 0.201347 0.259938i
\(223\) 17.3205 1.15987 0.579934 0.814664i \(-0.303079\pi\)
0.579934 + 0.814664i \(0.303079\pi\)
\(224\) −10.6760 + 10.4892i −0.713317 + 0.700841i
\(225\) −9.00000 −0.600000
\(226\) 21.2132 + 16.4317i 1.41108 + 1.09302i
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 21.2132 5.47723i 1.40488 0.362738i
\(229\) 13.4164i 0.886581i −0.896378 0.443291i \(-0.853811\pi\)
0.896378 0.443291i \(-0.146189\pi\)
\(230\) −3.00000 + 3.87298i −0.197814 + 0.255377i
\(231\) 15.1237 1.50763i 0.995068 0.0991951i
\(232\) 18.0000 + 7.74597i 1.18176 + 0.508548i
\(233\) 20.7846 1.36165 0.680823 0.732448i \(-0.261622\pi\)
0.680823 + 0.732448i \(0.261622\pi\)
\(234\) −6.36396 + 8.21584i −0.416025 + 0.537086i
\(235\) 7.74597i 0.505291i
\(236\) 21.2132 5.47723i 1.38086 0.356537i
\(237\) −7.34847 −0.477334
\(238\) 0 0
\(239\) 8.94427i 0.578557i 0.957245 + 0.289278i \(0.0934153\pi\)
−0.957245 + 0.289278i \(0.906585\pi\)
\(240\) −8.57321 + 4.74342i −0.553399 + 0.306186i
\(241\) 24.4949 1.57786 0.788928 0.614486i \(-0.210637\pi\)
0.788928 + 0.614486i \(0.210637\pi\)
\(242\) −11.3814 10.6049i −0.731626 0.681707i
\(243\) 15.5885 1.00000
\(244\) 3.67423 + 14.2302i 0.235219 + 0.910998i
\(245\) 2.82843 + 9.48683i 0.180702 + 0.606092i
\(246\) −15.0000 11.6190i −0.956365 0.740797i
\(247\) 15.4919i 0.985728i
\(248\) −9.00000 3.87298i −0.571501 0.245935i
\(249\) 10.3923 0.658586
\(250\) −9.79796 + 12.6491i −0.619677 + 0.800000i
\(251\) 21.9089i 1.38288i 0.722435 + 0.691439i \(0.243023\pi\)
−0.722435 + 0.691439i \(0.756977\pi\)
\(252\) 6.00361 14.6955i 0.378192 0.925727i
\(253\) −6.00000 + 5.47723i −0.377217 + 0.344350i
\(254\) 18.3712 23.7171i 1.15271 1.48814i
\(255\) 0 0
\(256\) 8.50000 13.5554i 0.531250 0.847215i
\(257\) −14.1421 −0.882162 −0.441081 0.897467i \(-0.645405\pi\)
−0.441081 + 0.897467i \(0.645405\pi\)
\(258\) 0 0
\(259\) 4.24264 + 3.16228i 0.263625 + 0.196494i
\(260\) 1.73205 + 6.70820i 0.107417 + 0.416025i
\(261\) −20.7846 −1.28654
\(262\) 15.5885 20.1246i 0.963058 1.24330i
\(263\) 8.94427i 0.551527i 0.961225 + 0.275764i \(0.0889307\pi\)
−0.961225 + 0.275764i \(0.911069\pi\)
\(264\) −15.3528 + 5.31889i −0.944901 + 0.327355i
\(265\) 13.4164i 0.824163i
\(266\) 6.33975 + 22.7993i 0.388715 + 1.39791i
\(267\) −4.89898 −0.299813
\(268\) −15.0000 + 3.87298i −0.916271 + 0.236580i
\(269\) −9.89949 −0.603583 −0.301791 0.953374i \(-0.597585\pi\)
−0.301791 + 0.953374i \(0.597585\pi\)
\(270\) 6.36396 8.21584i 0.387298 0.500000i
\(271\) 15.8114i 0.960473i −0.877139 0.480237i \(-0.840551\pi\)
0.877139 0.480237i \(-0.159449\pi\)
\(272\) 0 0
\(273\) −9.00000 6.70820i −0.544705 0.405999i
\(274\) 0 0
\(275\) −7.34847 + 6.70820i −0.443129 + 0.404520i
\(276\) 2.12132 + 8.21584i 0.127688 + 0.494535i
\(277\) 5.47723i 0.329095i −0.986369 0.164547i \(-0.947384\pi\)
0.986369 0.164547i \(-0.0526163\pi\)
\(278\) −14.1421 10.9545i −0.848189 0.657004i
\(279\) 10.3923 0.622171
\(280\) −5.29423 9.16358i −0.316391 0.547628i
\(281\) 3.46410 0.206651 0.103325 0.994648i \(-0.467052\pi\)
0.103325 + 0.994648i \(0.467052\pi\)
\(282\) −10.6066 8.21584i −0.631614 0.489246i
\(283\) 25.2982i 1.50382i 0.659264 + 0.751912i \(0.270868\pi\)
−0.659264 + 0.751912i \(0.729132\pi\)
\(284\) 6.12372 + 23.7171i 0.363376 + 1.40735i
\(285\) 15.4919i 0.917663i
\(286\) 0.927572 + 11.4516i 0.0548485 + 0.677149i
\(287\) 12.2474 16.4317i 0.722944 0.969931i
\(288\) −2.59808 + 16.7705i −0.153093 + 0.988212i
\(289\) 17.0000 1.00000
\(290\) −8.48528 + 10.9545i −0.498273 + 0.643268i
\(291\) 23.2379i 1.36223i
\(292\) 4.89898 + 18.9737i 0.286691 + 1.11035i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 15.9904 + 6.18932i 0.932578 + 0.360969i
\(295\) 15.4919i 0.901975i
\(296\) −5.19615 2.23607i −0.302020 0.129969i
\(297\) 12.7279 11.6190i 0.738549 0.674200i
\(298\) 6.00000 7.74597i 0.347571 0.448712i
\(299\) 6.00000 0.346989
\(300\) 2.59808 + 10.0623i 0.150000 + 0.580948i
\(301\) 0 0
\(302\) 11.0227 14.2302i 0.634285 0.818859i
\(303\) 0 0
\(304\) −12.2474 22.1359i −0.702439 1.26958i
\(305\) −10.3923 −0.595062
\(306\) 0 0
\(307\) 25.2982i 1.44385i −0.691974 0.721923i \(-0.743259\pi\)
0.691974 0.721923i \(-0.256741\pi\)
\(308\) −6.05143 16.4736i −0.344812 0.938672i
\(309\) 6.00000 0.341328
\(310\) 4.24264 5.47723i 0.240966 0.311086i
\(311\) 16.4317i 0.931755i 0.884849 + 0.465877i \(0.154261\pi\)
−0.884849 + 0.465877i \(0.845739\pi\)
\(312\) 11.0227 + 4.74342i 0.624038 + 0.268543i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 15.0000 + 11.6190i 0.846499 + 0.655695i
\(315\) 9.00000 + 6.70820i 0.507093 + 0.377964i
\(316\) 2.12132 + 8.21584i 0.119334 + 0.462177i
\(317\) 28.4605i 1.59850i −0.600998 0.799250i \(-0.705230\pi\)
0.600998 0.799250i \(-0.294770\pi\)
\(318\) −18.3712 14.2302i −1.03020 0.797993i
\(319\) −16.9706 + 15.4919i −0.950169 + 0.867382i
\(320\) 7.77817 + 8.21584i 0.434813 + 0.459279i
\(321\) 7.74597i 0.432338i
\(322\) −8.83013 + 2.45537i −0.492084 + 0.136833i
\(323\) 0 0
\(324\) −4.50000 17.4284i −0.250000 0.968246i
\(325\) 7.34847 0.407620
\(326\) −17.3205 13.4164i −0.959294 0.743066i
\(327\) 9.48683i 0.524623i
\(328\) −8.66025 + 20.1246i −0.478183 + 1.11120i
\(329\) 8.66025 11.6190i 0.477455 0.640573i
\(330\) −0.927572 11.4516i −0.0510612 0.630391i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −3.00000 11.6190i −0.164646 0.637673i
\(333\) 6.00000 0.328798
\(334\) −10.3923 + 13.4164i −0.568642 + 0.734113i
\(335\) 10.9545i 0.598506i
\(336\) −18.1631 2.47002i −0.990880 0.134751i
\(337\) 10.9545i 0.596727i −0.954452 0.298363i \(-0.903559\pi\)
0.954452 0.298363i \(-0.0964408\pi\)
\(338\) −6.06218 + 7.82624i −0.329739 + 0.425691i
\(339\) 32.8634i 1.78489i
\(340\) 0 0
\(341\) 8.48528 7.74597i 0.459504 0.419468i
\(342\) 21.2132 + 16.4317i 1.14708 + 0.888523i
\(343\) −6.36396 + 17.3925i −0.343622 + 0.939108i
\(344\) 0 0
\(345\) −6.00000 −0.323029
\(346\) 17.3205 + 13.4164i 0.931156 + 0.721271i
\(347\) 17.8885i 0.960307i −0.877184 0.480154i \(-0.840581\pi\)
0.877184 0.480154i \(-0.159419\pi\)
\(348\) 6.00000 + 23.2379i 0.321634 + 1.24568i
\(349\) −12.2474 −0.655591 −0.327795 0.944749i \(-0.606306\pi\)
−0.327795 + 0.944749i \(0.606306\pi\)
\(350\) −10.8147 + 3.00721i −0.578068 + 0.160742i
\(351\) −12.7279 −0.679366
\(352\) 10.3787 + 15.6296i 0.553185 + 0.833058i
\(353\) −22.6274 −1.20434 −0.602168 0.798369i \(-0.705696\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 21.2132 + 16.4317i 1.12747 + 0.873334i
\(355\) −17.3205 −0.919277
\(356\) 1.41421 + 5.47723i 0.0749532 + 0.290292i
\(357\) 0 0
\(358\) 12.7279 16.4317i 0.672692 0.868441i
\(359\) 17.8885i 0.944121i −0.881566 0.472061i \(-0.843510\pi\)
0.881566 0.472061i \(-0.156490\pi\)
\(360\) −11.0227 4.74342i −0.580948 0.250000i
\(361\) −21.0000 −1.10526
\(362\) −15.0000 11.6190i −0.788382 0.610678i
\(363\) 1.73205 18.9737i 0.0909091 0.995859i
\(364\) −4.90192 + 11.9988i −0.256931 + 0.628908i
\(365\) −13.8564 −0.725277
\(366\) −11.0227 + 14.2302i −0.576166 + 0.743827i
\(367\) −17.3205 −0.904123 −0.452062 0.891987i \(-0.649311\pi\)
−0.452062 + 0.891987i \(0.649311\pi\)
\(368\) 8.57321 4.74342i 0.446910 0.247268i
\(369\) 23.2379i 1.20972i
\(370\) 2.44949 3.16228i 0.127343 0.164399i
\(371\) 15.0000 20.1246i 0.778761 1.04482i
\(372\) −3.00000 11.6190i −0.155543 0.602414i
\(373\) 5.47723i 0.283600i 0.989895 + 0.141800i \(0.0452890\pi\)
−0.989895 + 0.141800i \(0.954711\pi\)
\(374\) 0 0
\(375\) −19.5959 −1.01193
\(376\) −6.12372 + 14.2302i −0.315807 + 0.733869i
\(377\) 16.9706 0.874028
\(378\) 18.7315 5.20863i 0.963446 0.267903i
\(379\) 15.4919i 0.795767i 0.917436 + 0.397884i \(0.130255\pi\)
−0.917436 + 0.397884i \(0.869745\pi\)
\(380\) 17.3205 4.47214i 0.888523 0.229416i
\(381\) 36.7423 1.88237
\(382\) −10.6066 + 13.6931i −0.542681 + 0.700598i
\(383\) 16.4317i 0.839619i 0.907612 + 0.419810i \(0.137903\pi\)
−0.907612 + 0.419810i \(0.862097\pi\)
\(384\) 19.5000 1.93649i 0.995105 0.0988212i
\(385\) 12.3485 1.23098i 0.629336 0.0627365i
\(386\) 0 0
\(387\) 0 0
\(388\) 25.9808 6.70820i 1.31897 0.340557i
\(389\) 28.4605i 1.44300i 0.692412 + 0.721502i \(0.256548\pi\)
−0.692412 + 0.721502i \(0.743452\pi\)
\(390\) −5.19615 + 6.70820i −0.263117 + 0.339683i
\(391\) 0 0
\(392\) 2.30385 19.6645i 0.116362 0.993207i
\(393\) 31.1769 1.57267
\(394\) 0 0
\(395\) −6.00000 −0.301893
\(396\) −16.6646 10.8761i −0.837428 0.546547i
\(397\) 13.4164i 0.673350i −0.941621 0.336675i \(-0.890698\pi\)
0.941621 0.336675i \(-0.109302\pi\)
\(398\) −21.0000 + 27.1109i −1.05263 + 1.35895i
\(399\) −17.3205 + 23.2379i −0.867110 + 1.16335i
\(400\) 10.5000 5.80948i 0.525000 0.290474i
\(401\) 18.9737i 0.947500i −0.880659 0.473750i \(-0.842900\pi\)
0.880659 0.473750i \(-0.157100\pi\)
\(402\) −15.0000 11.6190i −0.748132 0.579501i
\(403\) −8.48528 −0.422682
\(404\) 0 0
\(405\) 12.7279 0.632456
\(406\) −24.9754 + 6.94484i −1.23951 + 0.344667i
\(407\) 4.89898 4.47214i 0.242833 0.221676i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −12.2474 9.48683i −0.604858 0.468521i
\(411\) 0 0
\(412\) −1.73205 6.70820i −0.0853320 0.330489i
\(413\) −17.3205 + 23.2379i −0.852286 + 1.14346i
\(414\) −6.36396 + 8.21584i −0.312772 + 0.403786i
\(415\) 8.48528 0.416526
\(416\) 2.12132 13.6931i 0.104006 0.671358i
\(417\) 21.9089i 1.07288i
\(418\) 29.5680 2.39498i 1.44622 0.117142i
\(419\) 21.9089i 1.07032i −0.844751 0.535160i \(-0.820251\pi\)
0.844751 0.535160i \(-0.179749\pi\)
\(420\) 4.90192 11.9988i 0.239189 0.585481i
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 7.34847 9.48683i 0.357718 0.461812i
\(423\) 16.4317i 0.798935i
\(424\) −10.6066 + 24.6475i −0.515102 + 1.19699i
\(425\) 0 0
\(426\) −18.3712 + 23.7171i −0.890086 + 1.14910i
\(427\) −15.5885 11.6190i −0.754378 0.562280i
\(428\) 8.66025 2.23607i 0.418609 0.108084i
\(429\) −10.3923 + 9.48683i −0.501745 + 0.458029i
\(430\) 0 0
\(431\) 17.8885i 0.861661i 0.902433 + 0.430830i \(0.141779\pi\)
−0.902433 + 0.430830i \(0.858221\pi\)
\(432\) −18.1865 + 10.0623i −0.875000 + 0.484123i
\(433\) 26.8328i 1.28950i −0.764392 0.644751i \(-0.776961\pi\)
0.764392 0.644751i \(-0.223039\pi\)
\(434\) 12.4877 3.47242i 0.599428 0.166682i
\(435\) −16.9706 −0.813676
\(436\) 10.6066 2.73861i 0.507964 0.131156i
\(437\) 15.4919i 0.741080i
\(438\) −14.6969 + 18.9737i −0.702247 + 0.906597i
\(439\) 34.7851i 1.66020i −0.557615 0.830100i \(-0.688283\pi\)
0.557615 0.830100i \(-0.311717\pi\)
\(440\) −12.5355 + 4.34286i −0.597608 + 0.207037i
\(441\) 6.00000 + 20.1246i 0.285714 + 0.958315i
\(442\) 0 0
\(443\) 39.1918 1.86206 0.931030 0.364942i \(-0.118911\pi\)
0.931030 + 0.364942i \(0.118911\pi\)
\(444\) −1.73205 6.70820i −0.0821995 0.318357i
\(445\) −4.00000 −0.189618
\(446\) 15.0000 19.3649i 0.710271 0.916955i
\(447\) 12.0000 0.567581
\(448\) 2.48168 + 21.0200i 0.117248 + 0.993103i
\(449\) 37.9473i 1.79085i −0.445217 0.895423i \(-0.646873\pi\)
0.445217 0.895423i \(-0.353127\pi\)
\(450\) −7.79423 + 10.0623i −0.367423 + 0.474342i
\(451\) −17.3205 18.9737i −0.815591 0.893435i
\(452\) 36.7423 9.48683i 1.72821 0.446223i
\(453\) 22.0454 1.03578
\(454\) −10.3923 + 13.4164i −0.487735 + 0.629663i
\(455\) −7.34847 5.47723i −0.344502 0.256776i
\(456\) 12.2474 28.4605i 0.573539 1.33278i
\(457\) 10.9545i 0.512428i −0.966620 0.256214i \(-0.917525\pi\)
0.966620 0.256214i \(-0.0824751\pi\)
\(458\) −15.0000 11.6190i −0.700904 0.542918i
\(459\) 0 0
\(460\) 1.73205 + 6.70820i 0.0807573 + 0.312772i
\(461\) 30.9839i 1.44306i −0.692382 0.721531i \(-0.743439\pi\)
0.692382 0.721531i \(-0.256561\pi\)
\(462\) 11.4119 18.2145i 0.530932 0.847415i
\(463\) 7.74597i 0.359986i 0.983668 + 0.179993i \(0.0576074\pi\)
−0.983668 + 0.179993i \(0.942393\pi\)
\(464\) 24.2487 13.4164i 1.12572 0.622841i
\(465\) 8.48528 0.393496
\(466\) 18.0000 23.2379i 0.833834 1.07647i
\(467\) 10.9545i 0.506912i −0.967347 0.253456i \(-0.918433\pi\)
0.967347 0.253456i \(-0.0815672\pi\)
\(468\) 3.67423 + 14.2302i 0.169842 + 0.657794i
\(469\) 12.2474 16.4317i 0.565535 0.758744i
\(470\) −8.66025 6.70820i −0.399468 0.309426i
\(471\) 23.2379i 1.07075i
\(472\) 12.2474 28.4605i 0.563735 1.31000i
\(473\) 0 0
\(474\) −6.36396 + 8.21584i −0.292306 + 0.377366i
\(475\) 18.9737i 0.870572i
\(476\) 0 0
\(477\) 28.4605i 1.30312i
\(478\) 10.0000 + 7.74597i 0.457389 + 0.354292i
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) −2.12132 + 13.6931i −0.0968246 + 0.625000i
\(481\) −4.89898 −0.223374
\(482\) 21.2132 27.3861i 0.966235 1.24740i
\(483\) −9.00000 6.70820i −0.409514 0.305234i
\(484\) −21.7132 + 3.54073i −0.986964 + 0.160942i
\(485\) 18.9737i 0.861550i
\(486\) 13.5000 17.4284i 0.612372 0.790569i
\(487\) 23.2379i 1.05301i −0.850172 0.526505i \(-0.823502\pi\)
0.850172 0.526505i \(-0.176498\pi\)
\(488\) 19.0919 + 8.21584i 0.864249 + 0.371914i
\(489\) 26.8328i 1.21342i
\(490\) 13.0561 + 5.05356i 0.589814 + 0.228297i
\(491\) 4.47214i 0.201825i −0.994895 0.100912i \(-0.967824\pi\)
0.994895 0.100912i \(-0.0321762\pi\)
\(492\) −25.9808 + 6.70820i −1.17130 + 0.302429i
\(493\) 0 0
\(494\) −17.3205 13.4164i −0.779287 0.603633i
\(495\) 10.3923 9.48683i 0.467099 0.426401i
\(496\) −12.1244 + 6.70820i −0.544400 + 0.301207i
\(497\) −25.9808 19.3649i −1.16540 0.868635i
\(498\) 9.00000 11.6190i 0.403300 0.520658i
\(499\) 30.9839i 1.38703i 0.720443 + 0.693514i \(0.243939\pi\)
−0.720443 + 0.693514i \(0.756061\pi\)
\(500\) 5.65685 + 21.9089i 0.252982 + 0.979796i
\(501\) −20.7846 −0.928588
\(502\) 24.4949 + 18.9737i 1.09326 + 0.846836i
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) −11.2308 19.4389i −0.500258 0.865877i
\(505\) 0 0
\(506\) 0.927572 + 11.4516i 0.0412356 + 0.509087i
\(507\) −12.1244 −0.538462
\(508\) −10.6066 41.0792i −0.470592 1.82259i
\(509\) 24.0416 1.06563 0.532813 0.846233i \(-0.321135\pi\)
0.532813 + 0.846233i \(0.321135\pi\)
\(510\) 0 0
\(511\) −20.7846 15.4919i −0.919457 0.685323i
\(512\) −7.79423 21.2426i −0.344459 0.938801i
\(513\) 32.8634i 1.45095i
\(514\) −12.2474 + 15.8114i −0.540212 + 0.697410i
\(515\) 4.89898 0.215875
\(516\) 0 0
\(517\) −12.2474 13.4164i −0.538642 0.590053i
\(518\) 7.20977 2.00480i 0.316779 0.0880860i
\(519\) 26.8328i 1.17783i
\(520\) 9.00000 + 3.87298i 0.394676 + 0.169842i
\(521\) 19.7990 0.867409 0.433705 0.901055i \(-0.357206\pi\)
0.433705 + 0.901055i \(0.357206\pi\)
\(522\) −18.0000 + 23.2379i −0.787839 + 1.01710i
\(523\) 6.32456i 0.276553i 0.990394 + 0.138277i \(0.0441563\pi\)
−0.990394 + 0.138277i \(0.955844\pi\)
\(524\) −9.00000 34.8569i −0.393167 1.52273i
\(525\) −11.0227 8.21584i −0.481070 0.358569i
\(526\) 10.0000 + 7.74597i 0.436021 + 0.337740i
\(527\) 0 0
\(528\) −7.34924 + 21.7713i −0.319835 + 0.947473i
\(529\) −17.0000 −0.739130
\(530\) −15.0000 11.6190i −0.651558 0.504695i
\(531\) 32.8634i 1.42615i
\(532\) 30.9808 + 12.6567i 1.34319 + 0.548738i
\(533\) 18.9737i 0.821841i
\(534\) −4.24264 + 5.47723i −0.183597 + 0.237023i
\(535\) 6.32456i 0.273434i
\(536\) −8.66025 + 20.1246i −0.374066 + 0.869251i
\(537\) 25.4558 1.09850
\(538\) −8.57321 + 11.0680i −0.369618 + 0.477174i
\(539\) 19.8990 + 11.9595i 0.857110 + 0.515134i
\(540\) −3.67423 14.2302i −0.158114 0.612372i
\(541\) 38.3406i 1.64839i −0.566306 0.824195i \(-0.691628\pi\)
0.566306 0.824195i \(-0.308372\pi\)
\(542\) −17.6777 13.6931i −0.759321 0.588167i
\(543\) 23.2379i 0.997234i
\(544\) 0 0
\(545\) 7.74597i 0.331801i
\(546\) −15.2942 + 4.25283i −0.654533 + 0.182004i
\(547\) 16.9706 0.725609 0.362804 0.931865i \(-0.381819\pi\)
0.362804 + 0.931865i \(0.381819\pi\)
\(548\) 0 0
\(549\) −22.0454 −0.940875
\(550\) 1.13604 + 14.0253i 0.0484409 + 0.598041i
\(551\) 43.8178i 1.86670i
\(552\) 11.0227 + 4.74342i 0.469157 + 0.201893i
\(553\) −9.00000 6.70820i −0.382719 0.285262i
\(554\) −6.12372 4.74342i −0.260172 0.201528i
\(555\) 4.89898 0.207950
\(556\) −24.4949 + 6.32456i −1.03882 + 0.268221i
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) 9.00000 11.6190i 0.381000 0.491869i
\(559\) 0 0
\(560\) −14.8301 2.01676i −0.626687 0.0852238i
\(561\) 0 0
\(562\) 3.00000 3.87298i 0.126547 0.163372i
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) −18.3712 + 4.74342i −0.773566 + 0.199734i
\(565\) 26.8328i 1.12887i
\(566\) 28.2843 + 21.9089i 1.18888 + 0.920900i
\(567\) 19.0919 + 14.2302i 0.801784 + 0.597614i
\(568\) 31.8198 + 13.6931i 1.33513 + 0.574548i
\(569\) 10.3923 0.435668 0.217834 0.975986i \(-0.430101\pi\)
0.217834 + 0.975986i \(0.430101\pi\)
\(570\) 17.3205 + 13.4164i 0.725476 + 0.561951i
\(571\) −8.48528 −0.355098 −0.177549 0.984112i \(-0.556817\pi\)
−0.177549 + 0.984112i \(0.556817\pi\)
\(572\) 13.6066 + 8.88034i 0.568921 + 0.371306i
\(573\) −21.2132 −0.886194
\(574\) −7.76457 27.9233i −0.324087 1.16550i
\(575\) 7.34847 0.306452
\(576\) 16.5000 + 17.4284i 0.687500 + 0.726184i
\(577\) 40.2492i 1.67560i 0.545979 + 0.837799i \(0.316158\pi\)
−0.545979 + 0.837799i \(0.683842\pi\)
\(578\) 14.7224 19.0066i 0.612372 0.790569i
\(579\) 0 0
\(580\) 4.89898 + 18.9737i 0.203419 + 0.787839i
\(581\) 12.7279 + 9.48683i 0.528043 + 0.393580i
\(582\) 25.9808 + 20.1246i 1.07694 + 0.834192i
\(583\) −21.2132 23.2379i −0.878561 0.962415i
\(584\) 25.4558 + 10.9545i 1.05337 + 0.453298i
\(585\) −10.3923 −0.429669
\(586\) 0 0
\(587\) 10.9545i 0.452139i 0.974111 + 0.226069i \(0.0725876\pi\)
−0.974111 + 0.226069i \(0.927412\pi\)
\(588\) 20.7679 12.5177i 0.856456 0.516220i
\(589\) 21.9089i 0.902741i
\(590\) 17.3205 + 13.4164i 0.713074 + 0.552345i
\(591\) 0 0
\(592\) −7.00000 + 3.87298i −0.287698 + 0.159179i
\(593\) 30.9839i 1.27235i 0.771543 + 0.636177i \(0.219485\pi\)
−0.771543 + 0.636177i \(0.780515\pi\)
\(594\) −1.96768 24.2926i −0.0807348 0.996736i
\(595\) 0 0
\(596\) −3.46410 13.4164i −0.141895 0.549557i
\(597\) −42.0000 −1.71895
\(598\) 5.19615 6.70820i 0.212486 0.274319i
\(599\) −26.9444 −1.10092 −0.550459 0.834862i \(-0.685547\pi\)
−0.550459 + 0.834862i \(0.685547\pi\)
\(600\) 13.5000 + 5.80948i 0.551135 + 0.237171i
\(601\) −19.5959 −0.799334 −0.399667 0.916660i \(-0.630874\pi\)
−0.399667 + 0.916660i \(0.630874\pi\)
\(602\) 0 0
\(603\) 23.2379i 0.946320i
\(604\) −6.36396 24.6475i −0.258946 1.00289i
\(605\) 1.41421 15.4919i 0.0574960 0.629837i
\(606\) 0 0
\(607\) 3.16228i 0.128353i 0.997939 + 0.0641764i \(0.0204420\pi\)
−0.997939 + 0.0641764i \(0.979558\pi\)
\(608\) −35.3553 5.47723i −1.43385 0.222131i
\(609\) −25.4558 18.9737i −1.03152 0.768852i
\(610\) −9.00000 + 11.6190i −0.364399 + 0.470438i
\(611\) 13.4164i 0.542770i
\(612\) 0 0
\(613\) 27.3861i 1.10612i 0.833143 + 0.553058i \(0.186539\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(614\) −28.2843 21.9089i −1.14146 0.884171i
\(615\) 18.9737i 0.765092i
\(616\) −23.6588 7.50087i −0.953239 0.302219i
\(617\) 18.9737i 0.763851i 0.924193 + 0.381926i \(0.124739\pi\)
−0.924193 + 0.381926i \(0.875261\pi\)
\(618\) 5.19615 6.70820i 0.209020 0.269844i
\(619\) 27.7128 1.11387 0.556936 0.830555i \(-0.311977\pi\)
0.556936 + 0.830555i \(0.311977\pi\)
\(620\) −2.44949 9.48683i −0.0983739 0.381000i
\(621\) −12.7279 −0.510754
\(622\) 18.3712 + 14.2302i 0.736617 + 0.570581i
\(623\) −6.00000 4.47214i −0.240385 0.179172i
\(624\) 14.8492 8.21584i 0.594445 0.328897i
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 24.4949 + 26.8328i 0.978232 + 1.07160i
\(628\) 25.9808 6.70820i 1.03675 0.267686i
\(629\) 0 0
\(630\) 15.2942 4.25283i 0.609337 0.169437i
\(631\) 23.2379i 0.925086i −0.886597 0.462543i \(-0.846937\pi\)
0.886597 0.462543i \(-0.153063\pi\)
\(632\) 11.0227 + 4.74342i 0.438460 + 0.188683i
\(633\) 14.6969 0.584151
\(634\) −31.8198 24.6475i −1.26373 0.978878i
\(635\) 30.0000 1.19051
\(636\) −31.8198 + 8.21584i −1.26174 + 0.325779i
\(637\) −4.89898 16.4317i −0.194105 0.651047i
\(638\) 2.62357 + 32.3901i 0.103868 + 1.28234i
\(639\) −36.7423 −1.45350
\(640\) 15.9217 1.58114i 0.629360 0.0625000i
\(641\) 18.9737i 0.749415i −0.927143 0.374707i \(-0.877743\pi\)
0.927143 0.374707i \(-0.122257\pi\)
\(642\) 8.66025 + 6.70820i 0.341793 + 0.264752i
\(643\) 34.6410 1.36611 0.683054 0.730368i \(-0.260651\pi\)
0.683054 + 0.730368i \(0.260651\pi\)
\(644\) −4.90192 + 11.9988i −0.193163 + 0.472819i
\(645\) 0 0
\(646\) 0 0
\(647\) 5.47723i 0.215332i 0.994187 + 0.107666i \(0.0343377\pi\)
−0.994187 + 0.107666i \(0.965662\pi\)
\(648\) −23.3827 10.0623i −0.918559 0.395285i
\(649\) 24.4949 + 26.8328i 0.961509 + 1.05328i
\(650\) 6.36396 8.21584i 0.249615 0.322252i
\(651\) 12.7279 + 9.48683i 0.498847 + 0.371818i
\(652\) −30.0000 + 7.74597i −1.17489 + 0.303355i
\(653\) 9.48683i 0.371248i −0.982621 0.185624i \(-0.940569\pi\)
0.982621 0.185624i \(-0.0594307\pi\)
\(654\) 10.6066 + 8.21584i 0.414751 + 0.321265i
\(655\) 25.4558 0.994642
\(656\) 15.0000 + 27.1109i 0.585652 + 1.05850i
\(657\) −29.3939 −1.14676
\(658\) −5.49038 19.7448i −0.214037 0.769731i
\(659\) 49.1935i 1.91631i −0.286256 0.958153i \(-0.592411\pi\)
0.286256 0.958153i \(-0.407589\pi\)
\(660\) −13.6066 8.88034i −0.529636 0.345667i
\(661\) 13.4164i 0.521838i −0.965361 0.260919i \(-0.915974\pi\)
0.965361 0.260919i \(-0.0840255\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −15.5885 6.70820i −0.604949 0.260329i
\(665\) −14.1421 + 18.9737i −0.548408 + 0.735767i
\(666\) 5.19615 6.70820i 0.201347 0.259938i
\(667\) 16.9706 0.657103
\(668\) 6.00000 + 23.2379i 0.232147 + 0.899101i
\(669\) 30.0000 1.15987
\(670\) −12.2474 9.48683i −0.473160 0.366508i
\(671\) −18.0000 + 16.4317i −0.694882 + 0.634338i
\(672\) −18.4913 + 18.1679i −0.713317 + 0.700841i
\(673\) 32.8634i 1.26679i −0.773829 0.633395i \(-0.781661\pi\)
0.773829 0.633395i \(-0.218339\pi\)
\(674\) −12.2474 9.48683i −0.471754 0.365419i
\(675\) −15.5885 −0.600000
\(676\) 3.50000 + 13.5554i 0.134615 + 0.521363i
\(677\) 30.9839i 1.19081i −0.803427 0.595403i \(-0.796992\pi\)
0.803427 0.595403i \(-0.203008\pi\)
\(678\) 36.7423 + 28.4605i 1.41108 + 1.09302i
\(679\) −21.2132 + 28.4605i −0.814088 + 1.09221i
\(680\) 0 0
\(681\) −20.7846 −0.796468
\(682\) −1.31178 16.1950i −0.0502308 0.620140i
\(683\) −9.79796 −0.374908 −0.187454 0.982273i \(-0.560024\pi\)
−0.187454 + 0.982273i \(0.560024\pi\)
\(684\) 36.7423 9.48683i 1.40488 0.362738i
\(685\) 0 0
\(686\) 13.9341 + 22.1775i 0.532006 + 0.846741i
\(687\) 23.2379i 0.886581i
\(688\) 0 0
\(689\) 23.2379i 0.885293i
\(690\) −5.19615 + 6.70820i −0.197814 + 0.255377i
\(691\) 20.7846 0.790684 0.395342 0.918534i \(-0.370626\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(692\) 30.0000 7.74597i 1.14043 0.294457i
\(693\) 26.1951 2.61130i 0.995068 0.0991951i
\(694\) −20.0000 15.4919i −0.759190 0.588066i
\(695\) 17.8885i 0.678551i
\(696\) 31.1769 + 13.4164i 1.18176 + 0.508548i
\(697\) 0 0
\(698\) −10.6066 + 13.6931i −0.401466 + 0.518290i
\(699\) 36.0000 1.36165
\(700\) −6.00361 + 14.6955i −0.226915 + 0.555436i
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) −11.0227 + 14.2302i −0.416025 + 0.537086i
\(703\) 12.6491i 0.477070i
\(704\) 26.4626 + 1.93188i 0.997346 + 0.0728103i
\(705\) 13.4164i 0.505291i
\(706\) −19.5959 + 25.2982i −0.737502 + 0.952111i
\(707\) 0 0
\(708\) 36.7423 9.48683i 1.38086 0.356537i
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −15.0000 + 19.3649i −0.562940 + 0.726752i
\(711\) −12.7279 −0.477334
\(712\) 7.34847 + 3.16228i 0.275396 + 0.118511i
\(713\) −8.48528 −0.317776
\(714\) 0 0
\(715\) −8.48528 + 7.74597i −0.317332 + 0.289683i
\(716\) −7.34847 28.4605i −0.274625 1.06362i
\(717\) 15.4919i 0.578557i
\(718\) −20.0000 15.4919i −0.746393 0.578154i
\(719\) 5.47723i 0.204266i −0.994771 0.102133i \(-0.967433\pi\)
0.994771 0.102133i \(-0.0325667\pi\)
\(720\) −14.8492 + 8.21584i −0.553399 + 0.306186i
\(721\) 7.34847 + 5.47723i 0.273671 + 0.203983i
\(722\) −18.1865 + 23.4787i −0.676833 + 0.873787i
\(723\) 42.4264 1.57786
\(724\) −25.9808 + 6.70820i −0.965567 + 0.249308i
\(725\) 20.7846 0.771921
\(726\) −19.7132 18.3682i −0.731626 0.681707i
\(727\) 10.3923 0.385429 0.192715 0.981255i \(-0.438271\pi\)
0.192715 + 0.981255i \(0.438271\pi\)
\(728\) 9.16987 + 15.8718i 0.339858 + 0.588247i
\(729\) 27.0000 1.00000
\(730\) −12.0000 + 15.4919i −0.444140 + 0.573382i
\(731\) 0 0
\(732\) 6.36396 + 24.6475i 0.235219 + 0.910998i
\(733\) 22.0454 0.814266 0.407133 0.913369i \(-0.366529\pi\)
0.407133 + 0.913369i \(0.366529\pi\)
\(734\) −15.0000 + 19.3649i −0.553660 + 0.714772i
\(735\) 4.89898 + 16.4317i 0.180702 + 0.606092i
\(736\) 2.12132 13.6931i 0.0781929 0.504733i
\(737\) −17.3205 18.9737i −0.638009 0.698904i
\(738\) −25.9808 20.1246i −0.956365 0.740797i
\(739\) 25.4558 0.936408 0.468204 0.883620i \(-0.344901\pi\)
0.468204 + 0.883620i \(0.344901\pi\)
\(740\) −1.41421 5.47723i −0.0519875 0.201347i
\(741\) 26.8328i 0.985728i
\(742\) −9.50962 34.1989i −0.349109 1.25548i
\(743\) 44.7214i 1.64067i 0.571885 + 0.820334i \(0.306212\pi\)
−0.571885 + 0.820334i \(0.693788\pi\)
\(744\) −15.5885 6.70820i −0.571501 0.245935i
\(745\) 9.79796 0.358969
\(746\) 6.12372 + 4.74342i 0.224205 + 0.173669i
\(747\) 18.0000 0.658586
\(748\) 0 0
\(749\) −7.07107 + 9.48683i −0.258371 + 0.346641i
\(750\) −16.9706 + 21.9089i −0.619677 + 0.800000i
\(751\) 38.7298i 1.41327i 0.707577 + 0.706636i \(0.249788\pi\)
−0.707577 + 0.706636i \(0.750212\pi\)
\(752\) 10.6066 + 19.1703i 0.386783 + 0.699069i
\(753\) 37.9473i 1.38288i
\(754\) 14.6969 18.9737i 0.535231 0.690980i
\(755\) 18.0000 0.655087
\(756\) 10.3986 25.4533i 0.378192 0.925727i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 17.3205 + 13.4164i 0.629109 + 0.487306i
\(759\) −10.3923 + 9.48683i −0.377217 + 0.344350i
\(760\) 10.0000 23.2379i 0.362738 0.842927i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 31.8198 41.0792i 1.15271 1.48814i
\(763\) −8.66025 + 11.6190i −0.313522 + 0.420634i
\(764\) 6.12372 + 23.7171i 0.221549 + 0.858054i
\(765\) 0 0
\(766\) 18.3712 + 14.2302i 0.663777 + 0.514160i
\(767\) 26.8328i 0.968877i
\(768\) 14.7224 23.4787i 0.531250 0.847215i
\(769\) −24.4949 −0.883309 −0.441654 0.897185i \(-0.645608\pi\)
−0.441654 + 0.897185i \(0.645608\pi\)
\(770\) 9.31781 14.8721i 0.335791 0.535952i
\(771\) −24.4949 −0.882162
\(772\) 0 0
\(773\) 7.07107 0.254329 0.127164 0.991882i \(-0.459412\pi\)
0.127164 + 0.991882i \(0.459412\pi\)
\(774\) 0 0
\(775\) −10.3923 −0.373303
\(776\) 15.0000 34.8569i 0.538469 1.25129i
\(777\) 7.34847 + 5.47723i 0.263625 + 0.196494i
\(778\) 31.8198 + 24.6475i 1.14080 + 0.883656i
\(779\) 48.9898 1.75524
\(780\) 3.00000 + 11.6190i 0.107417 + 0.416025i
\(781\) −30.0000 + 27.3861i −1.07348 + 0.979953i
\(782\) 0 0
\(783\) −36.0000 −1.28654
\(784\) −19.9904 19.6057i −0.713942 0.700205i
\(785\) 18.9737i 0.677199i
\(786\) 27.0000 34.8569i 0.963058 1.24330i
\(787\) 31.6228i 1.12723i 0.826038 + 0.563615i \(0.190590\pi\)
−0.826038 + 0.563615i \(0.809410\pi\)
\(788\) 0 0
\(789\) 15.4919i 0.551527i
\(790\) −5.19615 + 6.70820i −0.184871 + 0.238667i
\(791\) −30.0000 + 40.2492i −1.06668 + 1.43110i
\(792\) −26.5919 + 9.21259i −0.944901 + 0.327355i
\(793\) 18.0000 0.639199
\(794\) −15.0000 11.6190i −0.532330 0.412341i
\(795\) 23.2379i 0.824163i
\(796\) 12.1244 + 46.9574i 0.429736 + 1.66436i
\(797\) −49.4975 −1.75329 −0.876645 0.481137i \(-0.840224\pi\)
−0.876645 + 0.481137i \(0.840224\pi\)
\(798\) 10.9808 + 39.4895i 0.388715 + 1.39791i
\(799\) 0 0
\(800\) 2.59808 16.7705i 0.0918559 0.592927i
\(801\) −8.48528 −0.299813
\(802\) −21.2132 16.4317i −0.749064 0.580223i
\(803\) −24.0000 + 21.9089i −0.846942 + 0.773148i
\(804\) −25.9808 + 6.70820i −0.916271 + 0.236580i
\(805\) −7.34847 5.47723i −0.259000 0.193047i
\(806\) −7.34847 + 9.48683i −0.258839 + 0.334159i
\(807\) −17.1464 −0.603583
\(808\) 0 0
\(809\) 6.92820 0.243583 0.121791 0.992556i \(-0.461136\pi\)
0.121791 + 0.992556i \(0.461136\pi\)
\(810\) 11.0227 14.2302i 0.387298 0.500000i
\(811\) 6.32456i 0.222085i −0.993816 0.111043i \(-0.964581\pi\)
0.993816 0.111043i \(-0.0354190\pi\)
\(812\) −13.8647 + 33.9377i −0.486557 + 1.19098i
\(813\) 27.3861i 0.960473i
\(814\) −0.757359 9.35021i −0.0265454 0.327725i
\(815\) 21.9089i 0.767435i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −15.5885 11.6190i −0.544705 0.405999i
\(820\) −21.2132 + 5.47723i −0.740797 + 0.191273i
\(821\) 48.4974 1.69257 0.846286 0.532729i \(-0.178834\pi\)
0.846286 + 0.532729i \(0.178834\pi\)
\(822\) 0 0
\(823\) 38.7298i 1.35004i 0.737801 + 0.675019i \(0.235864\pi\)
−0.737801 + 0.675019i \(0.764136\pi\)
\(824\) −9.00000 3.87298i −0.313530 0.134922i
\(825\) −12.7279 + 11.6190i −0.443129 + 0.404520i
\(826\) 10.9808 + 39.4895i 0.382070 + 1.37402i
\(827\) 17.8885i 0.622046i −0.950402 0.311023i \(-0.899328\pi\)
0.950402 0.311023i \(-0.100672\pi\)
\(828\) 3.67423 + 14.2302i 0.127688 + 0.494535i
\(829\) 13.4164i 0.465971i 0.972480 + 0.232986i \(0.0748495\pi\)
−0.972480 + 0.232986i \(0.925151\pi\)
\(830\) 7.34847 9.48683i 0.255069 0.329293i
\(831\) 9.48683i 0.329095i
\(832\) −13.4722 14.2302i −0.467064 0.493345i
\(833\) 0 0
\(834\) −24.4949 18.9737i −0.848189 0.657004i
\(835\) −16.9706 −0.587291
\(836\) 22.9289 35.1321i 0.793014 1.21507i
\(837\) 18.0000 0.622171
\(838\) −24.4949 18.9737i −0.846162 0.655434i
\(839\) 38.3406i 1.32366i −0.749652 0.661832i \(-0.769779\pi\)
0.749652 0.661832i \(-0.230221\pi\)
\(840\) −9.16987 15.8718i −0.316391 0.547628i
\(841\) 19.0000 0.655172
\(842\) −8.66025 + 11.1803i −0.298452 + 0.385300i
\(843\) 6.00000 0.206651
\(844\) −4.24264 16.4317i −0.146038 0.565602i
\(845\) −9.89949 −0.340553
\(846\) −18.3712 14.2302i −0.631614 0.489246i
\(847\) 19.4418 21.6568i 0.668029 0.744135i
\(848\) 18.3712 + 33.2039i 0.630869 + 1.14023i
\(849\) 43.8178i 1.50382i
\(850\) 0 0
\(851\) −4.89898 −0.167935
\(852\) 10.6066 + 41.0792i 0.363376 + 1.40735i
\(853\) −22.0454 −0.754820 −0.377410 0.926046i \(-0.623185\pi\)
−0.377410 + 0.926046i \(0.623185\pi\)
\(854\) −26.4904 + 7.36612i −0.906482 + 0.252063i
\(855\) 26.8328i 0.917663i
\(856\) 5.00000 11.6190i 0.170896 0.397128i
\(857\) 7.74597i 0.264597i 0.991210 + 0.132299i \(0.0422358\pi\)
−0.991210 + 0.132299i \(0.957764\pi\)
\(858\) 1.60660 + 19.8348i 0.0548485 + 0.677149i
\(859\) 45.0333 1.53652 0.768259 0.640140i \(-0.221124\pi\)
0.768259 + 0.640140i \(0.221124\pi\)
\(860\) 0 0
\(861\) 21.2132 28.4605i 0.722944 0.969931i
\(862\) 20.0000 + 15.4919i 0.681203 + 0.527657i
\(863\) −51.4393 −1.75101 −0.875507 0.483206i \(-0.839472\pi\)
−0.875507 + 0.483206i \(0.839472\pi\)
\(864\) −4.50000 + 29.0474i −0.153093 + 0.988212i
\(865\) 21.9089i 0.744925i
\(866\) −30.0000 23.2379i −1.01944 0.789656i
\(867\) 29.4449 1.00000
\(868\) 6.93237 16.9689i 0.235300 0.575961i
\(869\) −10.3923 + 9.48683i −0.352535 + 0.321819i
\(870\) −14.6969 + 18.9737i −0.498273 + 0.643268i
\(871\) 18.9737i 0.642898i
\(872\) 6.12372 14.2302i 0.207375 0.481897i
\(873\) 40.2492i 1.36223i
\(874\) −17.3205 13.4164i −0.585875 0.453817i
\(875\) −24.0000 17.8885i −0.811348 0.604743i
\(876\) 8.48528 + 32.8634i 0.286691 + 1.11035i
\(877\) 49.2950i 1.66457i 0.554344 + 0.832287i \(0.312969\pi\)
−0.554344 + 0.832287i \(0.687031\pi\)
\(878\) −38.8909 30.1247i −1.31250 1.01666i
\(879\) 0 0
\(880\) −6.00063 + 17.7762i −0.202281 + 0.599235i
\(881\) 5.65685 0.190584 0.0952921 0.995449i \(-0.469621\pi\)
0.0952921 + 0.995449i \(0.469621\pi\)
\(882\) 27.6962 + 10.7202i 0.932578 + 0.360969i
\(883\) 7.74597i 0.260673i −0.991470 0.130336i \(-0.958394\pi\)
0.991470 0.130336i \(-0.0416057\pi\)
\(884\) 0 0
\(885\) 26.8328i 0.901975i
\(886\) 33.9411 43.8178i 1.14027 1.47209i
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) −9.00000 3.87298i −0.302020 0.129969i
\(889\) 45.0000 + 33.5410i 1.50925 + 1.12493i
\(890\) −3.46410 + 4.47214i −0.116117 + 0.149906i
\(891\) 22.0454 20.1246i 0.738549 0.674200i
\(892\) −8.66025 33.5410i −0.289967 1.12304i
\(893\) 34.6410 1.15922
\(894\) 10.3923 13.4164i 0.347571 0.448712i
\(895\) 20.7846 0.694753
\(896\) 25.6503 + 15.4293i 0.856916 + 0.515456i
\(897\) 10.3923 0.346989
\(898\) −42.4264 32.8634i −1.41579 1.09666i
\(899\) −24.0000 −0.800445
\(900\) 4.50000 + 17.4284i 0.150000 + 0.580948i
\(901\) 0 0
\(902\) −36.2132 + 2.93324i −1.20577 + 0.0976662i
\(903\) 0 0
\(904\) 21.2132 49.2950i 0.705541 1.63953i
\(905\) 18.9737i 0.630706i
\(906\) 19.0919 24.6475i 0.634285 0.818859i
\(907\) 23.2379i 0.771602i 0.922582 + 0.385801i \(0.126075\pi\)
−0.922582 + 0.385801i \(0.873925\pi\)
\(908\) 6.00000 + 23.2379i 0.199117 + 0.771177i
\(909\) 0 0
\(910\) −12.4877 + 3.47242i −0.413963 + 0.115110i
\(911\) 36.7423 1.21733 0.608664 0.793428i \(-0.291706\pi\)
0.608664 + 0.793428i \(0.291706\pi\)
\(912\) −21.2132 38.3406i −0.702439 1.26958i
\(913\) 14.6969 13.4164i 0.486398 0.444018i
\(914\) −12.2474 9.48683i −0.405110 0.313797i
\(915\) −18.0000 −0.595062
\(916\) −25.9808 + 6.70820i −0.858429 + 0.221645i
\(917\) 38.1838 + 28.4605i 1.26094 + 0.939848i
\(918\) 0 0
\(919\) −4.24264 −0.139952 −0.0699759 0.997549i \(-0.522292\pi\)
−0.0699759 + 0.997549i \(0.522292\pi\)
\(920\) 9.00000 + 3.87298i 0.296721 + 0.127688i
\(921\) 43.8178i 1.44385i
\(922\) −34.6410 26.8328i −1.14084 0.883692i
\(923\) 30.0000 0.987462
\(924\) −10.4814 28.5331i −0.344812 0.938672i
\(925\) −6.00000 −0.197279
\(926\) 8.66025 + 6.70820i 0.284594 + 0.220445i
\(927\) 10.3923 0.341328
\(928\) 6.00000 38.7298i 0.196960 1.27137i
\(929\) −45.2548 −1.48476 −0.742381 0.669977i \(-0.766304\pi\)
−0.742381 + 0.669977i \(0.766304\pi\)
\(930\) 7.34847 9.48683i 0.240966 0.311086i
\(931\) −42.4264 + 12.6491i −1.39047 + 0.414558i
\(932\) −10.3923 40.2492i −0.340411 1.31841i
\(933\) 28.4605i 0.931755i
\(934\) −12.2474 9.48683i −0.400749 0.310419i
\(935\) 0 0
\(936\) 19.0919 + 8.21584i 0.624038 + 0.268543i
\(937\) −44.0908 −1.44038 −0.720192 0.693775i \(-0.755946\pi\)
−0.720192 + 0.693775i \(0.755946\pi\)
\(938\) −7.76457 27.9233i −0.253522 0.911729i
\(939\) 0 0
\(940\) −15.0000 + 3.87298i −0.489246 + 0.126323i
\(941\) 15.4919i 0.505023i 0.967594 + 0.252511i \(0.0812565\pi\)
−0.967594 + 0.252511i \(0.918744\pi\)
\(942\) 25.9808 + 20.1246i 0.846499 + 0.655695i
\(943\) 18.9737i 0.617868i
\(944\) −21.2132 38.3406i −0.690431 1.24788i
\(945\) 15.5885 + 11.6190i 0.507093 + 0.377964i
\(946\) 0 0
\(947\) 19.5959 0.636782 0.318391 0.947960i \(-0.396858\pi\)
0.318391 + 0.947960i \(0.396858\pi\)
\(948\) 3.67423 + 14.2302i 0.119334 + 0.462177i
\(949\) 24.0000 0.779073
\(950\) −21.2132 16.4317i −0.688247 0.533114i
\(951\) 49.2950i 1.59850i
\(952\) 0 0
\(953\) −34.6410 −1.12213 −0.561066 0.827771i \(-0.689609\pi\)
−0.561066 + 0.827771i \(0.689609\pi\)
\(954\) −31.8198 24.6475i −1.03020 0.797993i
\(955\) −17.3205 −0.560478
\(956\) 17.3205 4.47214i 0.560185 0.144639i
\(957\) −29.3939 + 26.8328i −0.950169 + 0.867382i
\(958\) −31.1769 + 40.2492i −1.00728 + 1.30039i
\(959\) 0 0
\(960\) 13.4722 + 14.2302i 0.434813 + 0.459279i
\(961\) −19.0000 −0.612903
\(962\) −4.24264 + 5.47723i −0.136788 + 0.176593i
\(963\) 13.4164i 0.432338i
\(964\) −12.2474 47.4342i −0.394464 1.52775i
\(965\) 0 0
\(966\) −15.2942 + 4.25283i −0.492084 + 0.136833i
\(967\) 4.24264 0.136434 0.0682171 0.997671i \(-0.478269\pi\)
0.0682171 + 0.997671i \(0.478269\pi\)
\(968\) −14.8455 + 27.3425i −0.477153 + 0.878820i
\(969\) 0 0
\(970\) 21.2132 + 16.4317i 0.681115 + 0.527589i
\(971\) 43.8178i 1.40618i 0.711101 + 0.703090i \(0.248197\pi\)
−0.711101 + 0.703090i \(0.751803\pi\)
\(972\) −7.79423 30.1869i −0.250000 0.968246i
\(973\) 20.0000 26.8328i 0.641171 0.860221i
\(974\) −25.9808 20.1246i −0.832477 0.644834i
\(975\) 12.7279 0.407620
\(976\) 25.7196 14.2302i 0.823266 0.455499i
\(977\) 18.9737i 0.607021i −0.952828 0.303511i \(-0.901841\pi\)
0.952828 0.303511i \(-0.0981588\pi\)
\(978\) −30.0000 23.2379i −0.959294 0.743066i
\(979\) −6.92820 + 6.32456i −0.221426 + 0.202134i
\(980\) 16.9570 10.2206i 0.541670 0.326486i
\(981\) 16.4317i 0.524623i
\(982\) −5.00000 3.87298i −0.159556 0.123592i
\(983\) 49.2950i 1.57227i −0.618057 0.786134i \(-0.712080\pi\)
0.618057 0.786134i \(-0.287920\pi\)
\(984\) −15.0000 + 34.8569i −0.478183 + 1.11120i
\(985\) 0 0
\(986\) 0 0
\(987\) 15.0000 20.1246i 0.477455 0.640573i
\(988\) −30.0000 + 7.74597i −0.954427 + 0.246432i
\(989\) 0 0
\(990\) −1.60660 19.8348i −0.0510612 0.630391i
\(991\) 38.7298i 1.23029i 0.788413 + 0.615147i \(0.210903\pi\)
−0.788413 + 0.615147i \(0.789097\pi\)
\(992\) −3.00000 + 19.3649i −0.0952501 + 0.614837i
\(993\) 0 0
\(994\) −44.1506 + 12.2769i −1.40037 + 0.389399i
\(995\) −34.2929 −1.08716
\(996\) −5.19615 20.1246i −0.164646 0.637673i
\(997\) −7.34847 −0.232728 −0.116364 0.993207i \(-0.537124\pi\)
−0.116364 + 0.993207i \(0.537124\pi\)
\(998\) 34.6410 + 26.8328i 1.09654 + 0.849378i
\(999\) 10.3923 0.328798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 924.2.n.c.923.6 yes 8
3.2 odd 2 924.2.n.b.923.3 yes 8
4.3 odd 2 924.2.n.b.923.8 yes 8
7.6 odd 2 924.2.n.b.923.5 yes 8
11.10 odd 2 924.2.n.b.923.4 yes 8
12.11 even 2 inner 924.2.n.c.923.1 yes 8
21.20 even 2 inner 924.2.n.c.923.4 yes 8
28.27 even 2 inner 924.2.n.c.923.7 yes 8
33.32 even 2 inner 924.2.n.c.923.5 yes 8
44.43 even 2 inner 924.2.n.c.923.2 yes 8
77.76 even 2 inner 924.2.n.c.923.3 yes 8
84.83 odd 2 924.2.n.b.923.2 yes 8
132.131 odd 2 924.2.n.b.923.7 yes 8
231.230 odd 2 924.2.n.b.923.6 yes 8
308.307 odd 2 924.2.n.b.923.1 8
924.923 even 2 inner 924.2.n.c.923.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
924.2.n.b.923.1 8 308.307 odd 2
924.2.n.b.923.2 yes 8 84.83 odd 2
924.2.n.b.923.3 yes 8 3.2 odd 2
924.2.n.b.923.4 yes 8 11.10 odd 2
924.2.n.b.923.5 yes 8 7.6 odd 2
924.2.n.b.923.6 yes 8 231.230 odd 2
924.2.n.b.923.7 yes 8 132.131 odd 2
924.2.n.b.923.8 yes 8 4.3 odd 2
924.2.n.c.923.1 yes 8 12.11 even 2 inner
924.2.n.c.923.2 yes 8 44.43 even 2 inner
924.2.n.c.923.3 yes 8 77.76 even 2 inner
924.2.n.c.923.4 yes 8 21.20 even 2 inner
924.2.n.c.923.5 yes 8 33.32 even 2 inner
924.2.n.c.923.6 yes 8 1.1 even 1 trivial
924.2.n.c.923.7 yes 8 28.27 even 2 inner
924.2.n.c.923.8 yes 8 924.923 even 2 inner